
A Details of the DDRM ELBO objective

DDRM is a Markov chain conditioned on y, which would lead to the following ELBO objective [45]:

Ex0∼q(x0),y∼q(y|x0)[log pθ(x0|y)] (9)

≥ − E

[

T−1
∑

t=1

DKL(q
(t)(xt|xt+1,x0,y)∥p(t)θ (xt|xt+1,y))

]

+ E

[

log p
(0)
θ (x0|x1,y)

]

− E[DKL(q
(T )(xT |x0,y)∥p(T )

θ (xT |y))] (10)

where q(x0) is the data distribution, q(y|x0) follows Equation 1 in the main paper, the expectation

on the right hand side is given by sampling x0 ∼ q(x0), y ∼ q(y|x0), xT ∼ q(T )(xT |x0,y), and

xt ∼ q(t)(xt|xt+1,x0,y) for t ∈ [1, T − 1].

B Equivalence between “Variance Preserving” and “Variance Exploding”

Diffusion Models

In our main paper, we describe our methods based on the “Variance Exploding” hyperparameters σt,
where σt ∈ [0,∞) and

q(xt|x0) = N (x0, σ
2
t I). (11)

In DDIM [45], the hyperparameters are “Variance Preserving” ones αt, where αt ∈ (0, 1] and

q(xt|x0) = N (
√
αtx0, (1− αt)I). (12)

We use the colored notation xt to emphasize that this is different from xt (an exception is x0 = x0).
Using the reparametrization trick, we have that:

xt = x0 + σtϵ (13)

xt =
√
αtx0 +

√
1− αtϵ (14)

where ϵ ∼ N (0, I). We can divide by
√

1 + σ2
t in both sides of Equation 13:

xt
√

1 + σ2
t

=
x0

√

1 + σ2
t

+
σt

√

1 + σ2
t

ϵ. (15)

Let αt = 1/(1 + σ2
t ), and let xt = xt/

√

1 + σ2
t ; then from Equation 15 we have that

xt =
√
αtx0 +

√
1− αtϵ, (16)

which is equivalent to the “Variance Preserving” case. Therefore, we can use “Variance Preserving”
models, such as DDPM, directly in our DDRM updates, even though the latter uses the “Variance
Exploding” parametrization:

1. From xt, obtain predictions ϵ and xt = xt

√

1 + σ2
t .

2. From xt and ϵ, apply DDRM updates to get xt−1.

3. From xt−1, get xt−1 = xt−1/
√

1 + σ2
t−1.

Note that although the inference algorithms are shown to be equivalent, the choice between "Variance
Preserving" and "Variance Exploding" may affect the training of diffusion networks.

C Proofs

Proposition 3.1. The conditional distributions q(t) defined in Equations 4 and 5 satisfy the following:

q(xt|x0) = N (x0, σ
2
t I), (6)

defined by marginalizing over xt′ (for all t′ > t) and y, where q(y|x0) is defined as in Equation (1)
with x = x0.

15



Proof. The proof uses a basic property of Gaussian marginals (see [4] for the complete version).

1. If p(z1|z0) = N (z0, V1), p(z2|z1) = N (αz1, V2), then p(z2|z0) = N (αz0, α
2V1 + V2).

2. If p(z1) = N (µ1, V1) and p(z2) = N (µ2, V2), then p(z1 + z2) = N (µ1 + µ2, V1 + V2).

First, we note that q(y|x0) is defined from Equation 1 in the main paper, and thus for all i:

q(ȳ(i)|x0) = N (x̄
(i)
0 , σ2

y/s
2
i ). (17)

Case I For xT , it is obvious when si = 0. When si > 0, we have Equation 17 and that:

q(T )(x̄
(i)
T |x0,y) = N (ȳ(i), σ2

T − σ2
y

s2i
), (18)

and thus

q(T )(x̄
(i)
T |x0) = N (x̄

(i)
0 , σ2

y/s
2
i + σ2

T − σ2
y

s2i
) = N (x̄

(i)
0 , σ2

T ).

Case II For any t < T and i such that si > 0 and σt > σy/si, we have Equation 17 and that:

q(t)(x̄
(i)
t |xt+1,x0,y) = N

(

(1− ηb)x̄
(i)
0 + ηbȳ

(i), σ2
t −

σ2
y

s2i
η2b

)

, (19)

and thus we can safely remove the dependence on xt+1 via marginalization. q(t)(x̄
(i)
t |x0) is a

Gaussian with the mean being (1− ηb)x̄
(i)
0 + ηbx̄

(i)
0 = x̄

(i)
0 and variance being

σ2
t −

σ2
y

s2i
η2b +

σ2
y

s2i
η2b = σ2

t ,

where we note that ȳ(i) has a standard deviation of σy/si.

Case III For any t < T and i such that si > 0 and σt < σy/si, we have Equation 17, so

(ȳ(i)−x̄
(i)
0 )/(σy/si) is distributed as a standard Gaussian. Moreover, similar to Case II, q(t)(x̄

(i)
t |x0)

is a Gaussian with its mean being

x̄
(i)
0 +

√

1− η2σt
ȳ(i) − x̄

(i)
0

σy/si

and its variance being η2σ2
t , so q(t)(x̄

(i)
t |x0) is a Gaussian with a mean of x̄

(i)
0 and a variance of

(1− η2)σ2
t + η2σ2

t = σ2
t .

Case IV For any t ≤ T and i such that si = 0 (where there is no dependence on y), we apply
mathematical induction. The base case (t = T ) is true, as we have shown earlier in Case I. In the

step case (t < T ), we have that q(t+1)(x̄
(i)
t+1|x0) = N (x̄

(i)
0 , σ2

t+1). Similar to Case II, q(t)(x̄
(i)
t |x0)

is a Gaussian with its mean being

x̄
(i)
0 +

√

1− η2σt

x̄
(i)
t+1 − x̄

(i)
0

σt+1

and variance being η2σ2
t , which does not depend on y. Therefore, q(t)(x̄

(i)
t |x0) is also Gaussian,

with a mean of x̄
(i)
0 and a variance of

(1− η2)σ2
t + η2σ2

t = σ2
t .

Hence, the proof is completed via the four cases.

Theorem 3.2. Assume that the models f
(t)
θ and f

(t′)
θ do not have weight sharing whenever t ̸= t′,

then when η = 1 and ηb =
2σ2

t

σ2
t+σ2

y
/s2

i

, the ELBO objective of DDRM (details in Appendix A) can be

rewritten in the form of the DDPM / DDIM objective in Equation (2).

16



Proof. As there is no parameter sharing between models at different time steps t, let us focus on any
particular time step t and rewrite the corresponding objective as a denoising autoencoder objective.

Case I For t > 0, the only term in Equation 10 that is related to f
(t)
θ (which is used to make the

prediction xθ,t) is:

DKL(q
(t)(xt|xt+1,x0,y)∥p(t)θ (xt|xt+1,y))

= DKL(q
(t)(x̄t|xt+1,x0,y)∥p(t)θ (x̄t|xt+1,y))

=

n
∑

i=1

DKL(q
(t)(x̄

(i)
t |xt+1,x0,y)∥p(t)θ (x̄

(i)
t |xt+1,x0,y)), (20)

where the first equality is from the orthogonality of V ⊤ and the second equality is from the fact that

both q(t) and p
(t)
θ over the spectral space are Gaussians with identical diagonal covariance matrices

(so the KL divergence can factorize).

Here, we will use a simple property of the KL divergence between univariate Gaussians [27]:

If p = N (µ1, V1), q = N (µ2, V2), then

DKL(p∥q) =
1

2
log

V2

V1
+

V1 + (µ1 − µ2)
2

2V2
− 1

2
.

Since we constructed p
(t)
θ and q(t) to have the same variance, Equation 20 is a total squared error

with weights for each dimension of x̄t (the spectral space), so the DDPM objective (which is a total
squared error objective in the original space) is still a good approximation. In order to transform it
into a denoising autoencoder objective (equivalent to DDPM), the weights have to be equal. Next, we
will show that our construction of η = 1 and ηb = 2σ2

t /(σ
2
t + σ2

y/s
2
i ) satisfies this.

All the indices i will fall into one of the three cases: si = 0, σt < σy/si, or σt > σy/si.

• For si = 0, the KL divergence is
(x̄

(i)
θ,t

−x̄
(i)
0 )2

2σ2
t

, where we recall x̄θ,t = V ⊤f
(t)
θ (xt+1).

• For σt <
σy

si
, the KL divergence is also

(x̄
(i)
θ,t

−x̄
(i)
0 )2

2σ2
t

.

• For σt ≥ σy

si
, we have defined ηb as a solution to the following quadratic equation (the other

solution is 0, which is irrelevant to our case since it does not make use of information from
y):

(σ2
t +

σ2
y

s2i
)η2b − 2σ2

t ηb = 0; (21)

reorganizing terms, we have that:

(σ2
t +

σ2
y

s2i
)η2b − 2σ2

t ηb + σ2
t = σ2

t

σ2
t (1− ηb)

2 = σ2
t η

2
b − 2σ2

t ηb + σ2
t = σ2

t −
σ2
y

s2i
η2b

(1− ηb)
2

σ2
t −

σ2
y

s2
i

η2b

=
1

σ2
t

, (22)

So the KL divergence is

(1− ηb)
2

2(σ2
t −

σ2
y

s2
i

η2b )
(x̄

(i)
θ,t − x̄

(i)
0 )2 =

(x̄
(i)
θ,t − x̄

(i)
0 )2

2σ2
t

.

17



Therefore, regardless of how the cases are distributed among indices, we will always have that:

DKL(q
(t)(x̄t|xt+1,x0,y)∥p(t)θ (x̄t|xt+1,y)) =

n2
∑

i=1

(x̄
(i)
θ,t − x̄

(i)
0 )2

2σ2
t

=
∥x̄θ,t − x̄0∥22

2σ2
t

=
∥f (t)

θ (xt+1)− x0∥
2

2

2σ2
t

.

Case II For t = 0, we will only have two cases (si = 0 or σt <
σy

si
), and thus, similar to Case I,

log p
(0)
θ (x̄0|x1,y) =

n2
∑

i=1

log p
(0)
θ (x̄

(i)
0 |x1,y) ∝

n2
∑

i=1

(x̄
(i)
θ,0 − x̄

(i)
0 )2 = ∥x̄θ,0 − x̄0∥22 = ∥f (0)

θ (x1)− x0∥
2

2
,

as long as we have a constant variance for p
(0)
θ . Thus, every individual term in Equation 10 can be

written as a denoising autoencoder objective, completing the proof.

D Memory Efficient SVD

Here we explain how we obtained the singular value decomposition (SVD) for different degradation
models efficiently.

D.1 Denoising

In denoising, the corrupted image is the original image with additive white Gaussian noise. Therefore,
H = I and all the SVD elements of H are simply the identity matrix I , which in turns makes their
multiplication by different vectors trivial.

D.2 Inpainting

In inpainting, H retains a known subset of size k of the image’s pixels. This is equivalent to
permuting the pixels such that the retained one are placed at the top, then keeping the first k entries.
Therefore,

H = IΣP , (23)

where P is the appropriate permutation matrix, Σ is a rectangular diagonal matrix of size k × n with
ones in its main diagonal, and I is the identity matrix. Since permutation matrices are orthogonal,
Equation 23 is the SVD of H .

We can multiply a given vector by P and P T by storing the permutation itself rather than the matrix.
Σ can multiply a vector by simply slicing it. Therefore, by storing the appropriate permutation and
the number k, we can apply each element of the SVD with Θ(n) space complexity.

D.3 Super Resolution

For super resolution, we assume that the original image of size d× d (i.e. n = 3d2) is downscaled
using a block averaging filter by r in each dimension, such that d is divisible by r. In this scenario,
each pixel in the output image is the average of an r × r patch in the input image, and each such
patch affects exactly one output pixel. Therefore, any output pixel is given by (Hx)i = kTpi, where
k is a vector of size r2 with 1

r2 in each entry, and pi is the vectorized i-th r× r patch. More formally,
if P1 is a permutation matrix that reorders a vectorized image into patches, then

H =
(

I ⊗ kT
)

P1,

where ⊗ is the Kronecker product, and I is the identity matrix of size d
r × d

r . In order to obtain the

SVD of H , we calculate the SVD of kT :

kT = UkΣkV
T
k
.

Using properties of the Kronecker product, we observe

H =
(

I ⊗ kT
)

P1 =
(

(III)⊗
(

UkΣkV
T
k

))

P1 (24)

= (I ⊗Uk) (I ⊗Σk)
(

I ⊗ V T
k

)

P1.

18



The Kronecker product of two orthogonal matrices is an orthogonal matrix. Therefore, I ⊗Uk and
I ⊗ V T

k
are orthogonal. Observe that the matrix I ⊗Σk has one non-zero value ( 1

r2 ) in each row.
By applying a simple permutation on its columns, these values can be reordered to be on the main
diagonal. We denote the appropriate permutation matrix by P2, and obtain

H = UΣV T , (25)

where U = I ⊗ Uk is orthogonal, Σ = (I ⊗Σk)P
T
2 is a rectangular diagonal matrix with non-

negative entries, and V T = P2

(

I ⊗ V T
k

)

P1 is orthogonal. As such, Equation 25 is the SVD of H .

By storing the permutations and the SVD elements of kT , we can simulate each element of the SVD
of H with Θ(n) space complexity, without directly calculating the Kronecker products with I .

D.4 Colorization

The grayscale image is obtained by averaging the red, green, and blue channels of each pixel. This
means that every output pixel is given by (Hx)i = kTpi, where kT =

(

1
3

1
3

1
3

)

and pi is the
3-valued i-th pixel of the original color image. The SVD of H is obtained exactly the same as in the
super resolution case, with separate pixels replacing separate patches.

D.5 Deblurring

We focus on separable blurring, where the 2D blurring kernel is K = rcT , which means c is applied
on the columns of the image, and rT is applied on its rows. The blurred image can be obtained
by B = AcXAT

r , where Ac and Ar apply a 1D convolution with kernels c and r, respectively.
Alternatively, b = Hx, where x is the vectorized image X , b is the vectorized blurred image B,
and H is the matrix applying the 2D convolution K. It can be shown that H = Ar ⊗Ac, where ⊗
is the Kronecker product. In order to calculate the SVD of H , we calculate the SVD of Ar and Ac:

Ar = UrΣrV
T
r , Ac = UcΣcV

T
c .

Using the properties of the Kronecker product, we observe

H = Ar ⊗Ac =
(

UrΣrV
T
r

)

⊗
(

UcΣcV
T
c

)

= (Ur ⊗Uc) (Σr ⊗Σc) (Vr ⊗ Vc)
T
.

(26)

The Kronecker product preserves orthogonality. Therefore, Equation 26 is a valid SVD of H ,
with the exception of the singular values not being on the main diagonal, and not being sorted
descendingly. We reorder the columns so that the singular values are on the main diagonal and denote
the corresponding permutation matrix by P1. We also sort the values descendingly and denote the
sorting permutation matrix by P2, and obtain the following SVD:

H = UΣV T , (27)

where U = (Ur ⊗Uc)P
T
2 , Σ = P2 (Σr ⊗Σc)P

T
1 P T

2 , and V T = P2P1 (Vr ⊗ Vc)
T

.

For every matrix of the form M = N ⊗L, it holds that Mx is the vectorized version of LXNT .
By using this property and applying the relevant permutation, we can simulate multiplying a vector
by U , V , UT , or V T without storing the full matrix. The space complexity of this approach is Θ(n),
which is required for computing the SVD of Ar and Ac, as well as storing the permutations.

The above calculations remain valid when the blurring is zero-padded, i.e., images are padded with
zeroes so that the convolution is not circulant around the edges. We consider a zero-padded deblurring
problem in our experiments. Note that the noiseless version of this problem has a simple solution –
applying the pseudo-inverse of the blurring matrix on the blurry image. This solution attains 32.41dB
in PSNR on ImageNet-1K, while DDRM improves upon it and achieves 35.64dB. When noise is
added to the blurry image, such a simple solution amplifies the noise and fails to provide a valid
output. Therefore, we opt not to report its results.

Furthermore, the above calculations are also applicable to blurring with strided convolutions. We use
this fact in our implementation of the bicubic super resolution SVD, which can be interpreted as a
strided convolution with a fixed kernel.

19



Table 3: Ablation studies on η and ηb.

(a) PSNR (↑).

η
ηb 0.7 0.8 0.9 1.0

0.7 25.16 25.19 25.20 25.20
0.8 25.17 25.23 25.27 25.29
0.9 25.07 25.18 25.26 25.32
1.0 24.54 25.75 24.91 25.04

(b) KID ×103 (↓).

η
ηb 0.7 0.8 0.9 1.0

0.7 16.27 14.30 12.76 11.65
0.8 21.07 19.07 17.37 15.98
0.9 27.85 25.64 23.81 22.40
1.0 45.10 42.50 40.10 37.84

E Ablation Studies on Hyperparameters

η and ηb. Apart from the timestep schedules, DDRM has two hyperparameters η and ηb, which
control the level of noise injected at each timestep. To identify an ideal combination, we perform
a hyperparameter search over η, ηb ∈ {0.7, 0.8, 0.9, 1.0} for the task of deblurring with σy = 0.05
in 1000 ImageNet validation images, using the model trained in [13]. It is possible to also consider
different η values for si = 0 and σi < σy/si; we leave that as future work.

We report PSNR and KID results in Table 3. From the results, we observe that generally (i) as
ηb increases, PSNR increases while KID decreases, which is reasonable given that we wish to
leverage the information from y; (ii) as η increases, PSNR increases (except for η = 1.0) yet
KID also increases, which presents a trade-off in reconstruction error and image quality (known
as the perception-distortion trade-off [6]). Therefore, we choose ηb = 1 and η = 0.85 to balance
performance on PSNR and KID when we report results.

Timestep schedules. The timestep schedule has a direct impact on NFEs, as the wall-clock time is
roughly linear with respect to NFEs [45]. In Tables 5 and 6, we compare the PSNR, FID, and KID of
DDRM with 20 or 100 timesteps (with or without conditioning) and default η = 0.85 and ηb = 1. We
observe that DDRM with 20 or 100 timesteps have similar performance when other hyperparameters
are identical, with DDRM (20) having a slight edge in FID and KID.

F Experimental Setup of DGP, RED, and SNIPS

Recall that we evaluated DGP [38], RED [40], and SNIPS [25] on 256× 256 ImageNet 1K images,
for the problems of 4× super resolution and deblurring without any noise in the measurements. Below
we expand on the experimental setup of each one.

For DGP [38], we use the same hyperparameters introduced in the original paper for MSE-biased
super resolution. We note that the downscaling applied in DGP is different from the block averaging
filter that we used, and the numbers they reported are on the 128× 128 resolution. Nevertheless, in
our experiments, DGP achieved a PSNR of 23.06 on ImageNet 1K 256× 256 block averaging 4×
super resolution, which is similar to the 23.30 reported in the original work. When applied on the
deblurring problem, we retained the same DGP hyperparameters as well.

For RED [40], we apply the iterative algorithm only in the luminance channel of the image in the
YCbCr space, as done in the original paper for deblurring and super resolution. As for the denoising
engine enabling the algorithm, we use the same diffusion model used in DDRM to enable as fair a
comparison as possible. We use the last step of the diffusion model (equivalent to denoising with
σ = 0.005), as we found it to work best empirically. We also chose the steepest-descent version
(RED-SD), and λ = 500 for best PSNR performance given the denoiser we used. We also set
σ0 = 0.01 when the measurements are noiseless, because σ0 cannot be 0 as RED divides by it.

In super resolution, RED is initialized with the bicubic upsampled low-res image. In deblurring, it is
initialized with the blurry image. We then run RED on the ImageNet 1K for different numbers of
steps (see Table 4), and choose the best PSNR for each problem. Namely, we show in our paper RED
on super resolution with 100 steps, and on deblurring with 500 steps. Interestingly, RED achieves a
PSNR close to its best for super resolution in just 20 steps. However, DDRM (with 20 steps) still

20



Table 4: RED results on ImageNet 1K (256×256) for 4× super resolution and deblurring for different
numbers of steps.

SUPER-RES DEBLURRING

STEPS PSNR↑ KID↓ PSNR↑ KID↓

0 25.65 44.90 19.26 38.00
20 26.05 52.51 23.49 21.99
100 26.08 53.55 25.00 26.09
500 26.00 54.19 26.16 21.21

Table 5: ImageNet 50K validation set (256× 256) results on 4× super resolution with additive noise
of σy = 0.05.

METHOD PSNR↑ FID↓ KID↓ NFES↓

BICUBIC 22.65 64.24 50.56 0

DDRM 24.70 20.16 15.25 100
DDRM-CC 24.71 18.22 13.57 100
DDRM 24.29 17.88 13.18 20
DDRM-CC 24.30 15.92 11.47 20

outperforms RED in PSNR, with substantially better perceptual quality (see Table 1 in the main
paper).

Another interesting plug-and-play image restoration method is DPIR [57], which has recently achieved
impressive results. It does so by applying the well-known Half Quadratic Splitting (HQS) plug-
and-play algorithm using a newly proposed architecture. HQS requires an analytical solution of a
minimization problem which is infeasible in general, due to the high memory requirements. DPIR
provides efficient solutions for the specific degradation matrices H considered (circulant blurring,
bicubic downsampling), which are different from the ones we consider (zero-padded blurring, block
downsampling). In order to draw a fair comparison between the algorithms, one would have to use
the same denosier architecture in both (as we have done for RED and SNIPS), and use the same
degradation models. To apply DPIR on the same problems that we consider, we would need to
substantially modify it and introduce efficient solutions. Therefore, we instead compare to RED, an
alternative plug-and-play method.

SNIPS [25] did not originally work with ImageNet images. However, considering the method’s
similarity to DDRM (as both operate in the spectral space of H), a comparison is necessary. We apply
SNIPS with the same underlying diffusion model (with all 1000 timesteps) as DDRM for fairness.
SNIPS evaluates the diffusion model τ times for each timestep. We set τ = 1 so that SNIPS’ runtime
remains reasonable in comparison to the rest of the considered methods, and do not explore higher
values of τ . It is worth mentioning that in the original work, τ was set to 3 for an LSUN bedrooms
diffusion model with 1086 timesteps. We set c = 0.67 as it achieved the best PSNR performance.

The original work in SNIPS calculates the SVD of H directly, which hinders its ability to handle
256 × 256 images on typical hardware. In order to draw comparisons, we replaced the direct
calculation of the SVD with our efficient implementation detailed in Appendix D.

In Figure 4 and Table 2 in the main paper, we show that DGP, RED, and SNIPS all fail to produce
viable results when significant noise is added to the measurements. For these results, we use the
same hyperparameters used in the noiseless case for all algorithms (except σy where applicable).
While tuning the hyperparameters may boost performance, we do not explore that option as we are
only interested in algorithms where given H and σy, the restoration process is automatic. To further
demonstrate DDRM’s capabilities and speed, we evaluate it on the entire 50, 000-image ImageNet
validation set in Tables 5 and 6, reporting Fréchet Inception distance (FID) [18] as well as KID, as
enough samples are available.

21



Table 6: ImageNet 50K validation set (256 × 256) results on deblurring with additive noise of
σy = 0.05.

METHOD PSNR↑ FID↓ KID↓ NFES↓

BLURRY 18.05 93.36 74.13 0

DDRM 24.23 22.30 16.23 100
DDRM-CC 24.21 20.06 14.20 100
DDRM 24.60 21.60 15.65 20
DDRM-CC 24.61 19.66 13.94 20

G Runtime of Algorithms

In the main paper, we show the number of neural function evaluations (NFEs) as a proxy for the
runtime of algorithms. Here, we consider the case of noisy deblurring, and measure the runtime of
DDRM, RED, SNIPS, and DGP on an Nvidia RTX 3080 GPU. For each image, DDRM, RED, and
SNIPS all run at around 0.09 s/it (seconds per iteration), with negligible differences of < 0.01s/it. We
note that the denoiser model of DDRM, SNIPS, and RED is the same, so runtime is almost perfectly
linearly correlated with NFEs. As for DGP, it uses a different model (a GAN), and it is slightly slower
than our denoiser (0.11 s/it); this is partly because DGP requires additional gradient computations in
order to perform an update. All in all, we observe that the runtime is indeed linear with NFEs, and
since no algorithm has a significant runtime advantage over the rest, we prefer to use NFEs as a proxy
for runtime, as it is a hardware-independent measure.

In this paper, we used pretrained generative models for image restoration. Since we didn’t train any
models, a single Nvidia RTX 3080 GPU was sufficient to run all experiments that were shown in the
paper and the appendices.

H ILVR as a special case of DDRM

Given a generative diffusion model (e.g. DDPM [19]) that can predict x given xt+1 and t + 1 for
t ∈ [0, T − 1], and a noiseless measurement y = Hx, where H is a downscaling matrix, the
Iterative Latent Variable Refinement (ILVR) [9] algorithm can sample from the posterior distribution

p
(t)
θ (xt|xt+1,y) for t ∈ [0, T − 1].

We assume a variance exploding diffusion model, i.e. xt = x+σtϵt where ϵt ∼ N (0, I), without loss
of generality (because it is equivalent to the variance preserving scheme, as we show in Appendix B).
Under this setting, ILVR applies the following updates for t = T − 1, . . . , 0:

x′
t = xθ,t(xt+1, t+ 1) + σtϵt,

yt = H†y + σtϵ
′
t,

xt = x′
t −H†Hx′

t +H†Hyt,

where xθ,t(xt+1, t+ 1) is the prediction for x given by the diffusion model at timestep t + 1,

ϵt ∼ N (0, I), and ϵ′t ∼ N (0, I). Substituting x′
t, yt, and H = UΣV T , the last equation becomes

xt = x′
t −H†Hx′

t +H†Hyt

= xθ,t(xt+1, t+ 1) + σtϵt −H†H (xθ,t(xt+1, t+ 1) + σtϵt) +H†H
(

H†y + σtϵ
′
t

)

= xθ,t(xt+1, t+ 1) + σtϵt − V Σ†UTUΣV T (xθ,t(xt+1, t+ 1) + σtϵt) + V Σ†UTUΣV T
(

V Σ†UTy + σtϵ
′
t

)

= xθ,t(xt+1, t+ 1) + σtϵt − V Σ†ΣV T (xθ,t(xt+1, t+ 1) + σtϵt) + V Σ†ΣV T
(

V Σ†UTy + σtϵ
′
t

)

= xθ,t(xt+1, t+ 1) + σtϵt −Σ†ΣV V T (xθ,t(xt+1, t+ 1) + σtϵt) +Σ†ΣV V T
(

V Σ†UTy + σtϵ
′
t

)

= xθ,t(xt+1, t+ 1) + σtϵt −Σ†Σ (xθ,t(xt+1, t+ 1) + σtϵt) +Σ†Σ
(

V Σ†UTy + σtϵ
′
t

)

.

The second to last equality holds because Σ†Σ is a square diagonal matrix, and matrix multiplication
with a square diagonal matrix is commutative. Recall that x̄t = V Txt, ȳ = Σ†UTy, and x̄θ,t =

22



V Txθ,t(xt+1, t+ 1), thus

x̄t = V Txθ,t(xt+1, t+ 1) + σtV
T ϵt − V TΣ†Σ (xθ,t(xt+1, t+ 1) + σtϵt) + V TΣ†Σ

(

V Σ†UTy + σtϵ
′
t

)

= V Txθ,t(xt+1, t+ 1) + σtV
T ϵt −Σ†ΣV T (xθ,t(xt+1, t+ 1) + σtϵt) +Σ†ΣV T

(

V Σ†UTy + σtϵ
′
t

)

= V Txθ,t(xt+1, t+ 1) + σtV
T ϵt −Σ†ΣV Txθ,t(xt+1, t+ 1)− σtΣ

†ΣV T ϵt +Σ†ΣV TV Σ†UTy + σtΣ
†ΣV T ϵ′t

= x̄θ,t + σtV
T ϵt −Σ†Σx̄θ,t − σtΣ

†ΣV T ϵt +Σ†ΣΣ†UTy + σtΣ
†ΣV T ϵ′t

=
(

I −Σ†Σ
)

x̄θ,t +
(

I −Σ†Σ
)

σtV
T ϵt +Σ†UTy +Σ†ΣσtV

T ϵ′t

=
(

I −Σ†Σ
)

x̄θ,t +
(

I −Σ†Σ
)

σtV
T ϵt + ȳ +Σ†ΣσtV

T ϵ′t.

The matrix Σ†Σ is a square diagonal matrix with zeroes in its entries where the singular value is zero,
and ones otherwise. In addition, Σ† has a row of zeroes when the singular value is zero. Therefore, it
holds that

x̄
(i)
t =

{

x̄
(i)
θ,t +

(

σtV
T ϵt
)(i)

if si = 0

ȳ(i) +
(

σtV
T ϵ′t
)(i)

if si ̸= 0
, (28)

which in turn implies

p
(t)
θ (x̄

(i)
t |xt+1, y) =

{

N
(

x̄
(i)
θ,t, σ

2
t I
)

if si = 0

N
(

ȳ(i), σ2
t I
)

if si ̸= 0
. (29)

This distribution is exactly the same as Equation 8 in the main paper when η = ηb = 1 and σy = 0.

As for xT , ILVR initializes it by sampling from N
(

0, σ2
T I
)

(or N (0, I) in the variance preserving
case) while DDRM samples according to Equation 7 in the main paper. The two initializations have
the same variance but differ in the mean. This difference has a negligible effect on the end result
since the variance is much larger than the difference in the means. Therefore, the above form of ILVR
is a specific form of a DDRM (with η = ηb = 1), posed as a solution for linear inverse problems
without noise in the measurements.

In their experiments, ILVR only tested H which is the bicubic downscaling matrix with varying scale
factors. In theory, ILVR can also work for any linear degradation H , as long as y does not contain
noise.

I Additional Results

We provide additional figures below showing DDRM’s versatility across different datasets, inverse
problems, and noise levels (Figures 7, 8, 10, 11, and 12). We also showcase the sample diversity
provided by DDRM in Figure 9; we present more uncurated samples from the ImageNet experiments
in Figures 13 and 14. Moreover, we further illustrate DDRM’s advantage over previous unsupervised
methods by evaluating on two additional inverse problems: (i) 4× super-resolution with the popular
bicubic downsampling kernel; and (ii) deblurring with an anisotropic Gaussian blur kernel (with
σ = 20 horizontally and σ = 1 vertically), mimicing motion blur. We show both noiseless and noisy
versions in Tables 7 and 8, respectively. To maintain the unsupervised nature of the tested methods,
we use the same hyperparameters as in block-averaging super-resolution and uniform deblurring.

23



Table 7: Noiseless 4× super-resolution (using a bicubic kernel) and anisotropic Gaussian deblurring
results on ImageNet 1K (256× 256).

Method
4× super-resolution (Bicubic) Deblurring (Anisotropic)

PSNR↑ SSIM↑ KID↓ NFEs↓ PSNR↑ SSIM↑ KID↓ NFEs↓
Baseline 26.06 0.73 72.41 0 19.96 0.58 25.23 0
DGP 20.82 0.50 29.62 1500 23.35 0.59 20.10 1500
RED 26.14 0.73 47.61 100 29.39 0.86 10.49 500
SNIPS 17.65 0.23 30.30 1000 33.34 0.86 0.58 1000

DDRM 27.09 0.76 12.78 20 36.02 0.93 0.41 20

Table 8: Noisy (σy = 0.05) 4× super-resolution (using a bicubic kernel) and anisotropic Gaussian
deblurring results on ImageNet 1K (256× 256).

Method
4× super-resolution (Bicubic) Deblurring (Anisotropic)

PSNR↑ SSIM↑ KID↓ NFEs↓ PSNR↑ SSIM↑ KID↓ NFEs↓
Baseline 21.68 0.40 73.87 0 19.96 0.27 55.00 0
DGP 19.68 0.40 44.07 1500 22.64 0.53 25.38 1500
RED 22.65 0.46 54.90 100 11.97 0.10 130.30 500
SNIPS 16.16 0.14 69.69 1000 17.49 0.20 48.37 1000

DDRM 25.53 0.68 14.57 20 26.95 0.73 10.34 20

24



O
ri

g
in

al
4×

n
o

is
el

es
s

4×
n

o
is

y
8×

n
o

is
el

es
s

8×
n

o
is

y
16
×

n
o

is
el

es
s

16
×

n
o

is
y

Figure 7: Pairs of low-res and recovered 256× 256 face images with a 20-step DDRM. Noisy low-res
images contain noise with a standard deviation of σy = 0.1.

25



Original Inpainting Deblurring

Figure 8: Pairs of degraded and recovered 256× 256 face images with a 20-step DDRM. Degraded
images contain noise with a standard deviation of σy = 0.1.

26



4
×

su
p

er
-r

es
8
×

su
p

er
-r

es
16
×

su
p

er
-r

es
In

p
ai

n
ti

n
g

D
eb

lu
rr

in
g

Original Degraded Samples from a 20-step DDRM Mean std

Figure 9: Original, degraded, and 6 recovered 256×256 face images with a 20-step DDRM. Degraded
images contain noise with a standard deviation of σy = 0.1. The mean and standard deviation (scaled
by 4) of the sampled solution is shown.

27



O
ri

g
in

al
In

p
ai

n
ti

n
g

C
o

lo
ri

za
ti

o
n

D
eb

lu
rr

in
g

4×
su

p
er

-r
es

Figure 10: Pairs of degraded and recovered 256 × 256 bedroom images with a 20-step DDRM.
Degraded images contain noise with a standard deviation of σy = 0.05.

28



O
ri

g
in

al
In

p
ai

n
ti

n
g

C
o

lo
ri

za
ti

o
n

D
eb

lu
rr

in
g

4×
su

p
er

-r
es

Figure 11: Pairs of degraded and recovered 256× 256 cat images with a 20-step DDRM. Degraded
images contain noise with a standard deviation of σy = 0.05.

29



O
ri

g
in

al
In

p
ai

n
ti

n
g

D
eb

lu
rr

in
g

4×
su

p
er

-r
es

Figure 12: Pairs of degraded and recovered 256 × 256 USC-SIPI images with a 20-step DDRM
using an ImageNet diffusion model. Degraded images contain noise with a standard deviation of
σy = 0.05.

30



Figure 13: Uncurated samples from the noisy 4× super resolution (σy = 0.05) task on 256× 256
ImageNet 1K. Each triplet contains (from left to right): the original image, the low-res image, and
the restored image with DDRM-20.

31



Figure 14: Uncurated samples from the noisy deblurring (σy = 0.05) task on 256× 256 ImageNet
1K. Each triplet contains (from left to right): the original image, the blurry image, and the restored
image with DDRM-20.

32



Original Noisy DDRM (20) Denoised

Figure 15: Denoising (σy = 0.75) face images. DDRM restores more fine details (e.g. hair) than
an MMSE denoiser. The denoiser used here is the denoising diffusion function fθ(xt, t) used by
DDRM, where t minimizes |σt − σy|.

33


	Details of the DDRM ELBO objective
	Equivalence between ``Variance Preserving'' and ``Variance Exploding'' Diffusion Models
	Proofs
	Memory Efficient SVD
	Denoising
	Inpainting
	Super Resolution
	Colorization
	Deblurring

	Ablation Studies on Hyperparameters
	Experimental Setup of DGP, RED, and SNIPS
	Runtime of Algorithms
	ILVR as a special case of DDRM
	Additional Results

