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Abstract

Clinical dataset labels are rarely certain as an-
notators disagree and confidence is not uniform
across cases. Typical aggregation procedures,
such as majority voting, obscure this variabil-
ity. In simple experiments on medical imaging
benchmarks, accounting for the confidence in
binary labels significantly impacts model rank-
ings. We therefore argue that machine-learning
evaluations should explicitly account for anno-
tation uncertainty using probabilistic metrics
that directly operate on distributions. These
metrics can be applied independently of the
annotations’ generating process, whether mod-
eled by simple counting, subjective confidence
ratings, or probabilistic response models. They
are also computationally lightweight, as closed-
form expressions have linear-time implementa-
tions once examples are sorted by model score.
We thus urge the community to release raw an-
notations for datasets and to adopt uncertainty-
aware evaluation so that performance estimates
may better reflect clinical data.

Keywords: Evaluation, annotation, uncer-
tainty, metrics.

1. Introduction

The availability of health-related datasets has grown
rapidly (Kiryati and Landau, 2021). These resources
have been instrumental in advancing machine learn-
ing (ML) for healthcare, enabling the community to
benchmark methods and accelerate progress (John-
son et al., 2016; Tschandl et al., 2018; Irvin et al.,
2019). A key barrier to their utility is the uncer-
tainty intrinsic to clinical annotations. Specifically,
even among domain experts, agreement on the pres-
ence or absence of a finding is often low, reflecting the
ambiguity of medical data and the subjectivity of in-
terpretation (Elmore et al., 2015; Krause et al., 2018).
To mitigate this, it has become common practice to
collect multiple annotations per sample (Armato III
et al., 2011; Irvin et al., 2019; Raumanns et al., 2021).

For example in dermatology even histopathology,
treated as gold standard diagnosis, achieves only
moderate agreement. Specifically, in an observational
study of 60 melanoma cases across three Spanish hos-
pitals, mean inter-observer agreement gave a Cohen’s
k around 0.5 (Sanz-Motilva et al., 2025). This vari-
ability reflects intrinsic ambiguity. Forcing determin-
istic labels obscures it and biases evaluation against

Data and Code Availability. Datasets are pub-
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licly accessible and detailed in Section 2.

While multi-annotator designs acknowledge the un-
Institutional Review Board (IRB). IRB ap- cer.tainty of th.e labeling process, the r.esulting anno-

tations are typically aggregated into a single “ground-
truth” label, often by majority voting or threshold-
ing (Snow et al., 2008). This produces an illusion of
certainty: An image labeled as “positive” by 6/10 ex-
perts is treated identically to one unanimously la-
beled as “positive” by 10/10. Even in the case of 2-5
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annotators, which is more common in health where
expert annotations are costly, a 2/3 agreement con-
veys critically different information than a unanimous
3/3 agreement. This nuance is lost with majority
voting or thresholding. Current ML pipelines often
evaluate models against aggregated labels as if they
were certain, disregarding the underlying uncertainty
(Irvin et al., 2019; Chen et al., 2021). In doing so,
meaningful variations in expert opinion are collapsed
into a binary outcome, obscuring the fact that evalu-
ation is performed against a fragile construct rather
than a real reference.

We argue that this practice is not aligned with the
nuances of clinical data. Evaluation should incorpo-
rate uncertainty, as ignoring it leads to a hidden se-
lection bias, where models that more closely align
with thresholded labels are favored over those that
predict realistic uncertainty. Importantly, doing so
is neither conceptually nor technically difficult, and
has a sizeable impact on results. There exist exten-
sions of widely used metrics, such as area under the
receiver operating characteristic curve (AUROC) or
average precision (AP), that apply to probabilistic
labels. These can be traced back at least 20 years in
the information retrieval literature (Kekéldinen and
Jarvelin, 2002), but remain rarely applied in the ML
for health community.

Rather than collapsing disagreement to a binary
label, uncertainty-aware soft metrics directly operate
on continuous probabilities in the [0,1] range. Two
properties make them immediately practical. First,
soft metrics are agnostic to the assumptions used
to obtain probability estimates, which can range
from independent votes or subjective confidence to
item-response theory. Second, they are computation-
ally tractable, as closed-form expressions allow for
linear-time execution after sorting by score, just as
in the binary case.

Related work. The issue of annotation uncer-
tainty and its impact on ML model evaluation, espe-
cially for clinical tasks, has been highlighted several
times. Maier-Hein et al. (2018) showed that rank-
ings in biomedical image analysis challenges fluctu-
ate with annotator selection and aggregation scheme,
urging for transparency with respect to label uncer-
tainty. For clinical applications, Chen et al. (2021)
argued that when the reference standard is subjec-
tive, agreement should be measured with human com-
parators, avoiding claims of accuracy against unques-
tioned truth. Gordon et al. (2021) took the program
further by addressing intra-annotator variations and

then averaging metrics across annotators. A com-
munity perspective (Reinke et al., 2024) emphasized
that metric choice and aggregation must align with
the problem and data, highlighting pitfalls that arise
when subjectivity is ignored.

Several thresholdless metrics have been proposed
to address uncertain annotations. The information re-
trieval formulation of precision and recall to continu-
ous, non-binary labels included the soft version of AP
(Kekéldinen and Jarvelin, 2002). A similar approach
was used to evaluate boundary detection in images by
taking the average of scores over different annotators
(Martin et al., 2004). Further works formulated pre-
cision and recall with frequencies as probabilities, in-
cluding all-negative and all-positive dummies to avoid
certainty when labels are classifier outputs, and inves-
tigated hypothesis testing on these metrics (Lamiroy
and Sun, 2011; Lamiroy and Pierrot, 2015).

Contributions. This paper draws attention to
the gap between annotation practice and evaluation
methodology. Through evaluations on benchmark
medical imaging datasets, we show that accounting
for label uncertainty can substantially alter the rank-
ing of competing methods. This evidence underscores
the need for a shift away from evaluation with artifi-
cially certain labels towards faithful representation of
annotation uncertainty. We compile explicit, simple
expressions to compute soft versions of AP and AU-
ROC that are cheap to compute and straightforward
to interpret, thus facilitating their adoption. We con-
clude by urging the community to follow uncertainty-
aware evaluation practices and to promote trans-
parency by releasing unaggregated annotations.

2. Experiments

2.1. Experimental setup

Metrics. Let items 1,...,n be sorted in descending
order by their score for positive classification. Denote
the probability of item ¢ being positive by p; € [0, 1].
Define the cumulative counts

i

+ _

n; = § :pj’
i=1

and totals n™ = nf, n~ = n;. True positive rate

(TPR) and false positive rate (FPR) are defined by
TPR; =n} /nt, FPR; =n; /n=, (2

%

n; = Z(l _pj)’

j=1

(1)

and precision and recall by

Pi:n:r/i, Ri:n;r/nJr.

(3)
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Figure 1: Comparison of ordinary and soft metrics on three datasets with three tasks each. In the left panels,

dots represent different backbones, and dashed lines indicate Pearson score correlations whose R?
values are reported on the right. Details are in Appendix Table 2.

Definition 1 (Soft AUROC)
The soft (uncertainty-aware) AUROC is defined as
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Definition 2 (Soft AP)
The soft (uncertainty-aware) AP is defined as

n
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These definitions automatically reduce to ordinary
AUROC and AP when labels are binary. Using the
cumulative sums in the first lines of the equations al-
lows for linear time implementations, assuming the
samples are already sorted by score. The metric val-
ues are deterministic and do not require Monte Carlo
sampling, despite taking into account the probabilis-
tic nature of the annotation process.

In the experiments that follow, we compare ordi-
nary AUROC and AP computed against binary la-
bels, and their soft counterparts sS-AUROC and s-
AP computed directly from probabilistic labels.

Tasks and datasets. We first evaluate soft rank-
ing metrics across three medical imaging settings
with varying label uncertainty (see Appendix B).
The first is the dermatology benchmark ENHANCE

(Raumanns et al., 2021), featuring annotations of the
student groups 2017-2020 for the lesion attributes
asymmetry, border, and color. For each image, we
normalize ratings to [0,1] and average them to ob-
tain a soft label, and binarize labels for presence of
the attribute by requiring a mean > 1 on the original
scale. We then consider the two chest X-ray bench-
marks VinDR (Nguyen et al., 2022) and CheXpert!
(Irvin et al., 2019). Here, we take the mean of ex-
pert annotations for each image to obtain soft targets
and binarize them with majority voting, which aligns
with prior work on this dataset (Irvin et al., 2019).
For datasets without a predefined test split, we select
a 30% test set with a fixed random seed.

To evaluate how uncertainty affects evaluation
across a broader range of tasks beyond typical med-
ical imaging, and beyond simple averaging for prob-
abilistic labels, we also investigate data quality issue
detection on CleanPatrick (Groger et al., 2025). This
benchmark features raw, unaggregated annotations
for three issue types on medical images (off-topic sam-
ples, near duplicates, and label errors). We follow the
same setup and evaluation as the benchmark, includ-
ing the evaluated methods and GLAD aggregation
(see Appendix E).

Features and models. We extract image rep-
resentations with four backbones pretrained on Im-
ageNet with supervision: VGG-16 (Simonyan and
Zisserman, 2015), ResNet-50 (He et al., 2016),
EfficientNet-b0 (Tan and Le, 2019), and ViT-base

1. Only the test set contains multi-rater annotations.
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Figure 2: Results for data quality issue detection on
CleanPatrick. Bars show the uncertainty-
aware score s-AP, and vertical ticks mark
the corresponding AP. Detailed results are
in Table 2 of the appendix.

(Dosovitskiy et al., 2021). Following the methods’
preprocessing, all images are resized to 224 x 224,
converted to tensors, and normalized with ImageNet
mean and standard deviation. VinDr’s DICOM files
are read using pydicom (Mason and the pydicom
contributors, 2024). Pixel arrays are scaled to 8-bit
if needed, and single-channel images are repeated
to RGB. We train a standard Logistic Regression
classifier from scikit-learn on the features extracted
with frozen backbones and report probabilities on the
held-out test set. While more sophisticated and per-
formant backbones exist, these models remain rele-
vant in practice for clinical settings, where computa-
tional infrastructure may be limited.

2.2. Results

Switching from ordinary to uncertainty-aware evalu-
ation reweights ambiguous cases. Besides decreasing
absolute scores and compressing their range, this im-
portantly reshuffles leaders across datasets as can be
seen in Figure 1. On ENHANCE Border/Color, or-
dinary APs above 0.75 collapse to lower and tighter
s-AP regions. In this regime, VGG-16 outperforms
other backbones, indicating that the best method
does not merely separate binary positives, but rather
correctly handles borderline lesions. A similar pat-
tern can be observed on VinDr, where soft metrics
are uniformly lower yet still flip winners on several
tasks (e.g., VGG-16 performs best on Pneumotho-
rax, Pulmonary Fibrosis, and Pleural Thickening),

1.0
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Figure 3: Average correlation coefficient of rankings
produced by ordinary and soft metrics
upon annotation bootstrap across 13 tasks.
Details are in Figure 5 of the appendix.
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underscoring that rank is sensitive to how label un-
certainty is modeled. The analysis of the coefficients
of determination R? in Figure 1 shows that AP of-
ten decouples rankings between ordinary and soft
settings moderately, and AUROC can sometimes de-
couple them sharply (e.g., CheXpert—Pneumothorax
AUROC R?=0.465 vs. AP R?=0.983).

Note that most top-ranked solutions in the VinDr
challenge ensemble multiple models, often including
pretrained and fine-tuned ResNets. Even with frozen
backbones and a linear head, VGG-16 achieves bet-
ter results than ResNet counterparts when evaluated
with uncertainty-aware metrics on several tasks. This
suggests that its representations may lead to better
logit calibration for evaluations that explicitly model
annotation uncertainty, compared to the widely used
fine-tuned ResNet variants.

On CleanPatrick (see Figure 2), uncertainty-aware
evaluation does not change the best method but re-
orders competing ones across tasks. For near dupli-
cates, SelfClean remains first, while pHash and SSIM
collapse to a tie under s-AP. For off-topic samples,
the ordering is mostly unchanged. The starkest shift
is observed for label errors: BHN sits second in terms
of ordinary AP but drops near the bottom under s-
AP, while SelfClean keeps first rank. Overall, shifting
from ordinary to soft metrics changes which models
are better than others in ambiguous cases.

In Figure 3, we further investigate the reliability
of the ordinary and soft metrics. We perform a boot-
strap analysis as discussed in Appendix C and com-
pare the stability of the model rankings by measuring
the correlation coefficient among them. The results
show that using soft metrics leads to more consistent
evaluation across all tasks.
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To ensure that findings generalize beyond linear
evaluation on frozen features, we also conduct exper-
iments on Chexpert both with end-to-end fine-tuning
(Table 3) of the same model setup (i.e., backbone and
linear head) and using leaderboard models (Table 4).
These results, detailed in Appendix D, confirm that
uncertainty-aware metrics frequently reshuffle model
rankings including the top position.

3. Discussion

This work considers uncertainty in ranking metrics
for binary classification. While this also applies to
binary multi-label problems, extension to the multi-
class case is only straightforward in a one-vs-one or
a one-vs-all fashion.

Soft metrics are agnostic both to the modality and
to the origin of probabilistic labels. They are directly
applicable to any domain whenever probabilistic la-
bels are available. Beyond the example of melanoma
diagnosis (Elmore et al., 2017), other clinical domains
show high inter-rater variability where soft metrics
are advantageous. In radiology, the interpretation of
ambiguous lung nodules or characterization of lesions
in mammography often results in significant disagree-
ment (Lehman et al., 2015). In pathology, the grading
of tumors, like Gleason scoring for prostate cancer, is
notoriously subjective (Egevad et al., 2013). In oph-
thalmology, severity grading of diabetic retinopathy
leads to expert disagreement (Krause et al., 2018).
These can be contrasted with domains where dis-
agreement is typically lower, such as bone fracture
detection (Nowroozi et al., 2024), to identify where
uncertainty-aware evaluation is most critical.

The choice of aggregation model (e.g., simple aver-
aging or item-response theory) may have a significant
influence. These nuances are not fully explored yet,
due to scoping and the limited availability of public
medical datasets with unaggregated annotations. The
work by Stutz et al. (2023) offers a complementary
perspective to soft ranking metrics, as it describes
how to produce prediction sets with confidence guar-
antees using conformal prediction.

One might also hypothesize that uncertainty-aware
training will produce better results in terms of soft
metrics, but evidence for this is yet to be collected.
The surprising performance of VGG-16 in some tasks
warrants discussion. One hypothesis is that this ar-
chitecture may be less prone to overfitting binarized
majority labels in mid-small datasets compared to
more complex ones. Although monotonic calibration

such as Platt scaling does not change the result of
ranking metrics, models that are not overly confident
and incorporate better uncertainty estimates are re-
warded by disagreement-aware evaluation.

The full clinical impact of soft-metrics remains
to be assessed. Results suggest that decisions about
which models should be deployed are likely to change
due to rank reshuffling. While incorporating uncer-
tainty within evaluations is intuitive, downstream
consequences should be investigated.

Finally, releasing unaggregated annotations may
in some cases present challenges related to privacy,
ethics, or legality, as discussed in Appendix A. On the
other hand, it has great potential to improve fairness,
for instance, by investigating if high-disagreement co-
horts correlate with demographic factors.

4. Conclusion

Label uncertainty is intrinsic to clinical data.
Uncertainty-aware ranking metrics that operate on
probabilistic targets are easy to compute, improve the
stability of rankings, and often change which models
perform best.

Two practical recommendations follow. First,
benchmark creators should release unaggregated
annotations or at least fractional targets to enable
uncertainty-aware evaluation. Second, practitioners
should report uncertainty-aware metrics alongside
ordinary ones and comment on any rank changes.
These steps make empirical claims more robust to
the irreducible ambiguity of clinical annotation.
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Appendix A. Barriers to data sharing

In many practical cases, releasing individual anno-
tations with anonymized annotator identifiers entails
low ethical, legal, or privacy risks. Annotators are
usually professionals participating with informed con-
sent rather than vulnerable subjects, and the addi-
tional metadata does not expose new health informa-
tion beyond what is already available. When iden-
tifiers are randomized and links to institutions or
timestamps are loose, re-identification of either pa-
tients or annotators requires substantial prior knowl-
edge and effort. Certain datasets may warrant addi-
tional precautions due to specific contextual factors,
but this is not the norm. Provided the release agree-
ment forbids misuse and a standard data-protection
assessment confirms anonymization, the potential for
harm remains remote, whereas the gains for clinical
research are substantial.

Appendix B. Uncertainty
distributions

Figure 4 shows the distributions of soft and hard la-
bels for the evaluated datasets of the main paper. We
can see that ENHANCE has the highest uncertainty,
which can be attributed to the large amounts of anno-
tations per sample. In this case, collapsing the labels
to a binary outcome results in the loss of a significant
amount of information. CheXpert contains eight an-
notations per sample, while for VinDr we found three
annotations per sample, resulting in less uncertainty.

Appendix C. Bootstrap analysis
details

For the bootstrap analysis, we resample the anno-
tations for each image with replacement to generate

a new set of labels for the entire dataset. We then
recalculate all metrics (AUROC, AP, s-AUROC, s-
AP) for each model, re-rank the models based on the
new scores, and measure the rank correlation with
the original order using Spearman’s p and Kendall’s
7. We repeat this 1,000 times and use the average
rank correlation as an estimate of stability.

Table 1: Binomial test p-values comparing the sta-
bility (average rank correlation) of ordinary
vs. soft metrics over 1,000 bootstrap itera-
tions. Values < 0.05 indicate the soft metric
is significantly more stable. We see this in
8/9 tasks for AP and 3/9 for AUROC.

Dataset AP vs. ssAP  AUROC vs. ssFAUROC
CheXpert-Pleural Effusion 0.0119 0.2135
CheXpert-Pneumothorax >0.9999 >0.9999
VinDr-Pleural Thickening <0.0001 0.8019
CheXpert-Cardiomegaly <0.0001 0.2141
VinDr-Pulmonary Fibrosis <0.0001 <0.0001
VinBigData-Pneumothorax 0.0001 0.0138
ENHANCE-Color 0.0036 0.2971
ENHANCE-Border <0.0001 0.0049
ENHANCE-Asymmetry <0.0001 0.0625

Appendix D. Extended results

We provide additional results on the evaluations
performed in the main paper.

Table 2 presents the performance evaluation in
terms of ordinary and soft metrics for various
datasets, specifically for the three attribute detection
tasks on ENHANCE, five disease prediction tasks on
VinDr, five disease prediction tasks on CheXpert, and
the three data quality issue detection tasks on Clean-
Patrick. To ensure these findings generalize, Table 3
shows the results of end-to-end fine-tuning, and Ta-
ble 4 details the re-ranking of external leaderboard
models from CheXternal. Figure 6 visualizes the eval-
uation of soft versus ordinary metrics for linear prob-
ing, fine-tuning, and leaderboard models.

Figure 5 shows the results of the bootstrap anal-
ysis broken down by dataset, which expands on the
aggregated Figure 3.

Appendix E. Description of cleaning
approaches

We briefly outline the methods we evaluated to detect
off-topic samples, near duplicates, and label errors.
For implementation details, please refer to the cited
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Figure 4: Distribution of soft labels for the evaluated datasets. Dotted lines represent the threshold used to
produce the hard labels, and the colors represent binary positive and negative labels.
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Table 2: Comparison of performance measured in terms of ordinary vs. soft metrics for different methods
and on various datasets.

Ordinary Metrics Soft Metrics Ordinary Metrics Soft Metrics

Method AUROC AP ssAUROC  s-AP Method AUROC AP s-AUROC s-AP
ENHANCE-Asymmetry CheXpert-Cardiomegaly

EfficientNet-b0 0.636 0.571 0.585 0.592 EfficientNet-b0 0.752 0.531 0.683 0.480
ResNet-50 0.656 0.621 0.593 0.618 ResNet-50 0.732 0.427 0.678 0.447
VGG-16 0.707 0.655 0.617 0.625 VGG-16 0.717 0.493 0.694 0.491
ViT-base 0.635 0.600 0.594 0.621 ViT-base 0.632 0.390 0.616 0.416
ENHANCE-Border CheXpert-Pneumothorax

EfficientNet-b0 0.664 0.794 0.569 0.263 EfficientNet-b0 0.145 0.012 0.310 0.039
ResNet-50 0.617 0.758 0.556 0.253 ResNet-50 0.392 0.020 0.487 0.039
VGG-16 0.679 0.785 0.579 0.268 VGG-16 0.486 0.019 0.498 0.033
ViT-base 0.631 0.769 0.561 0.253 ViT-base 0.760 0.046 0.581 0.047
ENHANCE-Color CheXpert-Pleural Effusion

EfficientNet-b0 0.709 0.890 0.558 0.431 EfficientNet-b0 0.835 0.504 0.801 0.551
ResNet-50 0.691 0.878 0.551 0.429 ResNet-50 0.868 0.560 0.806 0.540
VGG-16 0.694 0.886 0.560 0.443 VGG-16 0.807 0.494 0.775 0.539
ViT-base 0.656 0.849 0.533 0.408 ViT-base 0.785 0.410 0.770 0.467
VinDr-Cardiomegaly CheXpert-Lung Opacity

EfficientNet-b0 0.935 0.672 0.931 0.653 EfficientNet-b0 0.847 0.828 0.813 0.813
ResNet-50 0.942 0.711 0.938 0.692 ResNet-50 0.832 0.794 0.798 0.782
VGG-16 0.951 0.740 0.947 0.716 VGG-16 0.842 0.813 0.804 0.804
ViT-base 0.924 0.654 0.922 0.637 ViT-base 0.820 0.799 0.799 0.796
VinDr-Pneumothoraz CheXpert-Atelectasis

EfficientNet-b0 0.958 0.216 0.903 0.191 EfficientNet-b0 0.712 0.457 0.718 0.547
ResNet-50 0.877 0.090 0.866 0.082 ResNet-50 0.765 0.515 0.729 0.555
VGG-16 0.928 0.232 0.924 0.224 VGG-16 0.742 0.504 0.735 0.596
ViT-base 0.915 0.093 0.912 0.096 ViT-base 0.686 0.389 0.679 0.496
VinDr-Pleural Effusion CleanPatrick: Off-topic Samples

EfficientNet-b0 0.896 0.477 0.884 0.452 SelfClean 0.669 0.145 0.676 0.123
ResNet-50 0.921 0.494 0.905 0.468 ECOD 0.757 0.162 0.754 0.134
VGG-16 0.926 0.564 0.910 0.529 IForest 0.773 0.159 0.774 0.129
ViT-base 0.914 0.495 0.894 0.457 DeepSVD 0.728 0.130 0.714 0.079
VinDr-Pulmonary Fibrosis CleanPatrick: Near Duplicates

EfficientNet-b0 0.841 0.292 0.836 0.300 SelfClean 0.917 0.879 0.888 0.111
ResNet-50 0.853 0.272 0.848 0.280 pHash 0.505 0.316 0.493 0.025
VGG-16 0.862 0.349 0.854 0.336 SSIM 0.491 0.305 0.495 0.025
ViT-base 0.861 0.296 0.851 0.310 CleanPatrick Label Errors

VinDr-Pleural Thickening SelfClean 0.572 0.265 0.804 0.018
EfficientNet-b0 0.864 0.304 0.839 0.300 CLearning 0.477 0.216 0.494 0.002
ResNet-50 0.870 0.302 0.849 0.297 FINE 0.469 0.205 0.396 0.001
VGG-16 0.886 0.354 0.863 0.341 BHN 0.547 0.239 0.545 0.002
ViT-base 0.882 0.329 0.848 0.313
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Figure 5: Correlation coefficient of model rankings produced by both ordinary and soft metrics averaged
over 1,000 bootstrapped samples, which represent random annotation draws.

Table 3: Performance comparison of end-to-end fine-
tuned models on CheXpert tasks. Rank-
flipping is observed (e.g., VGG-16 vs.
ResNet-50 on Cardiomegaly AP /s-AP).

Model AUROC s-AUROC AP s-AP
Cardiomegaly

EfficientNet-b0 0.752 0.683 0.531 0.480
ResNet-50 0.801 0.711 0.552  0.514
VGG-16 0.782 0.718 0.496 0.493
ViT-base 0.686 0.680 0.407  0.450
Pneumothoraz

EfficientNet-b0 0.206 0.442 0.012 0.042
ResNet-50 0.443 0.544 0.018  0.040
VGG-16 0.510 0.552 0.029 0.051
ViT-base 0.399 0.370 0.016  0.028
Pleural Effusion

EfficientNet-b0 0.831 0.789 0.556  0.559
ResNet-50 0.928 0.854 0.695 0.669
VGG-16 0.912 0.858 0.601  0.605
ViT-base 0.688 0.669 0.321 0.370

papers. For hyperparameters, we follow the same
strategy as CleanPatrick and use all methods as im-
plemented in the benchmark (Groger et al., 2025).
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E.1. Off-topic samples

Isolation Forest (IForest): Unsupervised anomaly
detection by randomly partitioning features, where
points with short average path length are flagged as
outliers (Liu et al., 2008).

ECOD: Tail-sensitive, distribution-free outlier scor-
ing based on empirical CDFs computed per feature
(Li et al., 2022).

DeepSVD: One-class deep anomaly detection that
learns compact representations and flags samples far
from the learned support (deep one-class objective)
(Ruff et al., 2018).

E.2. Near duplicates

pHash: Perceptual hashing; small Hamming distance
between hashes indicates visually similar images (Za-
uner, 2010).

SSIM: Local comparison of luminance, contrast,
and structure, where high mean SSIM signals near-
duplicates (Wang et al., 2004).

E.3. Label errors

Confident Learning (CLearning): Estimates
class-conditional noise from model predictions to
identify likely mislabeled examples (Northcutt et al.,
2021).
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Figure 6: Comparison of ordinary and soft metrics on CheXpert for different tasks. Evaluation is done
for linear probing, fine-tuning, and leaderboard models. Dots represent different backbones, and
dashed lines indicate Pearson score correlations.
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FINE: Influence-based ranking that prioritizes ex-
amples whose labels appear inconsistent with the
learned decision boundary (Kim et al., 2021).
BHN: Bayesian uncertainty-driven scoring that flags
candidates for relabeling based on predictive uncer-
tainty (Yu et al., 2023).

E.4. Multiple issue types

SelfClean: Uses context-aware self-supervised em-
beddings and neighborhood consistency to rank likely
issues (Groger et al., 2024). The proposed method can
be used with a human-in-the-loop or thresholded for
automation. Here full automation is used.

13
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Table 4: Re-ranking of CheXternal leaderboard models when switching from ordinary to soft metrics.

AUROC s-AUROC AP s-AP
Model Score O. Rank Score O.Rank Score O.Rank Score O. Rank
Atelectasis
jfaboy 0.894 1 0.839 2 0.747 1 0.702 2
ngango3 0.893 2 0.839 1 0.747 2 0.703 1
uestc 0.891 3 0.835 5 0.736 3 0.685 7
drnet 0.891 3 0.835 5 0.736 3 0.685 7
sensexdr 0.891 3 0.835 5 0.736 3 0.685 7
ihil 0.891 3 0.835 5 0.736 3 0.685 7
ngango2 0.890 7 0.838 3 0.730 8 0.696 3
hieupham 0.889 8 0.838 4 0.720 10 0.693 4
desmond 0.875 9 0.827 9 0.720 9 0.685 6
yww211 0.875 10 0.825 10 0.735 7 0.687 5
Cardiomegaly
sensexdr 0.947 1 0.832 6 0.599 10 0.665 2
ihil 0.946 2 0.831 7 0.857 1 0.665 3
ngango3 0.944 3 0.835 2 0.844 7 0.664 5
hieupham 0.943 4 0.836 1 0.851 2 0.666 1
desmond 0.940 5 0.834 5 0.844 6 0.662 7
drnet 0.940 6 0.827 8 0.844 8 0.660 9
ngango2 0.939 7 0.834 4 0.840 9 0.662 8
yww211 0.938 8 0.835 3 0.850 3 0.665 3
uestc 0.936 9 0.826 9 0.846 4 0.663 6
jfaboy 0.929 10 0.822 10 0.844 5 0.658 10
Consolidation
jfaboy 0.927 1 0.853 1 0.451 1 0.402 1
ueste 0.921 2 0.848 3 0.408 2 0.397 2
drnet 0.921 2 0.848 3 0.408 2 0.397 2
sensexdr 0.921 2 0.848 3 0.408 2 0.397 2
ihil 0.921 2 0.848 3 0.408 2 0.397 2
yww211 0.918 6 0.851 2 0.354 7 0.392 6
ngango3 0.912 7 0.846 8 0.382 6 0.384 7
desmond 0.905 8 0.847 7 0.330 8 0.383 8
ngango2 0.892 9 0.835 9 0.279 10 0.353 10
hieupham 0.891 10 0.831 10 0.304 9 0.357 9
FEdema
drnet 0.935 1 0.871 1 0.706 1 0.633 1
sensexdr 0.935 1 0.871 1 0.706 1 0.633 1
ihil 0.935 1 0.871 1 0.706 1 0.633 1
uestc 0.935 4 0.869 4 0.694 4 0.628 4
yww211 0.932 5 0.865 5 0.633 8 0.598 7
desmond 0.929 6 0.859 8 0.637 6 0.597 8
ngango2 0.926 7 0.864 6 0.646 5 0.606 5
hieupham 0.924 8 0.862 7 0.637 7 0.603 6
jfaboy 0.922 9 0.856 10 0.566 10 0.566 10
ngango3 0.911 10 0.857 9 0.590 9 0.588 9
Pleural Effusion
hieupham 0.979 1 0.920 1 0.908 4 0.796 1
ngango3 0.979 2 0.918 3 0.911 3 0.796 2
jfaboy 0.978 3 0.917 4 0.917 1 0.793 5
ngango2 0.977 4 0.917 5 0.350 10 0.795 3
yww211 0.974 5 0.918 2 0.912 2 0.795 3
ueste 0.973 6 0.917 6 0.883 5 0.774 6
drnet 0.973 6 0.917 6 0.883 5 0.774 6
sensexdr 0.973 6 0.917 6 0.883 5 0.774 6
ihil 0.973 6 0917 14 6 0.883 5 0.774 6
desmond 0.962 10 0.906 10 0.849 9 0.764 10
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