A Implementation Details

Implementation details for TDM. As discussed in Section 3 and the illustrative Figure 2, TDM
is modeled as a physics-informed reconstruction model with embedded ODE latent dynamics and
T-symmetry preserving design.To ensure optimal training performance of TDM, we have included
some additional implementation details below. More hyperparameters details of TDM are discussed
in the next section.

¢ Network structure: In all our D4RL experiments, we implement the encoder, decoders, latent
forward and reverse dynamics as 4-layer feed-forward neural networks with ReLU activation, and
optimized using Adam optimizer. For the state decoder (-, d5), we concatenate an extra indicator
ds in the input to help the state decoder to decide the target output. More specifically, to decode
zs— S, we concatenate 05 = 0 with z as input; and for 2, — $, we concatenate §; = 1 with Z;.

* Computing second derivative of ¢(-): As TDM involves a pair of latent ODE forward and

reverse dynamics models, whose training losses Eq. (4) and (6) involve regressing on Wé and

%;,’a)(—é) as target values. This results in a gradient through a gradient of ¢(+). Computationally,

we calculate the Jacobian matrix %1’“) using the vmap () function in Functorch' to ensure the
second derivative of ¢(-) can be correctly backpropagated during stochastic gradient descent.
Similar a treatment can also be implemented with other auto-differentiation frameworks like Jax*
that support computing higher-order derivatives.

* Pre-training the encoder and decoders: As the final learning objective of TDM Eq. (8) involves
several loss terms, we observe that in small datasets, loss terms such as the reconstruction loss (Eq.
(3)) for the encoder and decoders converges much slower than other loss terms. When updating all
the loss terms with the same number of training steps, some losses suffer from over-fitting while
others are still not fully converged. For these cases, we pre-train the encoder and decoders with
the reconstruction loss for a given number of training steps, and then use the complete learning
objective of TDM (Eq. (4)) for the rest of the training. The numbers of pre-training/training epochs
for the experiments in this paper are reported in Table 2.

As reported in Table 2, we find that the number of pre-training epochs required for TDM to reach
the best learning performance is associated with the specific task and the size of training data. For
small datasets, TDM generally needs more training and pre-training epochs to avoid overfitting the
latent dynamics and T-symmetry losses. For MuJoCo locomotion tasks, we recommend pre-training
the encoder and decoders for 10% of the total training epoch. For the more complex adroit tasks,
TDM requires more epochs to extract the ODE dynamics and T-symmetry property of the system
dynamics. In this case, there is no pre-training necessary for the encoder and decoders.

Table 2: Training epochs of TDM for D4RL tasks with different dataset scales

Locomotion Tasks Adroit Tasks
5k&10k 50k & 100k Full dataset 5k&10k Full dataset
Training epoch 2000 1000 200 2000 200
Pre-train epoch 200 100 20 0 0

¢ Enhancement on the T-symmetry regularization: We observe that in some small datasets (mainly
in the Halfcheetah environment), the training of the latent reverse dynamics model g might suffer
from a certain level of degeneration. This is reflected as the g(zs + f(2s, 2a), Zo) produces similar
values as — f(zs, 24), resulting in small T-symmetry consistency loss values (Eq. (7)), however,
the discrepancy between g(zy, z,) and — f(zs, z,) remains large. To solve this issue and further
enforce the T-symmetry, we apply the following enhanced T-symmetry regularization when such a
phenomenon is observed:

CBnhanced-T-sym (Zss 2a) = || [(2sy 2a) + (25 + (25, 2a)s 2a) |3 + | (255 2a) + g(2sr, za)|5 (12)

We find that applying the above enhanced T-symmetry loss can successfully resolve the degeneration
issue of the latent reverse dynamics model and achieve good performance in the downstream offline

Thttps://pytorch.org/functorch/stable/functorch.html
*https://github.com/google/jax

15

RL tasks. However, we find in most small datasets, the original T-symmetry consistency loss
is sufficient. We advise only to use the above enhanced T-symmetry consistency loss when
large discrepancies between || f(zs, za) + g(zs + f(zs,za),za)Hg and || f(zs, 2za) + 9(2s, za)||§
are observed.

Hyperparameter details for TDM and TSRL. The architectural parameters of TDM and TSRL,
as well as the TSRL hyperparameters are summarized in Table 3. Based on the different scales of the
datasets, we basically only use two sets of hyperparameters for all D4RL-MuJoCo locomotion tasks
and only one set of hyperparameters for all D4RL-Adroit tasks. Because of the extremely narrow
distribution of the reduced-size expert dataset, we apply Dropout [56] with dropout rate of 0.1 to
regularize the policy network in all tasks with 10k expert data.

Table 3: Hyperparameter details for TDM and TSRL

Hyperparameters Value
Optimizer type Adam
Weight of {7 _ sym and £gs and £rec 1
TDM Weight of {5 and £fya 0.1

Architecture Learning rate 3x107*
State normalization True
Hidden units of forward and reverse model 512
Hidden units of encoder 512 x 256 x 128
Critic neural network layer width 512
Actor neural network layer width 512
State normalization True
Actor learning rate 3x 1074
Critic learning rate 3x 1071

TSRL Policy noise 0.2

Architecture Policy noise clipping 0.5
Policy update frequency 2
Discount factor ~y 0.99
Number of iterations 108
Target update rate 0.005
A L1 le-5
«a 2.5

50% for Walker2d and Adroit tasks,

TSRL T 70% for HalfCheetah and Hopper2d
Hyperparameters A MulJoCo: 5 or 10 for full dataset, 100 or 200 for 10k dataset
! Adroit: 10,000 for both full and reduced datasets
As 1 for MuJoCo full & Adroit datasets

100 for MuJoCo 10k dataset

B Detailed Experiment Setups

Reduced-size dataset generation. To create reasonable reduced-size D4RL datasets for a fair
comparison, we sub-sample the trajectories in the datasets rather than directly sampling the (s, a, s’, 1)
transitions. For example, there are 2M (s, a, s’, r) transitions in the "halfcheetah-medium-expert"
dataset, we first split these records into 2,000 trajectories based on the done condition, then randomly
draw 10 trajectories (10k transition points) to serve as the reduced-size datasets for model training.

Experiment setups for representation learning evaluation. To evaluate the representation quality
and the impact of each design choice of TDM, we compare TDM representation with several baselines
on the small dataset settings. We provide the detailed description of the representation learning
baselines as follows:

16

* “AE-rep” model: We construct a vanilla auto-encoder without any further constraints during the
learning process, which was trained by the reconstruction loss only. The network sizes of the
encoder and decoders are the same as the ones used in TDM.

* “AE-fwd-rep” model: Similar to the “AE-rep” model but with a latent forward dynamics prediction
model f, which is implemented as a 4-layer feed-forward neural network with ReLU activation, and
optimized using Adam optimizer (same as TDM). The forward model was trained by minimizing
the loss term ||Z5 — f(4(s, a))||3, where we directly regress f(¢(s, a)) with the z4 derived from
the latent states obtained from the encoder as 2, = z5» — z,. Note that in this baseline, no ODE
property nor T-symmetry regularization is included. Again we use the decoder to decode z; — §
as in TDM for the next state prediction.

* “TDM-no-ODE” model: Holds the same structure with TDM but trained with no ODE property.
More specifically, similar with “AE-fwd-rep”, the latent forward and reverse dynamics model was
trained by || 25 — f(é(s,a))||3 and ||(—2s) — g(¢(s’,a))||3, where —Z; is directly calculated from
the encoded latent states, i.e., 2; = 2y — 25. Note that in this baseline, the T-symmetry is also
implicitly captured, since both the latent forward and reverse dynamics models are regressing the
same %, and its opposite value.

* “SimSiam” model: For the self-supervised representation learning baseline, we implement an
auto-encoder structure with the optimization objective proposed in the SimSiam paper [44]. For
detailed model description and hyperparameters setting, please refer to Chen et al. [44].

Experiment setups for evaluating generalization performance. To evaluate TSRL’s generaliza-
tion capability beyond the offline datasets, we construct two low-speed datasets based on the original
D4RL Walker2d medium and medium-expert datasets. In accordance with the Gym documentation,
we selected the “x-coordinate velocity of the top” (8th dimension of the states) in the walker envi-
ronment to perform data filtering. We remove all samples with the x-coordinate velocity of the top
greater than (.2 x max-x-velocity recorded in the data. This results in two smaller low-speed datasets
(about 200k for the medium dataset and 250k for the medium-expert dataset). We train TDM and
TSRL on these low-speed datasets and the results are reported in Figure 7 (main paper).

C Additional Results

Complete results on D4RL Adroit tasks. The complete results of TSRL in Adroit human and
cloned tasks with different dataset scales are presented in Table 4. As shown in the results, TSRL
achieves much better performance in the pen tasks, both the full datasets and the reduced-size datasets.

Table 4: Complete results on D4RL Adroit tasks

Task Ratio Size BC TD3+BC MOPO CQL IQL DOGE TSRL
Pen-human 1 5k 34.4 8.4 9.7 37.5 71.5 426+ 163 80.14+18.1
Hammer-human 1 5k 1.5 2.0 0.2 4.4 1.4 -1.2+0.2 0.2+0.3
door-human 1 S5k 0.5 0.5 -0.2 9.9 4.3 -1.1+£0.2 0.5+ 0.3
Relocate-human 1 5k 0.0 -0.3 -0.2 0.2 0.1 -034+0.5 0.1 +0.1

Pen-cloned 1 500k 56.9 41.5 0.1 39.2 37.3 569+ 152 64.9 4+ 20.1

en-clone 1/50 10k 3744376 01+69 -01+01 15+48 3564305 3014197 d41.64+27.5
Hammer-cloned 1 500k 0.8 0.8 0.2 2.1 2.1 02403 17419
1/50 10k 03+04 02401 01401 02401 04402 03401 0.6+ 0.3

Door-cloned 1 500k 0.1 0.4 0.1 0.4 1.6 01401 -01+06
oor-cione 1/50 10k -014+0.1 03401 02401 -03+01 154+08 -05+05 -0.14+03
Relocatecloned 1 500k 0.1 03 03 0.1 02 02401 -024+0.1
clocate-cloned 150 10k -024+01 -034+01 -034+01 -03+01 -014+05 -024+01 -02-+0.1

Additional results on Antmaze-umaze tasks. We also conduct experiments on the D4RL. Antmaze-
umaze tasks with full and reduced-size 10k datasets. The results are presented in Table 5. We use the

17

Table 5: Results on D4RL Antmaze-umaze tasks with full and reduced-size datasets

Task Ratio Size BC TD3+BC CQL IQL DOGE TSRL(ours)
Antmaze. M 54.6 78.6 84.8 85.5 97.0 £ 1.8 8144192
azeu 100 10k 4474421 07412 01400 651+194 563+244 76.1+15.6
P 1 M 45.6 71.4 43.4 66.7 63.5+93 765 +29.7
7eWC 1100 10k 2414222 16274+ 164 05401 346+185 4174189 522 +22.1

Table 6: Performance of data augmentation methods with 10k reduced-size DARL datasets.
Task CABI S4RL-N S4RL-U TSRL

Hopper-m 483+39 283 4+6.2 23.6 4.7 62.0 + 3.7
Hopper-mr 19.8+39 166+£129 125+122 21.8 £8.2
Hopper-me 383+53 125+ 3.8 13.1 +4.7 50.9 + 8.6
Hopper-e 346+244 1414+129 122+11.6 82.7+219
Halfcheetah-m 34.8 +1.9 25.1 £6.8 232471 38.4 + 3.1
Halfcheetah-mr 23.5 £ 3.4 15.1+93 148 +9.5 28.1 + 3.5
Halfcheetah-me 29.9 4+ 1.7 271 +£7.1 234 +£82 39.9 +21.1
Halfcheetah-e 42+41 24+39 1.8 +£3.1 40.6 + 24.4
Walker2d-m 424 +£233 245443 2194+48 49.7 £10.6
Walker2d-mr 11.7+7.6 1.5+21 14+23 26.0 +11.3
Walker2d-me 174+92 219+164 160+132 46.7+t174
Walker2d-e 202+34 565+267 51.1+£29.7 102.2+11.3

same hyperparameters as in the DARL MuJoCo tasks. Again, we find that TSRL achieves comparable
performance as other baselines on the full datasets, but is substantially better under small datasets.

Additional comparative results on data augmentation. We conduct additional experiments
on the reduced-size 10k MuJoCo datasets to compare TSRL and other offline RL methods using
data augmentation. In particular, we compared with model-free method S4RL [42] with Gaussian
(S4RL-N) and uniform (S4RL-U) noises, as well as a recent model-based data augmentation method
CABI [43]. CABI employs a pair of predictive dynamics models to assess the reliability of the
augmented data. The results are presented in Table 6.

The results clearly show that TSRL outperforms all offline RL baselines with data augmentation under
small datasets. It is also observed that model-based methods TSRL and CABI generally perform
better than model-free data augmentation method S4RL in this setting, due to access to additional
dynamics information. Moreover, as CABI does not learn a strongly regularized dynamics model
with T-symmetry consistency as in our proposed TDM, it still has a noticeable performance gap as
compared to our method.

Ablation on the level of ODE and T-symmetry regularization in TDM. As discussed in the
conclusion section of the main paper, TDM adds extra ODE dynamics and symmetry regularizations,
which are beneficial to improve model generalization, but will lose some model expressiveness if
the regularization is too strong. In this section, we conduct an ablation study on the impact of the
regularization strength of the ODE property and the satisfaction with the T-symmetry. Specifically,
we vary the loss weights of {4, {rvs and £7_ sy, in the TDM learning objective (Eq. (8)), and
train a loosely regularized and a strongly regularized TDM model on the 10k datasets (see Table 7).
The loosely regularized model has the maximum reconstruction expressivity but may not produce
a well-behaved representation due to weak regularization. Whereas the strongly regularized model
sacrifices the expressivity for regularized behaviors. We further evaluate their performance with
TSRL, with the results reported in Table 8. The experiment results demonstrated that an overly
expressive model could not help the RL algorithm to derive a well-behaved policy with limited data

18

Table 7: TDM with different regularization strengths

Different versions of TDM lrec las Lrwd Llrvs Lr—sym AL1

Loosely regularized 1 1 0.01 001 0.01 le-5
Paper 1 1 0.1 0.1 0.1 le-5
Strongly regularized 1 1 1 1 1 le-5

Table 8: Performance of TSRL with different TDM models on 10k datasets

Task TDM (loosely regularized) TDM (paper) TDM (strongly regularized)
Hopper-m 50.7£13.6 62.0+£3.7 43.6£14.3
Hopper-m-r 15.4+9.7 21.8£8.2 15.6+£9.8
Hopper-m-e 49.7£17.1 50.9£8.6 30.94+20.5
Halfcheetah-m 39.1+£3.6 38.4+3.1 36.6+30.0
Halfcheetah-m-r 28.3+6.9 28.1£3.5 229484
Halfcheetah-m-e 36.2+5.4 39.9+£21.1 31.0 £ 34
Walker2d-m 43.2427.3 49.7£10.6 35.6+26.2
Walker2d-m-r 20.2+18.1 26.0£11.3 21.7+6.1
Walker2d-m-e 25.9420.7 46.4+174 29.4+24.7

due to potential overfitting and inconsistency with the T-symmetry property. On the other hand, an
overly regularized model may also hurt performance. This is consistent with our previous insight
that a trade-off exists between model expressiveness and T-symmetry agreement. A proper balance
between these two behaviors can be necessary for small-sample learning.

Learning curves for TSRL on D4RL locomotion tasks. The learning curves for reduced-size

D4RL MuJoCo datasets with 10k samples are showed in Figure 8. For each evaluation step, the
policies are evaluated with 5 episodes over 3 random seeds.

19

Halfcheetah-expert-v2 Halfcheetah-medium-expert-v2 Halfcheetah-medium-replay-v2

80
g € £
2 60 e 5
& 5o & &
; 7° 77 [V A
a0 & S
30 T 20 T 20
E 20 g g
o o 10 O 10
210 = =
800 025 0.50 075 1.00 800 025 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00
Training Steps (x10°) Training Steps (x10°) Training Steps (x10°)
Halfcheetah-medium-v2 Hopper-expert-v2 Hopper-medium-expert-v2
120 60
c 110 £
540 £ 100 S50
2 2790 @
Q
< 3 o 80 < 40
8 © 70 B
N N 60 N30
® 20 T 50 s
e g 40 €20
S 10 5 3 S
2 =2 20 =210
10
800 025 0.50 0.75 1.00 800 0.25 0.50 075 1.00 0.00 0.25 050 0.75 1.00
Training Steps (x10°) Training Steps (x10°) Training Steps (x10°)
10_Hopper-medium-replay-v2 % Hopper-medium-v2 Walker2d-expert-v2
80 110
= IS £ 100
230 27 ER
& & oo 9 80
el o 50 b
@ 20 @ 9 60
N Nao N s0
©] =
30 40
€1 3 o E 3
2 S 2 2
10 o
800 025 0.50 075 1.00 800 025 0.50 0.75 1.00 0.00 025 050 075 1.00
Training Steps (x10°) Training Steps (x10°) Training Steps (x10°)
Walker2d-medium-expert-v2 Walker2d-medium-replay-v2 Walker2d-medium-v2
80 80
€70 g% €70
3 3 3
T 60 @ 30 Q60
-4 o o
< 50 = - 50
S0 820 S0
© 30 © ® 30
£ £ £
520 5 10 520
Z10 = Z10
800 025 0.50 075 1.00 800 0.25 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00
Training Steps (x10°) Training Steps (x10°) Training Steps (x10°)

Figure 8: Learning curves for reduced-size D4ARL MuJoCo datasets. Error bars indicate min and max values
over 3 random seeds.

20

