
V. SUPPLEMENT

A. Additional Details on Optimal Transport
An important generalization of Wasserstein geodesics is the

Wasserstein barycenter. For absolutely continuous probability
measures with finite second moment ⌫1, . . . , ⌫m and coeffi-
cients {�i}mi=1 ⇢ R�0 with
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Wasserstein barycenter is
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where the minimization is taken over all absolutely contin-
uous measures and the Wasserstein-2 distance between two
measures is

W2(⌫, ⌫i) = min
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sZ

RD

kT (x)� xk2d⌫(x).

The special case m = 2 coincides with the Wasserstein
geodesic. While this paper focuses on modeling transitions via
the m = 2 case, it is of interest in future work to consider the
m > 2 case as a richer way of modeling transitions between
metastable states.

B. Optimal Transport Between Laplace Distributions
Recall that a 1-dimensional Laplace distribution with pa-

rameters µ 2 R (mean) and � 2 (0,1) (standard deviation),
denoted Lap(µ,�), has density function
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The following results verify our approach to computing
barycenters between two Laplace distributions.

Proposition 1. Let ⌫0 ⇠ Lap(µ0,�0) and ⌫1 ⇠ Lap(µ1,�1).
Then the optimal transport map between ⌫0 and ⌫1 is given
by T⌫0!⌫1(x) =

�1
�0
(x� µ0) + µ1.

Proof. We first show that (T⌫0!⌫1)#⌫0 = ⌫1. Recall that this
requires showing for all Borel sets A ⇢ R that
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where fi is the density of ⌫i. Making the change of variables
y = T⌫0!⌫1(x) or equivalently x = T�1

⌫0!⌫1
(y) yields that this

is equivalent to
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It is therefore enough to show that the densities f0, f1 satisfy
the condition
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Noting that
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we indeed have
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We now observe that T⌫0!⌫1(x) is the gradient of the convex
function �(x) = �1

2�0
(x�µ0)2+µ1x. It is therefore the unique

optimal transport map by Brenier’s Theorem [42], [43].

With the optimal transport map between two Laplace dis-
tributions known, any barycenter between them has a simple
closed form.

Proposition 2. Let ⌫0 ⇠ Lap(µ0,�0) and ⌫1 ⇠ Lap(µ1,�1).
Then for any t 2 [0, 1], the Wasserstein barycenter between ⌫0
and ⌫1 with weights (1� t, t) is the Laplace distribution with
parameters µt = (1� t)µ0 + tµ1 and �t = (1� t)�0 + t�1.

Proof. We note that the barycenter between ⌫0 and ⌫1 with
weights (1�t, t) coincides with the constant-speed Wasserstein
geodesic [20] between ⌫0 and ⌫1 at time t 2 [0, 1], namely
⌫t = (tT⌫0!⌫1 + (1 � t) Id)#⌫0. We compute the density ft
of ⌫t as follows. Let
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We now compute:
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as desired.

We remark that in general, Wasserstein geodesics and
barycenters preserve shape properties of the distributions being
interpolated, unlike linear mixtures; see Figure 5.
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Fig. 5. Interpolation between two Laplace distributions via linear (left) and
W2 (right) geodesics. Time runs from 0 (blue) to 1 (yellow).

C. Additional Data Set Details

1) Synthetic Toy Models: The performance of BarT was
compared to that of SIMPLE over a wide set of tuning pa-
rameters. In addition, the performance of BarT was evaluated
on a batch of trajectories with varied transition lengths and
variances. For each transition length, this length was applied
to all the transition segments within a trajectory, with the rest
of the trajectory consisting of 5000 points distributed among
20 segments, alternating between the two major states (µ = 100
and µ = 200). The metastable segment lengths were randomly
generated, under the constraint that no metastable segment was
allowed to be shorter than 100 points. This randomization
was done using the randfixedsum program, which relies on
the decomposition of the (n – 1)-dimensional solution space
into a number of different types of simplexes, which are
selected with probabilities proportional to their volumes, and
within which vectors are distributed uniformly, to generate an
arbitrary number of n-dimensional length vectors [44]. In other
words, no rejection sampling is performed, and lengths are
randomly generated in a way that ensures every solution fits
the imposed constraint. All of the trajectories generated in this
way are available at [22]. A comparison of BarT, SIMPLE, and
PELT on different tuning parameter values and two different
noise levels is shown in Figure 7. An illustrative example
showing the robustness of BarT to transition length is provided
in Figure 6.

Fig. 6. A synthetic, 1-D, two-state trajectory with � = 5 and transition
length = 20. BarT reproduces the ground truth change point placements near-
perfectly, with SIMPLE performing almost as well, only slightly underesti-
mating the transition lengths. PELT results in correct labeling of all but four
segments. Segments labeled as metastable are shown in red, and segments
labeled as transitions are shown in blue.

2) Langevin Dynamics Trajectory: The two-well potential
landscape is shown in Figure 8 below. In addition, the perfor-
mance of BarT in a high-sensitivity regime is demonstrated in
Figure 9. It can be seen that under this tuning setting, both
local fluctuations and transitions between the major states are
identified as changes. Unlike SIMPLE, BarT and PELT are
able to identify gradual transitions throughout the dataset.

3) Alanine Dipeptide MD: In a nutshell, an all-atom molec-
ular dynamics simulation consists of repeatedly solving the



Fig. 7. Comparative performance of BarT, SIMPLE, and PELT on (A) a
low-noise (� = 5) and (B) a high-noise (� = 20) synthetic trajectory, with
two different tuning parameter values for SIMPLE and BarT (PELT is tuned
to the ground-truth number of changes). Note that SIMPLE both under- and
over-segments depending on tuning, whereas BarT remains robust.

Newtonian equations of motions for all atoms in a system
of interest. Based on sets of parameters, commonly referred
to as force fields, which describe the energetics of particle
interaction, one may compute the forces acting on each atom
in the system. Based on these forces, one may calculate the
overall resulting force on each atom, which may be used
to find its acceleration. As an iterative process taking place
over very small discrete time steps, in each iteration, the
forces, accelerations, velocities, and ultimately positions, are
updated, causing the system to move and explore different

Fig. 8. The double-well potential used in the single-particle Langevin
dynamics simulation. Note that adjusting the barrier height and well separation
may allow the user to alter the transition frequency and speed.

Fig. 9. The performance comparison of BarT, SIMPLE, and PELT on the
Langevin dynamics data set in a high-sensitivity (� = 80 for SIMPLE and
BarT, 500 changes for PELT) regime. Change points are marked with vertical
lines; segments labeled metastable are shown in red, and those labeled as
transitions are shown in blue.
conformations. To minimize numerical errors, the positions
and velocities are typically updated at staggered time intervals,
and for this reason the “standard” MD integrator is also
referred to as the leapfrog integrator. Additional algorithms
may be used to constrain chemical bonds (i.e., distances
between atoms forming such bonds) to their known lengths, or
stabilize the simulation by maintaining a constant temperature
or pressure. An illustration of the MD simulation process is
shown in Figure 10.

In this work, we apply the MD approach to a commonly-
used model system, alanine dipeptide (Figure 11). Alanine
dipeptide consists of a single amino acid, alanine, character-
ized by a single methyl-group side chain, connected by amide
(CONH) bonds on the N- and C-terminal sides to an acetyl
cap, and an N-methyl cap, respectively. The two rotatable
bonds on the alanine backbone describe the conformational
transitions of this system, taking what is fundamentally at least
a 30-dimensional data set (3 Cartesian coordinates for each of



Fig. 10. An illustration of an MD simulation of alanine dipeptide. The
geometry of the system evolves over time, and different conformations are
sampled. The raw simulation trajectory consists of positions of all atoms in
3-D space (shown as spheres in the ball-and-stick model), which can be used
to compute lower-dimension internal coordinates (angles � and  shown as
blue arrows).

the ten heavy atoms) prone to numerical errors (since a rotation
+ translation transformation would have to be carried out on
each frame to align it to a reference before similarity between
frames could be evaluated) to a 2-dimensional data set based
on internal coordinates, which do not need to account for the
system’s translation around the solvent box.

That backbone torsion angles are the fundamental descriptor
of this system’s motions is particularly convenient, as we
can readily visualize the conformations sampled during the
simulations on a Ramachandran plot. Strictly speaking, a
Ramachandran plot is a plot representing the free energy of
all backbone conformations of an amino acid residue in (�,
 ) space [45]. Conformations with a lower free energy are
more thermodynamically stable, and, in the context of an MD
simulation, more frequently sampled. For natural, L-chirality
amino acids, such as the ones that exist in the human body,
the canonical regions are taken to be ones corresponding
to common secondary structure motifs in proteins: right-
handed ↵ helix (lower light blue area in the leftmost panel
of 4A), � sheet (upper light blue area in the same figure),
polyproline II (red area), and left-handed ↵ helix (central blue
area in the � > 0 region). The remaining regions which are
energetically allowed lie between these canonical areas, and
we proposed that they may be categorized as transitions, rather
than metastable states in their own right.

Fig. 11. (A) The chemical formula of capped alanine dipeptide. Note that
each node represents a carbon atom with enough hydrogen atoms bound
to it to make a total of four chemical bonds. The dihedral torsion angles
corresponding to the main conformational transitions, � and  , are indicated
by curved arrows around the torsion bond. (B) A ball-and-stick model of the
alanine dipeptide molecule. Nitrogen atoms are shown in dark blue, oxygen
atoms are shown in red, carbon atoms are shown in cyan, and hydrogen atoms
are shown in white.

The dihedral angle � is characterized by fast local fluctua-
tions, which make this time series particularly challenging to

perform change detection on; in the end, very few trajectory
segments are actually marked as transitions. This time series,
along with BarT change assignments for � = 10, is shown in
Figure 12.

Fig. 12. The time series corresponding to the values of the dihedral angle �
over the course of the 200 ns MD simulation. Points marked as belonging to
metastable states are shown in red; points marked as belonging to transitions
are shown in blue.

D. Algorithm Details

In order to optimize (1), we use the following methods.

1) Initial Placement: Analogously to the approach of [17]
we use the approach of [35] to perform a pruned dynamic
programming computation to compute the set of change
points which maximizes the penalized log-likelihood func-
tion (1). This procedure recursively calculates the penal-
ized log-likelihood for all times t as F (t) = maxsF (s) +
l̂(Ys+1, ..., Yt) � �ps, where Y is the univariate time series,
p is the penalty function, and � is a tuning parameter, with
the maximum taken over all times s < t not prohibited by the
pruning scheme from being the last change point before time
t. For more details on the pruning scheme, see [35].

2) Optimization: Following the initial change point place-
ment, once the univariate change point placements are sta-
bilized, we perform a shift-and-merge iterative sequence to
avoid being “stuck” in a local minimum of the objective
likelihood function. In each iteration of this sequence, change
points are taken individually, in chronological order, and the
log-likelihood of the dataset being described by an updated
change point set, with the individual change point deleted or
moved anywhere between its neighboring change points, is
recalculated. The log-likelihood is calculated for both models
(Laplace distribution or barycenter) for each segment, and the
maximum of the two log-likelihoods is taken as a segment’s
log-likelihood contribution. The process continues until the
change point placement is fully converged or a set number
of iterations has been reached. Throughout the optimization
process, the penalty function is also updated to account for the
number of change points and, if ↵ is set to a value other than 1,
concurrent change points in multiple variables. Note, however,
that while other variables are considered for the simultaneity-
based penalty modification calculation, only one change point
in one variable is moved in each step of the shift-and-merge
process. This approach is thus able to capture both one- and
multidimensional changes, which makes it readily applicable
to diverse types of free energy landscapes.



3) Labeling: Once the change point placements are final-
ized, the log-likelihood of each trajectory segment correspond-
ing to either a Laplace distribution or a weighted barycentric
interpolation between Laplace distributions corresponding to
its neighboring segments is calculated, and the greater of the
two is taken as the segment “label”. This scheme was also used
to label and evaluate segments derived from SIMPLE change
point detection. For multivariate data, segments are labeled in
each dimension separately.

Fig. 13. A trajectory snippet from the  time series of the alanine dipeptide
MD trajectory. An abrupt transition is marked with a red arrow, and a gradual
transition is marked with two blue arrows (denoting the beginning and the
end of the transition).

4) Parameter Tuning: Due to the low dimensionality of
the data sets used in this work (one-dimensional toy model
and Langevin dynamics simulation, and an effectively two-
dimensional alanine dipeptide MD simulation trajectory), the
simultaneity tuning parameter ↵ was left at 1 for all exper-
iments. The alanine dipeptide trajectory was analyzed using
↵ = 0.7 as well, but the results were not found to be
qualitatively different. For the synthetic data sets, the � tuning
parameter was adjusted for both algorithms in increments
of 10 until optimal change point placement and/or labeling
were observed. For the alanine dipeptide dataset, a � value
of 10 was used in line with prior work [12]. On data sets
without a priori knowledge of optimal tuning parameters, we
recommend setting the initial value of � = 20, inspecting the
results, and adjusting the parameter in small increments as
needed. A good initial value for ↵ in multivariate data is 0.7,
which is in line with literature [17].

E. Additional Results
1) PELT Parameter Tuning: As previously discussed, PELT

may be run in ”minimum improvement threshold” mode; the
user-set threshold serves a purpose analogous to that of the �
parameter in BarT and SIMPLE, effectively associating a cost
with placing additional candidate change points. An overview
of results with this parameter manually tuned is shown in
Figure 14. With manual parameter tuning, it is possible to
obtain results that are qualitatively similar to those obtained
with a fixed number of change points (Figure 14, panels A–D).
However, the parameter adjustment is not as straightforward
as it is for the two penalized likelihood estimation approaches,
with ”good” parameter ranges being somewhat difficult to
estimate, and optimal parameter values varying by orders of
magnitude dependent on data set features (compare Figure 14
panels D–G to Figures 7, 3, and 9).

Fig. 14. An overview of performance of PELT in ”minimum improvement
threshold” mode. (A) Representative trajectory from the synthetic data set (µ1
= 100, µ2 = 200, � = 20, transition length = 100). (B) Accuracy on the entire
synthetic data set. (C) Alanine dipeptide data set; MT = 10,000. (D) Langevin
dynamics trajectory with two different sensitivity settings. (E) Representative
short-transition trajectory from the synthetic data set (µ1 = 100, µ2 = 200, �
= 5, transition length = 20). (F, G) Synthetic trajectories with transition length
= 100, and varying � (5 and 20, respectively), with varying tuning parameter
settings. Metastable segments are labeled in red, and transition segments are
labeled in blue in all cases.



2) Change point placement performance: On the synthetic
data set with known ground truth, which allowed for quan-
titative performance determination, we evaluated the change
point placement of all tested algorithms by computing the
sum of distances of all placed change points to their nearest
ground-truth change point. BarT takes the performance crown
here, with SIMPLE’s oversegmentation becoming its undoing
in the case of long transitions, and PELT struggling with
short transitions, particularly in high-variance cases, where the
test statistic improvement from placing change points in the
transition regions (as opposed to within metastable segments)
is not high enough. A visual overview of placement accuracy
is shown in Figure 15.

Fig. 15. Change point placement accuracy for all tested algorithms. The total
error represents the sum of distances of all change points placed to their
nearest ground-truth changes.


