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A DETAILED LABELING ALGORITHM

Algorithm 2: ENTITYLABELING

Input: Event set F = {(s, r, o, t)}; graph G
Output: Labels C(s) for each s ∈ E

1 Build RelSet[s] := {r | (s, r, ∗, ∗) or (∗, r, s, ∗) ∈ F} for all s ∈ E ▷ Construct the relation set for entities
2 F ← APRIORI([ RelSet[e] ]e∈E) ▷ Apply Apriori algorithm mine frequent relation subsets
3 Sort F and assign the TypeID for each combination of relations
4 foreach s ∈ E do
5 L← [ TypeID[s] | p ∈ F , p ⊆ RelSet[s] ]
6 if L is empty then
7 p⋆ ← RelSet[s]
8 L← [ TypeID[p⋆] ] ▷ We treat the relation set of s as L if L is empty

9 C(s)←the first Ktype combinations in L ▷ We only keep the Top-Ktype combinations as the labels of s

10 return C(s) for each s ∈ E

B DETAILS OF COMPUTING MODEL COST OF THE RULE GRAPH

Notations. Let G = (E ,R, T ,F) be the TKG. Let A be the finite set of category labels and
C : E → A map each entity to a label; write A := |A|. Our rule graph is M = (U , Erule) with nodes
u = ⟨as, r, ao⟩ ∈ A ×R×A and directed chain edges (u→ v). Candidate edges are restricted to
Hamming-1 neighbors:

W =
{
{u, v} : u ̸= v, dH(u, v) ≤ 1

}
, dH(u, v) = 1[as ̸= bs] + 1[r ̸= r′] + 1[ao ̸= bo].

What L(M) measures. L(M) counts the bits to (i) choose nodes from all atomic-rule options, (ii)
choose directed chain edges from admissible pairs, and (iii) encode the selected nodes and edges
using optimal prefix codes from empirical frequencies.

We adopt the two-part MDL form L(M) + L(G | M) and detail L(M):

L(M) = log2
(
A2|R|

)︸ ︷︷ ︸
candidate atomic rules

+ log2
(
2 |W|

)︸ ︷︷ ︸
candidate directed chain edges

+
∑
u∈U

L(u) +
∑

(u→v)∈Erule

L(u→ v) .

Node code length. From F , estimate empirical probabilities ps(a) and po(a) for subject/object
categories a ∈ A, and pr(r) for relations r ∈ R. Then

L(u) = − log2 ps(as) − log2 pr(r) − log2 po(ao), u = ⟨as, r, ao⟩.

Edge code length. Let dout(u) and din(u) be the out-/in-degrees of u in Erule and define the
endpoint distribution

pV (u) =
dout(u) + din(u)

2 |Erule|
.

A directed chain edge (u→ v) is encoded as
L(u→ v) = − log2 pV (u) − log2 pV (v).

C DETAILED ALGORITHM OF COMPUTING PERSONALIZATION VECTOR

Seeded personalization vector γ. Let FK1 = {f1, . . . , fK1} be the Top-K1 anchors for query q
(ordered by cosine similarity). We map FK1 to rule nodes and form the seeded rule set

Useed = {u ∈ U : supp(u) ∩ FK1 ̸= ∅ }.
Corpus coverage (counts). For each u ∈ Useed, define the raw coverage cu = |supp(u)| and its
normalization

c̃u =
cu∑

v∈Useed
cv

.
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Ranking importance (geometrically discounted hits). Let β ∈ (0, 1) and write fj for the j-th anchor
(rank j is 1-based). Define

pu =
∑

j: fj∈supp(u)

β j−1, p̃u =
pu∑

v∈Useed
pv

.

Blending and smoothing. With mixture weight θ ∈ [0, 1] and Dirichlet smoothing τ > 0,

su = (1− θ) c̃u + θ p̃u, γu =
su + τ∑

v∈Useed
(sv + τ)

, u ∈ Useed.

In our implementation we set θ = 0.6, β = 0.7, and use τ = 1/|Useed| by default. Finally, we diffuse
γ on the rule graph by personalized PageRank:

π = αγ + (1− α)π Ã,
where α = 0.2 is the restart probability used in our experiments.

D ADDITIONAL EXPERIMENTAL RESULTS

Here, we present the comparison of token consumption and reasoning time based on CronQuestion
and Forecast datasets in Fig. 5 and 6.

Figure 5: Comparison of token consumption and reasoning time on CronQuestion.

Figure 6: Comparison of token consumption and reasoning time on Forecast.

Then we report the rule-graph construction time and memory usage, as well as the per-query reasoning
time for each dataset, in Table 5.

Table 5: Runtime and memory measurements for STAR-RAG: rule-graph construction time (s), peak memory
usage (MB), and per-query reasoning time (s) on each dataset.

Measurements CronQuestion Forecast MultiTQ STAR-QA

Building Time 254.3 283.9 268.9 384.6
Building Memory 1,062 1,232 1,102 2,754
Reasoning Time 20.6 23.0 22.7 35.6
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E PROMPT AND EXAMPLE FOR TEMPORAL QUESTION ANSWERING

Prompt

Instruction:
As an advanced reading comprehension assistant, your task is to analyze multiple triple
facts and corresponding questions with time constraints meticulously.
Your response start after "Thought: ", where you will methodically break down the
reasoning process, illustrating how you arrive at conclusions.
Keep subject/object orientation. Match the same base relation. Apply temporal operator
precisely.
Conclude with "Answer: " to present return 10 short answer candidates ranked best-to-
worst, devoid of additional elaborations.

One-Shot Demonstration:
Events:
Event A: On 2010-08-30, European Central Bank criticized Romania. Event B: On
2011-02-14, European Central Bank criticized government of Germany.
Question:
Before Germany, who did the European Central Bank criticize last?
Answer:
Romania.

An example to retrieve the time-aligned events

Question:
Which country was the last to accuse the UN security council before the Military Personnel
of Canada did?
Retrival results:

1. Military_personnel_(Canada) accuse Un_security_council @
2006-02-10

2. Un_security_council accuse Government_sudan @ 2006-01-27

3. Un_security_council accuse Iran @ 2005-07-31

4. Lawmaker_(United_kingdom) accuse Government_(Sudan) @
2006-01-26

5. Citizen_(Africa) accuse Government_(Sudan) @ 2006-02-04

6. Congress_(Philippines) accuse Military_personnel_(Philippines)
@ 2006-01-30

7. Eritrea accuse Un_security_council @ 2006-01-04
8. Military_(Philippines) accuse Military_personnel_(Philippines)

@ 2005-12-26

9. Military_personnel_(Thailand) accuse Sondhi_limthongkul @
2005-11-28

10. Military_personnel_(Thailand) accuse Citizen_(Thailand) @
2005-11-22
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Thoughts:
To determine which country was the last to accuse the UN Security Council before the
Military Personnel of Canada did, we need to examine the dates provided for each entity
accusing the UN Security Council and compare them to the date when the Military
Personnel of Canada made their accusation, which is 2006-02-10.

The relevant accusations against the UN Security Council are:
- Eritrea on 2006-01-04
- Yemane Gebremeskel on 2005-11-24
- Foreign Affairs (Syria) on 2005-10-31
- UN Security Council itself is not relevant as it’s the one being accused.

Given these dates, the last entity to accuse the UN Security Council before the Military
Personnel of Canada (on 2006-02-10) was Eritrea, which did so on 2006-01-04.
Answer:
Eritrea

F MORE RELATED WORKS

In addition to STAR-RAG, we summarize several recent temporal RAG and temporal LLM plus KG
methods. DRAGIN Su et al. (2024) proposes a dynamic retrieval-augmented generation framework
that adapts its knowledge store and retrieval strategy to streaming information needs. TimeRAG Yang
et al. (2025) targets time series forecasting by retrieving relevant historical segments and using an
LLM to generate future trajectories. RAG4DyG Wu et al. (2024c) focuses on dynamic graphs and
uses retrieval-augmented modeling to improve link prediction under temporal evolution. DynaGRAG
Thakrar (2024) designs a dynamic GraphRAG pipeline that updates and queries evolving subgraphs
aligned with query time. MusTQ Zhang et al. (2024b) introduces a multi step temporal question
answering benchmark and model that require compositional reasoning over temporal facts.

F.1 INTRODUCTION OF BASELINE METHODS

We compare STAR-RAG with a set of representative GraphRAG methods on static knowledge
graphs, including: TOG (Sun et al., 2024), which organizes knowledge into topic-oriented subgraphs
for efficient traversal; MedicalGraphRAG (Wu et al., 2024b), which augments GraphRAG with
triple-linked graphs and a coarse-to-fine retrieval strategy that combines precise matching with
iterative context refinement; G-Retriever (He et al., 2024), which performs graph retrieval via a Prize-
Collecting Steiner Tree, supporting scalable multi-hop reasoning; DALK (Li et al., 2024), which
employs a dual-level adaptive knowledge graph to balance semantic and structural reasoning; and
HippoRAG (Gutiérrez et al., 2024), which incorporates a hippocampus-inspired memory mechanism
to unify short- and long-term knowledge. In addition, we include four temporal GraphRAG methods:
TS-Retriever (Wu et al., 2024a), which models event dynamics and temporal dependencies; T-GRAG
(Li et al., 2025), which constructs time-stamped graphs with temporal query decomposition to address
conflicts and redundancy; TimeR4 Qian et al. (2024), which uses a temporal knowledge graph with a
trained time-aware retriever and a multi-stage retrieve–rewrite–rerank pipeline; DyG-RAG Sun et al.
(2025), which constructs a dynamic event graph and performs time-aware graph traversal with an
LLM.

G ROBUSTNESS TO SPARSE/NOISY RELATIONS AND LONG-TAIL GRAPHS

In STAR-RAG, similarity-based anchor retrieval serves as the primary robustness backbone: for
each query, we first perform dense similarity search over temporal facts, and the top-k anchor events
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are surfaced regardless of how well they are covered by the rule graph. While some anchors may
correspond to sparse or noisy relations that are weakly represented in the rule topology, the framework
is explicitly designed so that the rule graph is not a single point of failure: if an anchor event is not
included in any rule node or edge, STAR-RAG simply bypasses the rule graph and injects these
anchors directly into the prompt template for LLM generation. In that case, STAR-RAG effectively
degenerates to a standard similarity-based RAG pipeline, behaving comparably to widely used
systems such as HippoRAG Gutiérrez et al. (2024), GRAG Hu et al. (2024), and REANO Fang et al.
(2024). Moreover, sparse or noisy relations and tail events in long-tail graphs typically have poor
connectivity to the rest of the graph, so answering queries about them often reduces to detecting a
single specific fact rather than performing complex multi-hop reasoning. This regime is in fact the
most favorable case for our retrieval–generation pipeline (and for static RAG baselines), as it only
requires correctly retrieving the relevant anchor event and conditioning the LLM on it, instead of
relying on densely connected rule structures.

H COMPLEXITY ANALYSIS.

Let G be a temporal knowledge graph with event set F , candidate rule-node set U , and candidate
rule-edge set W , and let |F|, |U|, and |W| denote their sizes. Let Cmax be the maximum number of
structural labels assigned to any entity. The offline rule-graph construction is executed once per dataset.
Mapping each event (s, r, o, t) ∈ F into rule-node candidates ⟨cs, r, co⟩ costs at most O(C2

max |F|),
and generating candidate temporal edges in W using local time windows costs O(f2

max |F|), where
fmax is the maximum number of events within such a window. Ranking and selecting rule nodes and
edges under the MDL objective then adds O(|U| log |U|+ |W| log |W|), so the total offline cost is

O
(
C2

max |F|+ f2
max |F|+ |U| log |U|+ |W| log |W|

)
,

which is near-linear in |F| in our setting (small Cmax, fmax and |U|, |W| ≪ |F|). At query time,
STAR-RAG first performs dense similarity search over all events and keeps the top-K1 anchor events,
which is O(|F|) with a linear scan plus O(K1 logK1) for selection; mapping these K1 anchors to
rule nodes is O(K1Cmax). Personalized PageRank on the rule graph (with a sparse adjacency over
W) costs O(I |W|) per query, where I is the number of iterations. We then select the top-K2 rule
nodes and gather their supported events into a candidate set Fcand with size at most |Fcand| ≤ K2 s̄,
where s̄ is the average support size of a selected rule node; re-ranking these candidates against the
query costs O(|Fcand|). Overall, the per-query complexity can be written as

O
(
|F|+ I |W|+K1Cmax +K2s̄

)
,

and since K1, K2, Cmax, and s̄ are small constants in our experiments, the dominant terms in practice
are a single pass over F for similarity search and a sparse PPR over the much smaller rule graph,
while the MDL-based construction (including ranking and selection) is amortized as a one-time
offline cost.

I DETAILS FOR BUILDING STAR-QA

To evaluate the performance of STAR-RAG on large-scale KGs, we additionally reconstruct the
evaluation data by ourselves from ICEWS 2005–2015, 2018, 2021 and augment it with 1,000 LLM-
generated QA pairs that are explicitly designed to be more human-written, out-of-template, and to
include adversarial temporal confounds. Following the question-generation process of FAITH Jia et al.
(2024), we prompt the LLM (Claude) with event facts to synthesize new questions, but we design
our own dataset-specific prompt (shown as follows) to explicitly encourage more human-written
phrasings and adversarial temporal confounds such as distractor years and plausible but incorrect
time periods.
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Prompt

Instruction:
You are constructing a temporal QA dataset from a series of events. For each question, you
are given:

• a unique question ID quid (integer);
• a list of time-stamped events, where each event has a subject entity, an object

entity, a relation description, and an event date in the form YYYY-MM-DD;
• a correct answer entity, associated with one specific target event in this list (exactly

one event justifies the answer).
Your task is to write one natural, conversational English question whose only correct
answer is exactly the given answer entity, and whose meaning depends on the target
event and its time. Other events in the list may be used only as contextual or adversarial
distractors.

Style and temporal requirements:
• Rewrite names of the form "X (Country)" into natural phrases, e.g., “Foreign

Affairs (Iran)” → “the Foreign Affairs ministry in Iran”, “Police (Russia)” →
“the police in Russia”, “Citizen (Australia)” → “citizens of Australia”.

• Rewrite dates like "2021-01-01" in natural English, e.g., “January 1st, 2021”.
• Use conversational contractions where reasonable (e.g., “Who’s” for “Who is”,

“gonna” for “going to”), and you may optionally add light discourse markers such
as “So,” or “Well,” at the beginning to sound natural.

• Add adversarial temporal confounds: you may mention other events from the list
or introduce extra, plausible but incorrect time expressions (e.g., another year,
a broader time range, or vague phrases like “around that time”) so that a model
that only matches surface dates or counts mentions is misled. The true date of
the target event and the correct answer must remain unchanged, and the question
must still be answerable only by reasoning about the real target event and its time.

Do not invent facts that contradict any of the input events. There must be exactly one
correct answer.

Output format:
Return your output as a single JSON object on one line, with no ad-
ditional text: {"quid": <QUID>, "question": "<YOUR_QUESTION>",
"answers": ["<ANSWER_ENTITY>"], "qlabel": "Single"}.

J FUTURE WORK

In this section, we also highlight a natural extension of our design as a direction for future work. At
present, STAR-RAG uses a globally fixed parameter θ in the personalization vector (Appendix C),
which implicitly balances temporal information (through Ltime) and structural or coverage information
(through Lcov) during rule-graph propagation. A more flexible variant would equip STAR-RAG
with a query-adaptive controller that adjusts a query-dependent weight θ(q) according to the time
sensitivity and structural complexity of the input question. This idea is consistent with recent work
on time-aware retrieval-augmented generation such as TimeR4, where the system explicitly rewrites
questions to reveal temporal constraints before retrieval Qian et al. (2024), and with adaptive expert
routing in retrieval-augmented Mixture-of-Experts language models such as Expert-RAG Zhou et al.
(2024). Concretely, one could estimate a time-sensitivity score for each query by using simple rule-
based heuristics (for example, detecting words like “before”, “after”, or explicit years), or by using an
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optional LLM-based classifier, and then use this score to emphasize temporally aligned propagation
for strongly temporal questions while giving more weight to structural and semantic coverage for
more static questions. However, this design naturally brings a trade-off between computational cost
and accuracy: richer controllers based on LLM scoring or expert routing can provide finer-grained
adaptation but introduce additional token and latency overhead, whereas simple heuristic controllers
are efficient but less expressive. In the present work we favor simplicity and efficiency by using a
global θ, and we leave the design and evaluation of such query-adaptive controllers, together with a
systematic study of their trade-offs, as an important avenue for future research.

Another limitation of STAR-RAG is that the rule graph is constructed offline from a static temporal
KG and then kept fixed, without efficient support for incremental updates when new events arrive.
An important direction for future work is to develop an incremental maintenance mechanism for the
rule graph, inspired by dynamic PPR-based systems such as Instant Zheng et al. (2022) and IDOL
Zhu et al. (2024). In these methods, representations are updated under graph changes by locally
refreshing Personalized PageRank or embeddings in the affected region instead of recomputing the
entire model. Analogously, for STAR-RAG, new temporal events could update only the supports
and temporal statistics of the impacted rule nodes and a small neighborhood of rule edges whose
coverage or time patterns change significantly, while preserving the rest of the rule graph. This
could be coupled with topology-monitorable triggers in the spirit of Instant and IDOL that decide
when accumulated local changes warrant structural adjustments such as splitting or merging rule
nodes or adding and pruning edges. Developing such an incremental rule-graph maintenance scheme
would make STAR-RAG more suitable for frequently updated temporal KGs, while retaining its
interpretable, rule-level temporal structure.
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