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Abstract

We address the problem of active online assortment optimization problem
with preference feedback, which is a framework for modeling user choices
and subsetwise utility maximization. The framework is useful in various
real-world applications including ad placement, online retail, recommender
systems, and fine-tuning language models, amongst many others. The prob-
lem, although has been studied in the past, lacks an intuitive and practical
solution approach with simultaneously efficient algorithm and optimal re-
gret guarantee. E.g., popularly used assortment selection algorithms often
require the presence of a ‘strong reference’ which is always included in the
choice sets, further they are also designed to offer the same assortments
repeatedly until the reference item gets selected—all such requirements
are quite unrealistic for practical applications. In this paper, we designed
efficient algorithms for the problem of regret minimization in assortment
selection with Multinomial Logit (MNL) based user choices. We designed a
novel concentration guarantee for estimating the score parameters of the
PL model using ‘Pairwise Rank-Breaking’, which builds the foundation of
our proposed algorithms. Moreover, our methods are practical, provably
optimal, and devoid of the aforementioned limitations. Empirical evaluations
corroborate our findings and outperform the existing baselines.

1 Introduction
Studies have shown that it is often easier, faster and less expensive to collect feedback on a
relative scale rather than asking ratings on an absolute scale. E.g., to understand the liking
for a given pair of items, say (A,B), it is easier for the users to answer preference-based
queries like: “Do you prefer Item A over B?", rather than their absolute counterparts: “How
much do you score items A and B in a scale of [0-10]?" (Musallam et al., 2004; Kahneman &
Tversky, 1982). Due to the widespread applicability and ease of data collection with relative
feedback, learning from preferences has gained much popularity in the machine-learning
community, especially the active learning literature which has applications in Medical surveys,
AI tutoring systems, Multi-player sports/games, or any real-world systems that have ways
to collect feedback in terms of preferences. The problem is famously studied as the Dueling-
Bandit (DB) problem in the active learning community Yue et al. (2012); Ailon et al. (2014);
Zoghi et al. (2014a;b; 2015), which is an online learning framework for identifying a set
of ‘good’ items from a fixed decision-space (set of items) by querying preference feedback
of actively chosen item-pairs. Consequently, the generalization of Dueling-Bandits, with
subset-wise preferences has also been developed into an active field of research. For instance,
applications like Web search, language models, online shopping, recommender systems (e.g.
Youtube, Netflix, Google News/Maps, Spotify) typically involve users expressing preferences
by choosing one result (or a handful of results) from a subset of offered items and often the
objective of the system is to identify the ‘most-profitable’ subset to offer to their users. The
problem, popularly termed as ‘Assortment Optimization’ is studied in many interdisciplinary
literature, e.g. Online learning and bandits Bengs et al. (2021a), Operations research Talluri
& Van Ryzin (2004); Agrawal et al. (2019), Game theory Chatterji et al. (2021), RLHF
Christiano et al. (2017); Ouyang et al. (2022), to name a few.
Problem (Informal): Active Optimal Assortment (AOA) Active Assortment Op-
timization (a.k.a. Utility Maximization with Subset Choices) Berbeglia & Joret (2016);
Agrawal et al. (2019); Désir et al. (2016b;a) is an active learning framework for find-
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ing the ‘optimal’ profit-maximizing subset. Formally, assume we have a decision set of
[K] := {1, 2, . . . K} of K items, with each item being associated with the score (or utility)
parameters θ := (θ1, θ2, . . . , θK) (without loss of generality assume θ1 ≥ θ2 ≥ . . . ≥ θK ≥ 0).
At each round t = 1, 2, . . ., the learner or the algorithm gets to query an assortment (typically
subsets containing up to m-items) St ⊆ [K], upon which it gets to see some (noisy) relative
preferences across the items in St, typically generated according to an underlying Multinomial
Logit (MNL) model with parameters θ (1). Further, to allow the event where no items
are selected, we also model a No-Choice (NC) item, indexed by item-0, with PL parameter
θ0 ∈ R+.
(Objective 1.) Top-m: identify the top-m item-set: {θ1, . . . , θm}, for some m ∈ [1, K].
(Objective 2.) Wtd-Top-m: A more general objective could also consider a weight (or
price) ri ∈ R+ associated with the item i ∈ [K], and the goal could be to identify the
assortment (subset) with maximum weighted utility 1, as detailed in Sec. 2.
Related Works and Limitations: As stated above, the problem of AOA is fundamental
in many practical scenarios, and thus widely studied in multiple research areas, including
Online ML/learning theory and operations research.
• In the Online ML literature, the problem is well-studied as Multi-Dueling Bandits Sui et al.
(2017); Brost et al. (2016), or Battling Bandits Saha & Gopalan (2019a; 2018); Bengs et al.
(2021b), which is an extension of the famous Dueling Bandit problem Zoghi et al. (2014b;a).
The main limitation of this line of work is the lack of practical objectives, which either
aim to identify the ‘best-item’ 1(= arg maxi∈[K] θi) within a PAC (probably approximately
correct) framework Saha & Gopalan (2019b); Chen et al. (2017; 2018); Ren et al. (2018) or
quantifying regret against the best items Saha & Gopalan (2019a); Bengs et al. (2022). Note
the latter actually leads to the optimal subset choice of repeatedly selecting the optimal item,
arg maxi θi, m times, i.e. (1, 1, . . . 1), which is unrealistic from the viewpoint of real-world
system design. Selecting an assortment of distinct top-m items (Top-m-AOA) or maximum
expected utility (Wtd-Top-m-AOA) makes more sense.
• On the other hand, a similar line of the problem has been studied in operations research
and dynamic assortment selection literature, where the goal is to offer a subset of items
to the customers in order to maximize expected revenue. The problem has been studied
under different user choice models, e.g. PL or Multinomial-Logit models (Agrawal et al.,
2019), Mallows and mixture of Mallows (Désir et al., 2016a), Markov chain-based choice
models (Désir et al., 2016b), single transition model (Nip et al., 2017) etc. While these
works indeed consider a more practical objective of finding the best assortment (subset) with
the highest expected utility for a regret minimization objective, (1) a major drawback in
their approach lies in the algorithm design which requires to keep on querying the same set
multiple times, e.g. Agrawal et al. (2019); Ou et al. (2018); Chen et al. (2021); Agrawal
et al. (2017). Such design techniques could be impractical to be deployed in real systems
where users could easily get annoyed if the same items are shown again and again. For
example, in ad-placement, music/movies/news/tweets/reels recommendations, offering the
same assortment could increase user dissatisfaction and disengagement.
(2) The second major drawback of this line of work lies in the structural assumption of
their underlying choice models which requires the existence of a reference/default item, that
needs to be part of every assortment St. This leads to assuming a No-Choice item, typically
denoted as item-0, which is a default choice of any assortment St. Further a stronger and
more unrealistic assumption lies in the fact that they require to assume that the above
pivot is stronger than the rest of the K items, i.e. θ0 ≥ maxi∈[K] θi, i.e. the No-Choice
(NC) action is the most likely outcome of any assortment St. This is often unrealistic, e.g.,
during user interactions with language models, or online shopping, or maps recommendation,
users typically make choices as the user needs to commute or book a flight and a NC action
is highly improbable, e.g. in recommender systems like YouTube, Spotify, Netflix or even
Yahoo News, users typically make choices as they actually wanted to consume a video, new
article or song, etc. Similarly, in shopping recommendations like flights (Expedia or Google

1This is equivalent to finding the set with maximum expected revenue when ris represents the
price of item i Agrawal et al. (2019)
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flights), hotel (Booking.com), restaurants (Grubhub), or Google Maps recommendations, NC
is unlikely. In fact, in some applications, NC might not even be an available (feasible) option,
e.g., while interacting with ChatGPT/ Gemini, the language model often requests the users
to definitively select one outcome in order to proceed with the thread; Similarly, in robotics
applications, training of autonomous vehicles, or more generally in any preference-based
RL (a.k.a. PbRL) applications, the teacher/ demonstrator/ human feedback provider must
choose an option out of the multiple options (or RL trajectories) towards training the
RL policy. Consequently, such assumption limits the use in real-systems. In the existing
literature Agrawal et al. (2019); Oh & Iyengar (2019); Agrawal et al. (2017); Grant & Leslie
(2023), such assumptions are primarily adapted solely for theoretical needs, precisely for
maintaining concentration bounds of the PL parameters θ, and hence not well justified from
a practical viewpoint.
Agrawal et al. (2019) is the classical MNL-Assortment work with MNL-UCB: The idea is to
estimate the true PL parameter θ = (θ1, . . . , θK)s by repeatedly querying the same set (i.e.
assortment St) multiple times and keeping a count of the average number of times an item
i ∈ [K] is selected until no items (NC) are selected. They further maintain a UCB of the
estimated PL parameters, (θ̂1, . . . , θ̂K), and the assortment of the next phase optimistically
based on the UCB estimates. The process is repeated until time step T . Agrawal et al.
(2017) is a follow-up work of Agrawal et al. (2019) from the same group of authors and hence
their algorithm MNL-TS is almost the same as MNL-UCB above, with the exception of using
Thompson Sampling (TS) with Beta posteriors, instead of the UCB estimates. The regret
guarantee and set of restrictive assumptions imposed on the MNL model is also identical to
that of Agrawal et al. (2019). The objective of Grant & Leslie (2023) is slightly different
from that of above two as their objective is ‘learning to rank’ (LTR), i.e. to find the best
ordered subset based on some position bias λi > 0 for position i ∈ [m]. More generally, their
preference model is different which assumes the probability of the item played at position-k
getting selected (or clicked) for any m-length ordered set S = (S(1), . . . , S(m)) is given by
P (k | S) := λkθS(k)

θ0+
∑

j∈[m]
λjθS(j)

, where as usual θ0 is the score parameter of the no-choice item.

We summarize these existing works in Table 1.
Some recent developments also generalized the AOA problem to linear MNL scores to
incorporate large actions embedded in d-dimension Zhang & Ji (2019); Zhang & Sugiyama
(2024); Oh & Iyengar (2019), however, their approaches are either limited to the above
restrictions or suffer sub-optimal regret guarantees without those assumptions (e.g. the
regret bound of Oh & Iyengar (2019) is O(d3/2

√
T ) which is suboptimal by a d-factor).

Considering the above limitations of the AOA literature, we set to answer two questions:
(1) Can we consider a general AOA model where the default item, like the NC item defined

above, is not necessarily the strongest one, i.e. θ0 ≥ maxi∈[K] θi?
(2) Can we design a practical and regret optimal algorithm for the AOA framework, without

needing to play the same repetitive actions and yet converge to the optimal assortment?

Work Framework Assume θ0 = θmax = 1 Regret
Our (Alg. 1) MNL model (Obj. 2) No

√
min{θmax, K}KT log T

Agrawal et al. (2019) (Thm 1) MNL model (Obj. 2) Yes
√

KT log T
Agrawal et al. (2019) (Thm 4) MNL model (Obj. 2) No

√
θmaxKT log T

Agrawal et al. (2017) MNL model (Obj. 2) Yes
√

KT log(mT )
Grant & Leslie (2023) MNL model with No

√
KT

mini ri
log T

constraints (Obj. 2)

Table 1: Our Contribution vs the Existing Results in the K-armed MNL-Assortment
literature.The regret statements include only the leading asymptotic term, ignoring constant
factors.

Contributions We answer these questions in the affirmative and present best of all
scenarios. We design practical algorithms on practical AOA framework with practical
objectives–Unlike the existing approaches of the AOA, literature Agrawal et al. (2019);
Chen et al. (2021), we do not have to keep playing the same assortment multiple times,
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neither require a strongest default item (like NC satisfying θ0 ≥ maxi∈[K] θi). Moreover, our
objectives do not require us to converge to a multiset of replicated arms like (1, 1, . . . 1), but
converge to the utility-maximizing set of distinct items. We list our contributions below:
1. A General AOA Setup: We work with a general problem of AOA for PL model,
which requires no additional structural assumption of the θ parameters such as θ0 ≥ maxi θi,
unlike the existing works. We designed algorithms for two separate objectives Top-m and
Wtd-Top-m as discussed above (Sec. 2).
2. Efficient and Optimal Algorithm using Rank-Breaking MNL-Parameter Esti-
mation: In Sec. 3, we give a practical, efficient and optimal algorithm for MNL Assortment
(up to log factors and the magnitude of θmax). The regret bound of our algorithm AOA-RBPL
(Alg. 1) yields Õ(

√
KT ) regret for both Top-m and Wtd-Top-m objective. Our algorithms

use a novel parameter estimation technique for discrete choice models based on the con-
cept of Rank-Breaking (RB) which is one of our key contributions towards designing the
efficient and optimal algorithm. This enables our algorithm to perform optimally without
requiring the No-Choice item to be the strongest. Appendix A details the key concept of our
parameter estimation technique exploiting the concept of RB. Our resulting algorithm plays
optimistically based on the UCB estimates of PL parameters and does not require repeating
the same subset multiple times, justifying our title.
3. Improvement with Adaptive Pivots: In Sec. 4, we refine the performance of
our algorithm by employing the novel idea of ‘adaptive pivots’ (a reference item) and
proposed AOA-RBPL-Adaptive. Performance-wise this removes the asymptotic dependence
on θmax = maxi θi/θ0 in the regret analysis. This enables the algorithm to work effectively
in scenarios where the No-Choice item is less likely to be selected, i.e., θmax ≫ 1. This
leads to a huge improvement in our experiments, especially in the range of low θ0, where
AOA-RBPL-Adaptive drastically outperforms over the existing baseline. Comparison of our
regret bound with existing work is detailed in Table 1.
4. Emperical Analysis. Finally, we corroborate our theoretical results with empirical
evaluations (Sec. 5), which certify our superior performance in the general AOA setups.
It is also worth mentioning that our proposed algorithm and their respective regret analysis
could be extended to any general random utility (RUM) based preference models Soufiani
et al. (2014); Saha & Gopalan (2020), as explained in Rem. 2, the techniques. However, to
keep the focus on the AOA problem and ease the presentation, we stick to the special case
of MNL choice model based preferences.

2 Problem Setup

We write [n] = {1, 2, ..., n} and 1{·} denotes the indicator function. The symbol ≲, employed
in the proof sketches, represents a coarse inequality.
We consider the sequential decision-making problem of Active Optimal Assortment (AOA),
with preference/choice feedback. Formally, the learner is given [K], a finite set of K items
(K > 2). At each decision round t = 1, 2, . . ., the learner selects a subset St ⊆ [K] of
up to m items, and receives some (stochastic) feedback about the item preferences of St,
drawn according to some unknown underlying MNL choice model (1) with parameters
θ = (θ1, θ2, . . . , θK) ∈ RK

+ . We assume θ1 ≥ θ2 ≥ . . . ≥ θK without loss of generality.
An interested reader may check App. A.1 for a detailed discussion on PL models. Given
any assortment St we also consider the possibility of ‘no-selection’ of any items given an
St. Following the literature of Agrawal et al. (2019), we model this mathematically as a
No-Choice (NC) item, indexed by item-0, and its corresponding PL utility parameter θ0.
Unlike most existing literature on assortment selection, we are not assuming θ0 ̸≥ maxi∈[K] θi.
Further, since the PL model is scale independent, we set θ0 = 1 and scale the rest of the PL
parameters.

Feedback model The feedback model formulates the information received (from the
‘environment’) once the learner plays a subset St ⊆ [K] of at most m items. Given St we
consider the algorithm receives a winner feedback (or index of an item) it ∈ St ∪ {0}, drawn
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according to the underlying PL choice model as:
P(it = i|St) = θi/

(
θ0 +

∑
j∈St

θj

)
, ∀i ∈ St. (1)

We consider the following two objectives for the learner:
1. Top-m-Ojective. One simple objective could be to identify the top-m item-set:
{θ1, . . . , θm}, for some m ∈ [1, K]. The performance of the learner can be captured by
minimizing the following regret:

Regtop
T :=

T∑
t=1

ΘS∗ −ΘSt

m
, where S∗ := argmax

S⊆[K]:|S|=m

{
ΘS :=

∑
i∈S

θi

}
.

2. Wtd-Top-m-Objective. Here, each item-i is associated with a weight (for example
price) ri ∈ R+, and the goal is to identify the set of size at most m with maximum weighted
utility. One could measure the regret of the learner as:

Regwtd
T :=

T∑
t=1

(R(S∗, θ)−R(St, θ)), where R(S, θ) :=
∑
i∈S

riθi

θ0 +
∑

j∈S θj
, ∀S ⊆ [K], (2)

denotes S∗ := argmaxS⊆[K]||S|≤mR(S, θ) is the optimal utility-maximizing subset. This
objective corresponds to the standard objective in the MNL litterature Agrawal et al. (2019).

3 A Practical and Efficient Algorithm for AOA with PL

3.1 Algorithm Design

Main Idea. The crux of our novelty lies in our PL parameter estimation technique which
maintains an estimate of pairwise scores of pij = θi

θi+θj
for each pair of item (i, j) using Rank-

Breaking (RB) Khetan & Oh (2016)—a classical technique of extracting pairwise comparisons
from choice (or partial ranking) feedback by breaking each win-loss pair independently in the
choice data. A formal description is given in App. A.2. More precisely, using rank-breaking we
estimate the relative (pairwise) strength p̂ij,t of each item pair (i, j) at round t, as explained
in (3). Further, noting θi = pi0/(1− pi0) (as θ0 = 1), we use p̂i0,t to estimate the MNL score
θ̂i,t of the i-th item using the NC (0-th item) as the ‘pivot’ item to benchmark against. Next,
we prove a crucial concentration result in Lemma 1 showing indeed θ̂i,t is a ‘sharp’ estimate
of θi, which is then subsequently used to prove the final regret guarantees Theorem 3 and
Theorem 4 respectively. Our proposed algorithm Alg. 1 is described below:
Estimate upper-confidence-bounds θucb

t from Pairwise Estimates. At each time t,
our algorithm (Alg. 1) maintains a pairwise preference matrix P̂t ∈ [0, 1]n×n, whose (i, j)-th
entry p̂ij,t records the empirical probability of i having beaten j in a pairwise duel, and a
corresponding upper confidence bound pucb

ij,t . Let [K̃] := [K] ∪ {0}. We define for each pair
(i, j) ∈ [K̃]× [K̃],

pucb
ij,t := p̂ij,t +

√
2p̂ij,t(1− p̂ij,t)x

nij,t
+ 3x

nij,t
, where p̂ij,t := wij,t

nij,t
, (3)

where x > 0 is an input of Alg. 1 and wij,t =
∑t−1

s=1 1{is = i, j ∈ Ss} denotes the number of
pairwise wins of item-i over j after rank-breaking and nij,t = wij,t + wji,t being the total
number of times (i, j) has been ‘rank-broken’ till time t (details in App. A.2). Noting that
θi = pi0/(1− pi0), the above UCB estimates pucb

ij,t are further used to design UCB estimates
of the PL parameters θi as follows

θucb
i,t = pucb

i0,t/(1− pucb
i0,t)+ , where ( · )+ := max{ · , 0}.

Optimistic Assortment Selection The estimates θucb
i,t s are then used to select the set St,

that maximizes the underlying objective. This optimization problem transforms into a static
assortment optimization problem with upper confidence bounds θucb

i,t as the parameters, and
efficient solution methods for this case are available (see e.g., Avadhanula et al. (2016); Davis
et al. (2013); Rusmevichientong et al. (2010)).
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Algorithm 1 AOA for PL model with RB (AOA-RBPL)
1: input: x > 0
2: init: K̃ ← K + 1, [K̃] = [K] ∪ {0}, W1 ← [0]K̃×K̃
3: for t = 1, 2, 3, . . . , T do
4: Set Nt = Wt + W⊤

t , and P̂t = Wt

Nt
. Denote Nt = [nij,t]K̃×K̃ and P̂t = [p̂ij,t]K̃×K̃ .

5: Define for all i, pucb
ii,t = 1

2 and for all i, j ∈ [K̃], i ̸= j

pucb
ij,t = p̂ij,t +

(
2p̂ij,t(1−p̂ij,t)x

nij,t

)1/2
+ 3x

nij,t

6: θucb
i,t := pucb

i0,t/(1− pucb
i0,t)+

7: St ←


Top-m items from argsort({θucb

1,t , . . . , θucb
K,t}),

for Top-m objective
argmaxS⊆[K]||S|≤mR(S, θucb

t ),
for Wtd-Top-m objective

8: Play St

9: Receive the winner it ∈ [K̃] (drawn as per (1))
10: Update: Wt+1 = [wij,t+1]K̃×K̃ s.t. witj,t+1 ← witj,t + 1 ∀j ∈ St ∪ {0}
11: end for

3.2 Analysis: Concentration Lemmas

We start the analysis by providing two technical lemmas, whose proofs are deferred to the
appendix and that provide confidence bounds for the θi.
Lemma 1. Let T ≥ 1 and x > 0. Then, with probability at least 1− 3KTe−x, for all t ∈ [T ]
and i ∈ [K]: θi ≤ θucb

i,t atleast one of the following two inequalities is satisfied

ni0,t < 69x(θ0 + θi) or θucb
i,t ≤ θi + 4(θ0 + θi)

√
2θ0θix

ni0,t
+ 22x(θ0 + θi)2

ni0,t
.

The above lemma depends on ni0,t the number of times items i have been compared with
item 0 up to round t. The latter is controlled using the following lemma:
Lemma 2. Let T ≥ 1 and x > 0. Then, with probability at least 1−KTe−x: simultaneously
for all t ∈ [T ] and i ∈ [K]

τi,t < 2x(θ0 + ΘS∗)2 or ni0,t ≥
(θ0 + θi)τi,t

2(θ0 + ΘS∗) , (4)

where τi,t =
∑t−1

s=1 1{i ∈ Ss} denotes the number of rounds item i got selected before round t.

3.3 Analysis: Top-m Objective:

We are now ready to provide the regret upper bound for Algorithm 1 with Top-m objective.
Theorem 3 (Top-m Objective). Let θmax ≥ 1. Consider any instance of PL model on K
items with parameters θ ∈ [0, θmax]K , θ0 = 1. The regret of Alg. 1 with parameter x = 2 log T
is bounded as

Regtop
T = O

(
θ3/2

max
√

KT log T
)

when T →∞ .

The above rate of Õ(
√

KT ) is optimal (up to log-factors), as a lower bound can be derived
from standard multi-armed bandits Auer (2000); Auer et al. (2002). We only state here a
sketch of the proof of Theorem 3. The detailed proof is deferred to the App. B.

Proof Sketch of Theorem 3. Let us define for any S ⊆ [K],

ΘS =
∑
i∈S

θi, and Θucb
S :=

∑
i∈S

θucb
i .

6
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Let E be the high-probability event such that both Lemma 1 and 2 holds true. Then, P(E) ≥
1− 4TKe−x. Let us first assume that E holds true. Then, by Lemma 1, ΘS∗ ≤ Θucb

S∗ ≤ Θucb
St

,
which yields

Regtop
T = 1

m

T∑
t=1

ΘS∗ −ΘSt
≤ 1

m

T∑
t=1

Θucb
St
−ΘSt

≲ τ0 + 1
m

T∑
t=1

∑
i∈St

(θucb
i,t − θi)1

{
τi,t ≥ τ0

}
,

where τ0 = 138x(m + 1)2θ2
max corresponds to an exploration phase needed for the confidence

upper bounds of Lem 1 and 2 to be satisfied. Then, noting that if E holds true, we can show
by Lemma 2, that 1{τi,t ≥ τ0} ≤ 1{ni0,t ≥ 69x(θ0 + θi)}. Therefore, we can apply Lemma 1
that entails,

1
m

T∑
t=1

∑
i∈St

(θucb
i,t − θi)1

{
τi,t ≥ n̄i0

}
≲

1
m

T∑
t=1

∑
i∈St

(
(θ0 + θi)

√
θ0θix

ni0,t
1

{
τi,t ≥ τ0

})
Lem. 2
≲

1
m

T∑
t=1

∑
i∈St

θ3/2
max

√
mx

τi,t
≲

1
m

K∑
i=1

θ3/2
max
√

mxτi,t ≲ θ3/2
max
√

xKT .

where we used
∑n

i=1 1/
√

i ≤ 2
√

n and
∑

i τi,t = mT together with Jensen’s inequality in the
last inequality. We thus have under the event E that Regtop

T ≤ O(θ3/2
max
√

xKT ) and the proof
is concluded by taking the expectation with x = 2 log T to control P(Ec).

3.4 Analysis: Wtd-Top-m Objective

In this section we analyze the regret guarantee of Alg. 1 for Wtd-Top-m objective (2).
Theorem 4 (Wtd-Top-m Objective). Let θmax ≥ 1. Then, for any θ ∈ [0, θmax]K and
weights r ∈ [0, 1]K , the weighted regret of AOA-RBPL (Alg. 1) with x = 2 log T

Regwtd
T = O(

√
θmaxKT log T ) when T →∞ .

The complete proof is postponed to App. B. The rate Ω(
√

KT ) is optimal as proved by the
lower bound in Chen & Wang (2017) for MNL bandit problems for θmax = 1. Our result
recovers (up to a factor

√
log T ) the one of Agrawal et al. (2019) when θmax = 1. However,

their algorithm relies on more sophisticated estimators that necessitate epochs repeating the
same assortment until the No-Choice item is selected. Note for our problem setting, where it
is possible to have θmax ≫ θ0 = 1, the length of these epochs could be of O(Kθmax), which
could be potentially very large when θmax ≫ 1. This reduces the number of effective epochs,
leading to poor estimation of the PL parameters. We see this tradeoff in our experiments
(Sec. 5) where the MNL-UCB algorithm of Agrawal et al. (2019) yields linear O(T ) regret
for such choice of the problem parameters.

Proof sketch of Thm. 4. Let E be the high-probability event such that both Lemma 1 and 2
are satisfied. Then,

Regwtd
T =

T∑
t=1

E
[
R(S∗, θ)−R(St, θ)

]
≲

T∑
t=1

E
[
(R(S∗, θ)−R(St, θ))1{E}

]
+ TP(Ec)

≲
T∑

t=1
E

[
(R(St, θucb

t )−R(St, θ))1{E}
]

+ TP(Ec) (5)

because R(St, θucb
t ) ≥ R(S∗, θucb

t ) ≥ R(S∗, θ) under the event E by Lemma 8. We now
upper-bound the first term of the right-hand-side

T∑
t=1

E
[((
R(St, θucb

t )−R(St, θ)
))
1{E}

]
=

T∑
t=1

E
[( ∑

i∈St

riθ
ucb
i,t

θ0 + Θucb
St,t

− riθi

θ0 + ΘSt

)
1{E}

]

≤
T∑

t=1
E

[( ∑
i∈St

ri(θucb
i,t − θi)

θ0 + ΘSt

)
1{E}
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Because Θucb
St,t ≥ ΘSt

under the event E by Lemma 1. Then, using ri ≤ 1, we further upper-
bound using an exploration parameter τ0 = O(log(T )) so that the upper-confidence-bounds
in Lemmas 1 and 2 are satisfied

T∑
t=1

E
[((
R(St, θucb

t )−R(St, θ)
))
1{E}

]
≤

K∑
i=1

E

[
T∑

t=1

( |θucb
i,t − θi|

θ0 + ΘSt

)
1{i ∈ St, E}

]

≲ O(τ0) +
K∑

i=1
E

[
T∑

t=1

|θucb
i,t − θi|

θ0 + ΘSt

1{i ∈ St, τi,t ≥ τ0, E}

]

≲ O(τ0) +
K∑

i=1

√√√√ T∑
t=1

E

[
θi1{i ∈ St}

θ0 + ΘSt

]
×

√√√√ T∑
t=1

E

[(
θucb

i,t − θi

θ0 + ΘSt

)2
θ0 + ΘSt

θi
1{i ∈ St, τi,t ≥ τ0, E}

]
︸ ︷︷ ︸

=:AT (i) (6)

where the last inequality is by Cauchy-Schwarz inequality. Now, the term AT (i) above may
be upper-bounded using Lemmas 1 and 2,

AT (i) = E

[
(θucb

i,t − θi)2

θi(θ0 + ΘSt)
1{i ∈ St, τi,t ≥ τ0, E}

]
≲

T∑
t=1

E

[
(θ0 + θi)2x

ni0,t(θ0 + ΘSt)
1{i ∈ St}

]

≲ θmaxx

T∑
t=1

E

[
(θ0 + θi)1{i ∈ St}

(θ0 + ΘSt
)ni0,t

]
= θmaxxE

[
T∑

t=1

1{it ∈ {i, 0}, i ∈ St}
ni0,t

]
≲ θmaxx log T

where in the last inequality we used that
∑T

n=1 n−1 ≤ 1 + log T . Substituting into (6),
Jensen’s inequality entails,

T∑
t=1

E
[(
R(St, θucb

t )−R(St, θ)
)
1{E}

]
≲ O(τ0)+E

[√
θmaxx log T

K∑
i=1

√√√√ T∑
t=1

θi1{i ∈ St}
θ0 + ΘSt

]
.

(7)

The proof is finally concluded by applying Cauchy-Schwarz inequality which yields:

K∑
i=1

√√√√ T∑
t=1

θi1{i ∈ St}
θ0 + ΘSt

≤

√√√√K

T∑
t=1

∑K
i=1 θi1{i ∈ St}

θ0 + ΘSt

≤
√

KT .

Finally, combining the above result with (5) and (7) concludes the proof

Regwtd
T ≲ TP (Ec) + O(τ0) +

√
θmaxxKT log T .

Choosing x = 2 log T ensures TP (Ec) ≤ O(1) and τ0 ≤ O(log T ).

4 Improved dependance on θmax with Adaptive Pivot Selection

A problem with Algorithm 1 stems from estimating all θi based on pairwise comparisons
with item 0. When θmax ≫ θ0 = 1, item 0 may not be sampled enough as the winner,
leading to poor estimators. This deficiency contributes to the suboptimal dependence on
θmax observed in Theorems 3 and 4 and in prior work, such as Agrawal et al. (2019). We
propose the following fix to optimize the pivot. For all i, j ∈ [K] ∪ {0} we define γij = θi

θj
,

γucb
ij,t = pucb

ij,t/(1− pucb
ij,t)+ and γucb

ii,t = 1 ,

where pucb
ij,t are defined in (3). For all rounds t, the algorithm AOA-RBPL-Adaptive selects

St = argmax
|S|≤m

R(S, θ̂ucb
t ) where θ̂ucb

i,t := min
j∈[K]∪{0}

γucb
ij,tγ

ucb
j0,t .

8
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With the above definition of θ̂ucb
i,t , any item i is compared to the base item 0 through the

best possible item j. When j is a strong item that is often selected both γucb
ij,t and γucb

j0,t are
sharp upper-bounds of γij and γj0, making θ̂ucb

i,t itself a sharp upper-confidence bound for θi.
This definition in turn also satisfies the condition θ̂ucb

i,t ≥ θi required by Lemma 8 and crucial
for our analysis. The condition would not hold if we used γucb

ij,t directly without multiplying
it with γucb

j0,t.
We offer below a regret bound that underscores the value of optimizing the pivot when
θmax ≫ K. Note that while the algorithm and analysis are presented for the weighted
objective with winner feedback only, it can be adapted to other objectives by replacing
R(S, θ) with the new objective in the analysis, as long as Lemma 8 remains valid.
Theorem 5. Let θmax ≥ 1. For any θ ∈ [0, θmax]K and weights r ∈ [0, 1]K , the weighted
regret of AOA-RBPL-Adaptive is upper-bounded as

Regwtd
T = O

(√
min{θmax, K}KT log T

)
as T →∞ for the choice x = 2 log T (when definining pucb

ij,t).
Remark 1 (Drastic Improvement over Prior Works). Asymptotically, when θmax is constant,
the regret is O(K

√
T log T ), eliminating any dependence on θmax. This allows for handling

scenarios where the No-Choice item is highly unlikely, which is not achievable in previous
works such as Agrawal et al. (2019; 2017). Agrawal et al. (2019) did attempt in their Thm. 4 to
relax the assumption of θmax = θ0 and shows a bound of order O

(
max{θmax/θ0, 1}1/2

√
KT

)
,

which unfortunately blows to ∞ as θ0 → 0 or equivalently θmax →∞, leading to a vacuous
bound. Here, lies the stark improvement and one of the key contributions, as also corroborated
in our experimental evaluation Sec. 5 (Fig. 2).
Remark 2 (Beyond MNL Assortment: Extending to any general RUM based Choice
Models). Although, in this paper, we primarily focused on MNL based choice models, it is
worth mentioning that our proposed algorithms can be generalized to more general random
utility-based models (RUMs) Azari et al. (2012b); Saha & Ghoshal (2022) pursuing the ideas
from Saha & Gopalan (2020) that extends the RB based parameter estimation technique
to any RUM(θ) choice models: Precisely, using the RB based RUM-parameter estimation
technique of Saha & Gopalan (2020), we can show a regret bound of Õ(

√
min(θmax,K)

crum

√
KT ) for

our proposed algorithm AOA-RBPL, where crum is the parameter associated to the minimum
advantage ratio (min-AR) of the underlying RUM(θ) model, as defined in Thm6 of Saha &
Gopalan (2020). In particular, crum can shown to be a constant given a fixed RUM model,
e.g. crum = 1/4 for Exp(1), Gamma(2, 1), crum = 1/(4σ) for Gumbel(µ, σ), crum = λ/4 for
Weibull(λ, 1), crum = 1/3 for Gaussian(0, 1), etc (using Cor5 of Saha & Gopalan (2020)).

Our algorithms and analyses thus apply to any general RUM(θ) based choice models; we
stick to the special case of MNL models in this paper for brevity and keep the main focus on
the AOA problem and the related algorithmic novelties.
The proof of Theorem 5 is deferred to the App. B, with a key step relying on selecting
the pivot jt = argmaxj∈St∪{0} θj . The use of |θ̂ucb

i,t − θi| ≤ |γucb
ijt,t − θi| provides confidence

upper-bounds with an improved dependence on θmax , leveraging the fact that θjt
≥ θi. Due

to the varying pivot over time, a telescoping argument introduces an additive factor
√

K.

5 Experiments

We run experiments to compare the performance of our method with the state-of-the-art
methods. All results are averaged across 100 runs. We evaluate the performance of our main
algorithm AOA-RBPL-Adaptive (Sec. 4), referred as “Our Alg-1 (Adaptive Pivot)", with the
following algorithms: AOA-RBPL (Sec. 3) referred as “Our Alg-2 (No-Choice Pivot)", and
MNL-UCB, the state-of-the-art algorithm for AOA (Agrawal et al. (2019), Alg. 1).
Different PL (θ) Environments. We report our experiment results on two datasets with
K = 50 items: (1) Arith50 with PL parameters θi = 1− (i− 1)0.02, ∀i ∈ [50]. (2) Bad50
with PL parameters θi = 0.6, ∀i ∈ [50] \ {25} and θ25 = 0.8. For simplicity of computing
the assortment choices St, we assume ri = 1, ∀i ∈ [K].

9
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(1). Averaged Regret with weak NC (θmax/θ0 ≫ 1) (Fig. 1): In our first experiment,
we set m = 5 and θ0/θmax = 0.01 and report the average regret of the above three algorithms
for our two objectives.

Figure 1: Averaged Regret for m = 5, θ0 = 0.01

Fig. 1 shows that our algorithm AOA-RBPL-Adaptive (with adaptive pivot) significantly
outperforms the other two algorithms, while our algorithm AOA-RBPL with no-choice (NC)
pivot still outperforms MNL-UCB.
(2). Averaged Regret vs No-Choice PL Parameter (θmax/θ0) (Fig. 2): In this
experiment, we evaluate the regret performance of our algorithm AOA-RBPL-Adaptive. We
report the experiment on Artith50 PL dataset and set the subsetsize m = 5, θmax/θ0 =
{1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001}. Fig. 2 shows the increase in the performance gap between
our algorithm AOA-RBPL-Adaptive (with adaptive pivot) with decreasing θ0/θmax.

Figure 2: Comparative performance
for varying θ0/θmax, m = 5

Figure 3: Tradofff: Averaged Regret vs
length of the k rank-ordered feedback

(3). Averaged Regret vs Length of the rank-ordered feedback (k) (Fig. 3): We
also run a thought experiment to understand the tradeoff between learning rate with k-length
rank-ordered feedback, where given any assortment St ⊆ [K] of size m, the learner gets to
see the top-k draws (k ≤ m) from the PL model without replacement. This is a stronger
feedback than the winner (i.e. top-1 for k = 1) feedback and, as expected, we see in Fig. 3
an improved regret (for both notions) when increasing k. The experiment are run on the
Artith50 dataset with m = 30 and k ∈ {1, 2, 4, 8}.

6 Conclusion
We address the Active Optimal Assortment Selection problem with PL choice models, in-
troducing a versatile framework (AOA) that eliminates the need for a strong default item,
typically assumed as the No-Choice (NC) item in the existing literature. Our proposed algo-
rithms employ a novel ‘Rank-Breaking’ technique to establish tight concentration guarantees
for estimating the parameters of the PL model. Our approach stands out for its practicality
and avoids the suboptimal practice of repeatedly selecting the same set of items until the
default item prevails. This is beneficial when the default item’s quality (θ0) is significantly
lower than the quality of the best item (θmax). Our algorithms are computationally efficient,
optimal (up to log factors), and free from restrictive assumptions on the default item.
Future Works. Among many interesting questions to address in the future, it will be
interesting to understand the role of the No-Choice (NC) item in the algorithm design,
precisely, can we design efficient algorithms without the existence of NC items with a regret
rate still linear in θmax? Further, it will be interesting to extend our results to more general
choice models beyond the PL model Chen et al. (2021); Désir et al. (2016a;b). What is the
tradeoff between the subsetsize m and the regret for such general choice models? Extending
our results to large (potentially infinite) decision spaces and contextual settings would also
be a very useful and practical contribution to the literature of assortment optimization.
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Supplementary: Finally Rank-Breaking Conquers
MNL Bandits: Optimal and Efficient Algorithms for

MNL Assortment

A Preliminaries: Some Useful Concepts for PL choice models

A.1 MNL: A Discrete Choice Model

A discrete choice model specifies the relative preferences of two or more discrete alternatives
in a given set. A widely studied class of discrete choice models is the class of Random
Utility Models (RUMs), which assume a ground-truth utility score θi ∈ R for each alternative
i ∈ [n], and assign a conditional distribution Di(·|θi) for scoring item i. To model a winning
alternative given any set S ⊆ [n], one first draws a random utility score Xi ∼ Di(·|θi) for
each alternative in S, and selects an item with the highest random score.
One widely used RUM is the Multinomial-Logit (MNL) or Plackett-Luce model (PL), where
the Dis are taken to be independent Gumbel distributions with parameters θ′

i (Azari et al.,
2012a), i.e., with probability densities

Di(xi|θ′
i) = e−(xj−θ′

j)e−e
−(xj −θ′

j
)

, θ′
i ∈ R, ∀i ∈ [n] .

Moreover assuming θ′
i = ln θi, θi > 0 ∀i ∈ [n], it can be shown in this case the probability

that an alternative i emerges as the winner in the set S ∋ i becomes: P(i|S) = θi∑
j∈S

θj
.

Other families of discrete choice models can be obtained by imposing different probability
distributions over the utility scores Xi, e.g. if (X1, . . . Xn) ∼ N (θ, Λ) are jointly normal
with mean θ = (θ1, . . . θn) and covariance Λ ∈ Rn×n, then the corresponding RUM-based
choice model reduces to the Multinomial Probit (MNP).

A.2 Rank Breaking

Rank breaking (RB) is a well-understood idea involving the extraction of pairwise comparisons
from (partial) ranking data, and then building pairwise estimators on the obtained pairs by
treating each comparison independently (Khetan & Oh, 2016; Jang et al., 2017), e.g., a winner
a sampled from among a, b, c is rank-broken into the pairwise preferences a ≻ b, a ≻ c. We use
this idea to devise estimators for the pairwise win probabilities pij = P(i|{i, j}) = θi/(θi + θj)
for our problem setting. We used the idea of RB in both our algorithms (AOA-RBPL and
AOA-RBPL-Adaptive) to update the pairwise win-count estimates wi,j,t for all the item
pairs (i, j) ∈ [K]× [K], which is further used for deriving the empirical pairwise preference
estimates p̂ij,t, at any time t.

A.3 Parameter Estimation with PL based preference data

Lemma 6 (Pairwise win-probability estimates for the PL model (Saha & Gopalan, 2018)).
Consider a MNL model with parameters θ = (θ1, θ2, . . . , θn), and fix two items i, j ∈ [n]. Let
S1, . . . , ST be a sequence of (possibly random) subsets of [n] of size at least 2, where T is
a positive integer, and i1, . . . , iT a sequence of random items with each it ∈ St, 1 ≤ t ≤ T ,
such that for each 1 ≤ t ≤ T , (a) St depends only on S1, . . . , St−1, and (b) it is distributed as
the MNL winner of the subset St, given S1, i1, . . . , St−1, it−1 and St, and (c) ∀t : {i, j} ⊆ St

with probability 1. Let ni(T ) =
∑T

t=1 P(it = i) and nij(T ) =
∑T

t=1 P({it ∈ {i, j}}). Then,
for any positive integer v, and η ∈ (0, 1),

P
(

ni(T )
nij(T ) −

θi

θi + θj
≥ η, nij(T ) ≥ v

)
≤ e−2vη2

,

P
(

ni(T )
nij(T ) −

θi

θi + θj
≤ −η, nij(T ) ≥ v

)
≤ e−2vη2

.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B Omitted Proofs from Sec. 3 and Sec. 4

B.1 A concentration bounds for the pij,t

We first prove below a concentration inequality based on Bernstein’s inequality for the
estimators pij,t.
Lemma 7. Let (i, j) ∈ [K] × [K]. Let T ≥ 1 and x > 0. Then, with probability at least
1− 3Te−x,

pij ≤ pucb
ij,t ≤ pij + 2

√
2pij(1− pij)x

nij,t
+ 11x

nij,t
, (8)

simultaneously for all t ∈ [T ].

Proof of Lemma 7. Let T ≥ 1, x > 0 and i, j ∈ [K]. Applying Thm. 1 of Audibert et al.
(2009), with probability at least 1− β(x, T ), we get simultaneously for all t ∈ [T ],

∣∣p̂ij,t − pij

∣∣ ≤√
2p̂ij,t(1− p̂ij,t)x

nij,t
+ 3x

nij,t
, (9)

where β(x, T ) = 3 inf1<α≤3 min
{ log T

log α , T
}

e−x/α ≤ 3Te−x. Note that the inequality holds
true although nij,t is a random variable. This, shows the first inequality

pij ≤ pucb
ij,t .

For the second inequality, (9) implies

pucb
ij,t = p̂ij,t +

√
2p̂ij,t(1− p̂ij,t)x

nij,t
+ 3x

nij,t

≤ pij + 2

√
2p̂ij,t(1− p̂ij,t)x

nij,t
+ 6x

nij,t
. (10)

Furthermore, because x 7→ x(1− x) is 1-Lipschitz on [0, 1], we have∣∣p̂ij,t(1− p̂ij,t)− pij(1− pij)
∣∣ ≤ ∣∣p̂ij,t − pij

∣∣
(9)
≤

√
2p̂ij,t(1− p̂ij,t)x

nij,t
+ 3x

nij,t
.

Therefore,

p̂ij,t(1− p̂ij,t) ≤ pij(1− pij) +

√
2p̂ij,t(1− p̂ij,t)x

nij,t
+ 3x

nij,t

≤
(√

pij(1− pij) +
√

3x

nij,t

)2
,

which yields √
p̂ij,t(1− p̂ij,t) ≤

√
pij(1− pij) +

√
3x

nij,t
. (11)

Plugging back into (10), we get

pucb
ij,t ≤ 2

√
2pij(1− pij)x

nij,t
+ 11x

nij,t
.
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B.2 Proof of Lemma 1

Proof. Let i ∈ [K] and x > 0. Then, by a union bound on Lemma 7 and 2, with probability
at least 1− 4Te−x, (8) and (4) hold true for all t ∈ [T ]. We consider this high-probability
event in the rest of the proof. Define the function f : x 7→ x/(1 − x)+ on [0, 1] (with the
convention f(1) = +∞), so that θucb

i,t = f(pucb
i0,t) and θi = f(pi0). Because f is non-decreasing,

and pucb
i0,t ≥ pi0 by (8), we have

θucb
i,t ≥ θi . (12)

Furthermore, denote

∆i,t := 2

√
2pij(1− pij)x

ni0,t
+ 11x

ni0,t
= 2

√
2θ0θix

(θ0 + θi)2ni0,t
+ 11x

ni0,t
. (13)

In the rest of the proof we assume, ni0,t ≥ 69x(θ0 + θi). Then, using that θ0θi ≤ θ0 + θi

since θ0 = 1, it implies

(θ0 + θi)∆i,t ≤ 2
√

2θ0θix

ni0,t
+ 11x(θ0 + θi)

ni0,t
≤ 1

2 ,

and
pi0 + ∆i,t = θi

θ0 + θi
+ ∆i,t ≤

θi + 1/2
θi + 1 < 1.

Thus, because f is non-decreasing
θucb

i,t − θi = f(pucb
i0,t)− f(pi0)

(8)
≤ f

(
pi0 + ∆i,t

)
− f(pi0)

= pi0 + ∆i,t

1− pi0 −∆i,t
− pi0

1− pi0

= ∆i,t

(1− pi0)(1− pi0 −∆i,t)

= (θ0 + θi)2∆i,t

1− (θ0 + θi)∆i,t

≤ 2(θ0 + θi)2∆i,t

(13)
≤ 4(θ0 + θi)

√
2θ0θix

ni0,t
+ 22x(θ0 + θi)2

ni0,t
,

which concludes the proof.

B.3 Proof of Lemma 2

Proof. Let T ≥ 1 and i ∈ [K]. Recall that τi,t =
∑t−1

s=1 1{i ∈ Ss} is the number of times i

was played at the start of round t and ni0,t =
∑t−1

s=1 1{it ∈ {i, 0}, i ∈ St} is the number of
times i or 0 won up to round t when played together. When i is played the probability of 0
or i to win is

P(it ∈ {i, 0}|St) = θ0 + θi

θ0 + ΘSt

≥ θ0 + θi

θ0 + ΘS∗
.

Therefore, applying Chernoff-Hoeffding inequality together with a union bound (to deal with
the fact that τi,t is random), we have with probability at least 1− Te−x

ni0,t ≥
θ0 + θi

θ0 + ΘS∗
τi,t −

√
τi,tx

2
simultaneously for all t ∈ [T ]. Noting that

θ0 + θi

θ0 + ΘS∗
τi,t −

√
τi,tx

2 ≥ θ0 + θi

2(θ0 + ΘS∗)τi,t

if τi,t ≥ 2x(θ0 + ΘS∗)2 ≥ 2x(θ0+ΘS∗ )2

(θ0+θi)2 concludes the proof.
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B.4 Proof of Theorem 3

Proof. Let us define for any S ⊆ [K],

ΘS =
∑
i∈S

θi, and Θucb
S :=

∑
i∈S

θucb
i .

Let E be the high-probabality event such that both Lemma 1 and 2 holds true. Then,
P(E) ≥ 1− 4TKe−x. Let us first assume that E holds true. Then, by Lemma 1,

Regtop
T = 1

m

T∑
t=1

ΘS∗ −ΘSt

≤ 1
m

T∑
t=1

min
{

ΘS∗ , Θucb
St
−ΘSt

}
← because ΘS∗ ≤ Θucb

S∗ ≤ Θucb
St

under the event E

= 1
m

T∑
t=1

min
{

ΘS∗ ,
∑
i∈St

θucb
i,t − θi

}

≤ 1
m

ΘS∗

K∑
i=1

τ̄i0 + 1
m

T∑
t=1

∑
i∈St

(θucb
i,t − θi)1

{
τi,t ≥ τ̄i0

}
where τ̄i0 = 2x(θ0 + ΘS∗) max{θ0 + ΘS∗ , 69} ≤ 138x(m + 1)2θ2

max, where θmax := maxi θi.
Then, noting that if E holds true, by Lemma 2, we also have ni0,t ≥ 1

2(θ0+ΘS∗ ) (θ0 + θi)τi,t,
which yields

1{τi,t ≥ τ̄i0} ≤ 1{ni0,t ≥ 69x(θ0 + θi)}.
Therefore, we can apply Lemma 1 that entails,

1
m

T∑
t=1

∑
i∈St

(θucb
i,t − θi)1

{
τi,t ≥ τ̄i0

}
Lem. 1
≤ 1

m

T∑
t=1

∑
i∈St

(
4(θ0 + θi)

√
2θ0θix

ni0,t
+ 22x(θ0 + θi)2

ni0,t

)
1

{
ni0,t ≥ 69x(θ0 + θi)

}
Lem 2
≤ 1

m

T∑
t=1

∑
i∈St

(
8

√
(θ0 + ΘS∗)(θ0 + θi)θ0θix

τi,t
+ 44x(θ0 + ΘS∗)(θ0 + θi)

τi,t

)

≤ 1
m

K∑
i=1

16
√

(θ0 + ΘS∗)(θ0 + θi)θ0θixτi,T + 44x(θ0 + ΘS∗)
K∑

i=1
(θ0 + θi)(1 + log(τi,T )) ,

where we used
∑n

i=1 1/
√

i ≤ 2
√

n and
∑n

i=1 i−1 ≤ 1 + log n. We thus have

Regtop
T ≤ 138x(m + 1)2Kθ3

max + 1
m

K∑
i=1

16θ3/2
max

√
(m + 1)xτi,T

+ 44x(m + 1)(1 + θmax)2
K∑

i=1
(1 + log(τi,T ))

≤ 138x(m + 1)2Kθ3
max + 16θ3/2

max
√

2xKT + 88x(m + 1)Kθ2
max

(
1 + log

(mT

K

))
.

Therefore,

E[Regtop
T ] ≤ 12

√
2xmKθ3

max + 16θ3/2
max
√

2xKT + 88xmKθ2
max

(
1 + log

(mT

K

))
+ 4mKT 2e−xθmax .

Choosing x = 2 log T concludes the proof.
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B.5 Proof of Theorem 4

We start by noting a result that shows that the expected utility R(S∗, θ) that corresponds to
the optimal assortment S∗ = argmaxS⊂[K],|S|≤mR(S, θ) is non-decreasing in the parameters
θ.
Lemma 8 (Lemma A.3 of Agrawal et al. (2019)). Let S∗ = argmaxS⊂[K],|S|≤mR(S, θ).
Assume θucb

i ≥ θi for all i ∈ [K], then R(S∗, θ) ≤ R(S∗, θucb).

Proof of Theorem 4. Let E be the high-probabality event such that Lemma 1 and 2 are
satisfied, so that P(E) ≥ 1− 4KTe−x. Then, denoting x ∧ y := min{x, y},

Regwtd
T =

T∑
t=1

E
[
R(S∗, θ)−R(St, θ)

]
(14)

=
T∑

t=1
E

[
(R(S∗, θ)−R(St, θ))1{E}+ (R(S∗, θ)−R(St, θ))1{Ec}

]
≤

T∑
t=1

E
[(

(R(St, θucb
t )−R(St, θ)) ∧R(S∗, θ)

)
1{E}+R(S∗, θ)1{Ec}

]
because R(St, θucb

t ) ≥ R(S∗, θucb
t ) ≥ R(S∗, θ) under the event E by Lemma 8. Then, using

R(S∗, θ) ≤ maxi ri ≤ 1, we get

Regwtd
T ≤

T∑
t=1

E
[(

(R(St, θucb
t )−R(St, θ)) ∧ 1

)
1{E}+ 1{Ec}

]
≤ 4T 2Ke−x +

T∑
t=1

E
[((
R(St, θucb

t )−R(St, θ)
)
∧ 1

)
1{E}

]
.

Let us upper-bound the second term of the right-hand-side
T∑

t=1
E

[((
R(St, θucb

t )−R(St, θ)
)
∧ 1

)
1{E}

]
(15)

=
T∑

t=1
E

[(( ∑
i∈St

riθ
ucb
i,t

θ0 + Θucb
St,t

− riθi

θ0 + ΘSt

)
∧ 1

)
1{E}

]

≤
T∑

t=1
E

[(( ∑
i∈St

ri(θucb
i,t − θi)

θ0 + ΘSt

)
∧ 1

)
1{E}

]
because Θucb

St,t ≥ ΘSt under E

≤
T∑

t=1
E

[(( ∑
i∈St

|θucb
i,t − θi|

θ0 + ΘSt

)
∧ 1

)
1{E}

]
because ri ≤ 1

≤
K∑

i=1
E

[
T∑

t=1

( |θucb
i,t − θi|

θ0 + ΘSt

∧ 1
)
1{i ∈ St}1{E}

]

≤ 138xm2Kθ2
max +

K∑
i=1

E

[
T∑

t=1

|θucb
i,t − θi|

θ0 + ΘSt

1{i ∈ St, τi,t ≥ 138x(m + 1)2θ2
max}1{E}

]

≤ 138xm2Kθ2
max +

K∑
i=1

√√√√ T∑
t=1

E

[(
θ0
m + θi

)
1{i ∈ St}

θ0 + ΘSt

]

×

√√√√ T∑
t=1

E

[( |θucb
i,t − θi|

θ0 + ΘSt

)2
θ0 + ΘSt

θ0
m + θi

1{i ∈ St, τi,t ≥ 138x(m + 1)2θ2
max}1{E}

]
︸ ︷︷ ︸

=:AT (i) (16)
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where the last inequality is by Cauchy-Schwarz inequality. Now, the term AT (i) above may
be upper-bounded as follows

AT (i) :=
T∑

t=1
E

[( |θucb
i,t − θi|

θ0 + ΘSt

)2
θ0 + ΘSt

θ0
m + θi

1{i ∈ St, τi,t ≥ 138x(m + 1)2θ2
max}1{E}

]

= E

[
(θucb

i,t − θi)2(
θ0
m + θi

)
θ0 + ΘSt

1{i ∈ St, τi,t ≥ 138x(m + 1)2θ2
max}1{E}

]
.

Now, since under the event E by Lemma 2, τi,t ≥ 138x(m + 1)2θ2
max implies

ni0,t ≥ 69x(θ0 + θi)(m + 1)θmax ≥ 69x(θ0 + θi) .

Therefore, we can apply Lemma 1, which further upper-bounds

AT (i) ≤
T∑

t=1
E

[(
26(θ0 + θi)2x

ni0,t
+ 2(22x)2(θ0 + θi)4

n2
i0,t( θ0

m + θi)

)

× 1{i ∈ St, τi,t ≥ 138x(m + 1)2θ2
max}

θ0 + ΘSt

1{E}

]

≤
T∑

t=1
E

[(
26(θ0 + θi)2x

ni0,t
+ 15x(θ0 + θi)3

ni0,tθmax(θ0 + mθi)

)
× 1{i ∈ St}

θ0 + ΘSt

1{E}

]

where we used ni0,t ≥ 69x(θ0 + θi)mθmax in the last inequality. Then, we get

AT (i) ≤
T∑

t=1
E

[(
(θ0 + θi)2x

ni0,t
+ 30x(θ0 + θi)

ni0,t

)
× 1{i ∈ St}

θ0 + ΘSt

1{E}

]

≤ (94 + 64θi)x
T∑

t=1
E

[
(θ0 + θi)1{i ∈ St}

(θ0 + ΘSt
)ni0,t

]

= (94 + 64θi)xE
[

T∑
t=1

1{it ∈ {i, 0}, i ∈ St}
ni0,t

]
= (94 + 64θi)xE

[
1 + log

(
ni0(T )

)]
≤ 158θmaxx(1 + log T ) .

Substituting into (16), we then obtain using Cauchy-Schwarz inequality,

T∑
t=1

E
[((
R(St, θucb

t )−R(St, θ)
)
∧ 1

)
1{E}

]

≤ 138xm2Kθ2
max + 13

√
θmaxx(1 + log T )

K∑
i=1

√√√√ T∑
t=1

E

[(
θ0
m + θi

)
1{i ∈ St}

θ0 + ΘSt

]

≤ 138xm2Kθ2
max + 13

√
θmaxx(1 + log T )

√√√√E

[
K

T∑
t=1

∑K
i=1

(
θ0
m + θi

)
1{i ∈ St}

θ0 + ΘSt

]
= 138xm2Kθ2

max + 13
√

θmaxx(1 + log T )KT .

Finally, replacing into Inequality (15) yields

Regwtd
T ≤ 4T 2Ke−x + 138xm2Kθ2

max + 13
√

θmaxx(1 + log T )KT .

Choosing x = 2 log T concludes the proof.
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B.6 Proof of Theorem 5

The proof follows the one of Theorem 4, except that the concentration lemmas should be
generalized to any pairs (i, j) instead of only with respect to item 0, whose proofs are left
to the reader and closely follows the one of Lemma 1 and 2. For simplicity, this proof is
performed up to universal multiplicative constants, using the rough inequality ≲.
Lemma 9. Let T ≥ 1 and x > 0. Then, with probability at least 1 − 3K(K + 1)Te−x,
simultaneously for all t ∈ [T ] and i ≠ j in [K̃]: γij := θi

θj
≤ γucb

ij,t and one of the following
two inequalities is satisfied

nij,t < 69x(1 + γij) or γucb
ij,t ≤ γij + 4(γij + 1)

√
2γijx

nij,t
+ 22x(γij + 1)2

nij,t
.

Lemma 10. Let T ≥ 1 and x > 0. Then, with probability at least 1 − 3K(K + 1)Te−x,
simultaneously for all t ∈ [T ] and i ∈ [K]: θ̂ucb

i,t := minj γucb
ij,tγ

ucb
j0,t ≥ θi and for all j one of

the following two inequalities is satisfied

nij,t ≲ x(1 + γij) or nj0,t ≲ x(1 + θj)2θ−1
j

or

γucb
ij,tγ

ucb
j0,t−θi ≲

√
(γij + 1)θix

(√
(θi + θj)

nij,t
+

√
(1 + θj)

nj0,t

)
+(γij+1)(θi + θj)x

nij,t
+γij(1 + θj)2x

nj0,t
.

Proof of Lemma 10. The proof follows from Lemma 9. If nij,t > Cx(1 + γij) and nj0,t >
Cx(1 + θj) for some large enough constant C, we have

γucb
ij,t ≤ γij + 4(γij + 1)

√
2γijx

nij,t
+ 22x(γij + 1)2

nij,t

and

γucb
j0,t ≤ γj0 + 4(γj0 + 1)

√
2γj0x

nj0,t
+ 22x(γj0 + 1)2

nj0,t
≤ 2γj0 .

This implies,

γucb
ij,tγ

ucb
j0,t − θi = γucb

ij,tγ
ucb
j0,t − γijγj0 = (γucb

ij,t − γij)γucb
j0,t + γij(γucb

j0,t − γj0)
≤ 2(γucb

ij,t − γij)γj0 + γij(γucb
j0,t − γj0)

≤ 8γj0(γij + 1)
√

2γijx

nij,t
+ 44xγj0(γij + 1)2

nij,t

+ 4γij(γj0 + 1)
√

2γj0x

nj0,t
+ 22xγij(γj0 + 1)2

nj0,t
.

Replacing γij = θi/θj and γj0 = θj concludes the proof.

Lemma 11. Let T ≥ 1 and x > 0. Then, with probability at least 1−K(K + 1)Te−x

τij,t < 2x
(θ0 + ΘS∗)2

θi + θj
or nij,t ≥

(θi + θj)τij,t

2(θ0 + ΘS∗) , (17)

where τij,t :=
∑t−1

s=1 1{{i, j} ⊆ Ss} simultaneously for all t ∈ [T ] and i ̸= j ∈ [K].

Proof of Theorem 5. Let E be the high-probabality event of Lemmas 10 and 11 are satisfied,
so that P(E) ≥ 1− 4K2Te−x. First, note that since we have under the event E , θ̂ucb

t ≤ θucb
t ,

our procedure also satisfies the regret upper-bound

Regwtd
T ≤ O(

√
θmaxKT log T )
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of Theorem 4. Indeed, all upper-bounds of the proof of Theorem 4 remain valid upper-bounds
except the probability of the event Ec which is O(T −1) for x = 2 log T .

Let us now prove that we also have RT ≤ O(K
√

T log T ) with no asymptotic dependence on
θmax when T →∞.
Then,

Regwtd
T =

T∑
t=1

E
[
R(S∗, θ)−R(St, θ)

]
(18)

=
T∑

t=1
E

[
(R(S∗, θ)−R(St, θ))1{E}+ (R(S∗, θ)−R(St, θ))1{Ec}

]
≤

T∑
t=1

E
[(

(R(St, θ̂ucb
t )−R(St, θ)) ∧R(S∗, θ)

)
1{E}+R(S∗, θ)1{Ec}

]
.

Then, using R(S∗, θ) ≤ maxi ri ≤ 1, we get

Regwtd
T ≤

T∑
t=1

E
[(

(R(St, θ̂ucb
t )−R(St, θ)) ∧ 1

)
1{E}+ 1{Ec}

]
≤ 4T 2K(K + 1)2e−x +

T∑
t=1

E
[((
R(St, θ̂ucb

t )−R(St, θ)
)
∧ 1

)
1{E}

]
. (19)

Follow the proof of Theorem 4, we upper-bound the second term of the right-hand-side
of (19):

T∑
t=1

E
[((
R(St, θ̂ucb

t )−R(St, θ)
)
∧ 1

)
1{E}

]
(20)

=
T∑

t=1
E

[((
min

j∈[K]

∑
i∈St

riθ̂
ucb
i,t

1 +
∑

j∈St
θ̂ucb

j,t

− riθi

1 +
∑

j∈St
θj

)
∧ 1

)
1{E}

]

≤
T∑

t=1
E

[(( ∑
i∈St

ri(θ̂ucb
i,t − θi)

θ0 + ΘSt

)
∧ 1

)
1{E}

]
because

∑
i∈St

θ̂ucb
i,t ≥ ΘSt

under E

≤
T∑

t=1
E

[(( ∑
i∈St

|θ̂ucb
i,t − θi|

θ0 + ΘSt

)
∧ 1

)
1{E}

]
because ri ≤ 1

≤
K∑

i=1
E

[
T∑

t=1

( |θ̂ucb
i,t − θi|

θ0 + ΘSt

∧ 1
)
1{i ∈ St}1{E}

]

≤
K∑

i=1
E

[
T∑

t=1

( |γucb
ijt,tγ

ucb
jt0,t − θi|

θ0 + ΘSt

∧ 1
)
1{i ∈ St}1{E}

]
where jt = argmaxj∈St∪{0} θj , where the last inequality is by definition of θ̂ucb

i,t . Now,
from Lemma 10, paying an additive exploration cost to ensure that nij,t ≳ x(1 + γij) and
nj0,t ≳ x(1 + θj)2θj for all j ∈ St such that θj ≥ θ0. From Lemma 11, this is satisfied if for
some constant C > 0

τij,t > Cm2θ2
maxx .

Such a condidtion can be wrong for a couple (i, j) ∈ S2
t at most during CK2m2θ2

maxx =
O(log T ) rounds (since τij,t increases then). Thus, for C large enough,

T∑
t=1

E
[((
R(St, θ̂ucb

t )−R(St, θ)
)
∧ 1

)
1{E}

]
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≤ O(log T ) +
K∑

i=1
E

[
T∑

t=1

|γucb
ijt,tγ

ucb
jt0,t − θi|

θ0 + ΘSt

1{i ∈ St, τijt,t ∧ τjt,t ≥ Cxm2θ2
max}1{E}

]

≲ O(log T ) +
K∑

i=1
E

[
T∑

t=1

(√
(γijt + 1)θix

(√
(θi + θjt

)
nijt,t

+

√
(1 + θj)

njt0,t

)

+ (γijt
+ 1)(θi + θjt)x

nijt,t
+ γijt(1 + θjt)2x

njt0,t

)
1{i ∈ St}
θ0 + ΘSt

]

≤ O(log T ) +
K∑

i=1
E

[
T∑

t=1

√
(γijt

+ 1)θix

(√
(θi + θjt

)
nijt,t

+

√
(1 + θjt

)
njt0,t

)
1{i ∈ St}
θ0 + ΘSt

]
where the last inequality is because using that {i, jt, 0} ⊆ St, we have

E
[ T∑

t=1

1 + θjt

(1 + ΘSt)njt0,t

]
= E

[ T∑
t=1

K∑
j=1

1{it ∈ {j, 0}}
nj0,t

1{j = jt}
]
≤ K(1 + log T ).

and

E
[ T∑

t=1

θi + θjt

(1 + ΘSt)nijt,t

]
= E

[ T∑
t=1

K∑
j=1

1{it ∈ {j, i}}
nj0,t

1{j = jt}
]
≤ K(1 + log T ).

Then, by Cauchy-Schwarz inequality we further get
T∑

t=1
E

[((
R(St, θ̂ucb

t )−R(St, θ)
)
∧ 1

)
1{E}

]

≲ O(log T ) +
K∑

i=1

√√√√E

[
T∑

t=1

(γijt
+ 1)θi1{i ∈ St}x

θ0 + ΘSt

]
(21)

×

√√√√E

[
T∑

t=1

(
(θi + θjt)

nijt,t
+ (1 + θjt)

njt0,t

)
1{i ∈ St}
θ0 + ΘSt

]

≲ O(log T ) +
K∑

i=1

√√√√E

[
T∑

t=1

(γijt
+ 1)θi1{i ∈ St}x

θ0 + ΘSt

]√
K log T

≲ O(log T ) +
K∑

i=1

√√√√E

[
T∑

t=1

θi1{i ∈ St}x
θ0 + ΘSt

]√
K log T (because γijt

≤ 1 by definition of jt)

≤ O(K
√

Tx log T ) = O(K
√

T log T ) , (22)

where the last inequality is by Jensen’s inequality and the equality by setting x = 2 log T to
control the probability that Ec occurs. This concludes the proof.
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