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ABSTRACT

To mitigate societal biases implicitly encoded in recent successful pretrained
language models, a diverse array of approaches have been proposed to encour-
age model fairness, focusing on prompting, data augmentation, regularized fine-
tuning, and more. Despite the development, it is nontrivial to reach a princi-
pled understanding of fairness and an effective algorithm that can consistently
debias language models. In this work, by rigorous evaluations of Neural Col-
lapse – a learning phenomenon happen in last-layer representations and classi-
fiers in deep networks – on fairness-related words, we find that debiased lan-
guage models exhibit collapsed alignment between token representations and word
embeddings. More importantly, this observation inspires us to design a princi-
pled fine-tuning method that can effectively improve fairness in a wide range
of debiasing methods, while still preserving the performance of language mod-
els on standard natural language understanding tasks. We attach our code at
https://github.com/Xujxyang/Fairness-NC-main.

1 INTRODUCTION

The rise of pre-trained language models (PLMs) has revolutionized natural language processing,
greatly enhancing tasks like reasoning and prediction by harnessing the semantic richness of language
data. Despite their effectiveness, these models, trained on extensive corpora, often reflect and
even intensify societal biases in their training datasets. Such biases manifest in the association of
demographic groups with specific roles or capabilities, affecting fairness in applications ranging from
legal analytics to hiring processes (Peters et al., 2018; Devlin, 2018; Liu, 2019; Blodgett et al., 2021;
Rabelo et al., 2022; Bolukbasi et al., 2016; Caliskan et al., 2017). Thus, it is crucial to address and
mitigate these biases to prevent discriminatory practices in downstream applications (Zhao et al.,
2019; Webster et al., 2020; Nadeem et al., 2020).

To mitigate societal biases in language models, a substantial array of fairness algorithms has been
proposed. On the one hand, people target different learning stages: making language models fair
via balanced and augmented training data (Bartl et al., 2020), fine-tuning with regularizations or
auxiliary objectives (He et al., 2022; Park et al., 2023), or carefully-tuned prompts (Yang et al.,
2023). On the other hand, these debiasing approaches can also be categorized by their awareness of
downstream tasks. Task-specific methods fine-tune language models with sensitive annotations (Han
et al., 2021b;a; Shen et al., 2021; Ravfogel et al., 2022), while task-agnostic approaches directly debias
word embeddings or representations during pretraining (Cheng et al., 2021; Kaneko & Bollegala,
2021; Guo et al., 2022; He et al., 2022). Despite this multitude of efforts, it is challenging to find
common ground among these methods and shared properties of debiased language models. We are
thus motivated to ask: Can we understand and improve the fairness of LMs in principle?
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Figure 1: Debiased LMs show more col-
lapsed alignment between classifiers (w) and
class means (µ). See (U)NC3 in Table 1.

The recent development of deep learning theory pro-
vides fruitful frameworks and tools for us to understand
deep neural networks (DNNs). Among them, neural col-
lapse (Papyan et al., 2020) is first observed for classifi-
cation tasks, and is then analyzed to understand the opti-
mization (Han et al., 2021c; Zhou et al., 2022a) and gen-
eralization (Hui et al., 2022; Gao et al., 2023) of DNNs.
Meanwhile, the training of generative language models,
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typically via the next token prediction task, is essentially a classification problem. We thus study
the fairness of LMs through the lens of neural collapse.

We ask two specific questions:

Q1: Do debiased LMs commonly exhibit greater collapse?
Q2: Can we leverage this inductive bias to improve LM fairness in principle?

Motivated by these two questions, we try to find connections between neural collapse and fairness
of language models. We observed, as expected, that fairer language models show more collapsed
representations of gender-sensitive words, indicated by greater alignment between classifiers (word
embeddings) and class means (token representations) (see Figure 1). This behavior is consistently
and implicitly exhibited across a wide range of popular debiasing methods, suggesting a commonly
shared perspective on analyzing fairness in language models. This observation further inspires
us to explicitly enforce neural collapse to promote fairness in pretrained language models. Since
this explicit collapse is principled and does not introduce any customization in fine-tuning or data
augmentation, it can be universally applied to enhance many existing fairness approaches, with little
implementation or computation overhead. We summarize our contributions below:

• We for the first time comprehensively analyze the relations between neural collapse and fairness in
language models.

• Our empirical analysis motivates us to introduce a regularization based on neural collapse, which is
extremely simple, and agnostic to any fine-tuning method or augmentation of language data.

• Comprehensive experiments on both intrinsic and extrinsic evaluations demonstrate that our
regularization can consistently debias language models. It is orthogonal to a wide range of highly
tailored fairness algorithms, and thus can be plug-and-play adopted without sacrificing the models’
performance on typical downstream language tasks.

2 RELATED WORKS

2.1 NEURAL COLLAPSE

A learning phenomenon called neural collapse (NC) arises during the terminal phase of training
neural networks with cross-entropy (CE) loss for classification tasks (Papyan et al., 2020). It was
initially defined by the simultaneous emergence of multiple properties in the model’s top-layer features
(also referred to as last-layer representations or embeddings) and classifiers, including the variability
and geometry of class-wise averaged features, the alignment between features and classifier weights,
and the collapse to nearest-neighbor classifier. Since then, NC has been theoretically analyzed to
understand the optimization (Han et al., 2021c; Zhou et al., 2022a) and generalization (Hui et al.,
2022; Gao et al., 2023) of DNNs. NC inspires numerous applications and empirical studies, including
transfer learning (Galanti et al., 2021), privacy (Li et al., 2024; 2023b), data imbalance (Fang et al.,
2021; Yang et al., 2022), and outlier detection (Liu & Qin, 2023; Wang et al., 2024b;a)

Meanwhile, DNN behaviors related to NC are also observed in various settings. Several studies
have explored NC under various loss functions. For example, Han et al. (2021c) examined NC
in the context of Mean Squared Error (MSE) loss, while Zhou et al. (2022b) demonstrated that
NC also arises with label smoothing and focal loss. Additionally, researchers like He & Su (2023)
and Rangamani et al. (2023) have investigated NC properties in intermediate layers as well. More
recently, Wu & Papyan (2024) observed the linearity of NC in language models and provided some
quantitative explanations for this phenomenon.

2.2 FAIRNESS IN LANGUAGE MODELS

Language Models (LMs), extensively studied in academic literature and widely adopted across
various applications, have recently raised concerns regarding fairness (Li et al., 2023a; Gallegos
et al., 2024). For medium-sized LMs, such as BERT (Devlin, 2018) and Roberta (Liu, 2019), fairness
elimination methods have been developed from both data and training perspectives. Given that label
imbalance across different demographic groups in the training data is a significant source of bias,
a common data processing technique is to balance labels using Counterfactual Data Augmentation
(CDA) (Lu et al., 2020; Zmigrod et al., 2019). Some research bridges robustness and fairness by
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augmenting a robust training set with techniques such as robust word substitution (Pruksachatkun
et al., 2021) and counterfactual logit pairing (Garg et al., 2019). For parameter-efficient methods,
GEEP (Fatemi et al., 2021) and Adept (Yang et al., 2023) incorporated gender equality prompts into
LLMs using trainable embeddings of occupation names. In addition to retraining, FairBERTa (Qian
et al., 2022) showed that fine-tuning language models on the demographic perturbation dataset
PANDA can enhance fairness in downstream tasks. For large LMs, such as Llama (Touvron et al.,
2023) and GPT (Brown, 2020), recent research not only focuses on fine-tuning the model itself
but also emphasizes lightweight post-processing techniques to address fairness concerns, including
instruction fine-tuning (Wei et al., 2021; Chung et al., 2024) and prompt engineering (Bubeck et al.,
2023; Tamkin et al., 2023).

Representative Debiased Language Models. In this paper, we choose to focus on studying the
following three representative works, mainly because: 1) They debiased language models from
orthogonal perspectives; 2) They all targeted debiasing the BERT model so they can be more fairly
compared to each other.

• Data Preparation: BEC (Bartl et al., 2020) focused on developing a customized Bias Evaluation
Corpus (BEC) via counterfactual data substitution, and studied associations between gender-
denoting target words and names of professions (Webster et al., 2018).

• Fine-tuning Method: Mabel (He et al., 2022) augmented premises and hypotheses from the
natural language inference (NLI) dataset with counterfacts, and applied a contrastive learning
objective on gender-balanced entailment pairs to fine-tune BERT.

• Regularization: ASE (Park et al., 2023) proposed incorporating the fairness objective into the
training process of downstream tasks through two regularization terms (stereotype neutralization
and prevention of catastrophic forgetting) beyond the task objective to encourage the fairness.

3 DEBIASED LANGUAGE MODELS ARE MORE COLLAPSED

3.1 PRELIMINARY: WHY DO LANGUAGE MODELS COLLAPSE?

Suppose the whole vocabulary is the set of word indices V = [1, 2, · · · , C]. In language models,
a sequence of tokens (indices) x1:t ∈ Vt are embedded by the word embedding layer E and are
forwarded through layers. In the context of next-token prediction for language models, the penultimate
token representations h (E(x1:t)) ∈ Rd is used to predict the next token x̂t+1 ∈ V by comparing
with classifier weights {wc ∈ Rd|c = 1, · · · , C} and also the bias term:

x̂t+1 := argmax
c∈V

⟨wc,h (E (x1:t))⟩+ bc (1)

We further denote the mean token representation µc ∈ Rd whose ground-truth next token is x(s)
t+1 = c.

We also focus on the centered means:

µc :=
1

Nc

S∑
s=1

T−1∑
t=1

h
(
E(x

(s)
1:t )

)
I
(
x
(s)
t+1 = c

)
, µ :=

1

C

C∑
c=1

µc, (2)

where Nc is the number of samples of class c, I is the (binary) indicator function, S is total number
of sentences in the dataset, and T is the total number of tokens in a sentence.

We also accumulate the unbiased sample variances:

σ2
c :=

1

Nc − 1

S∑
s=1

T−1∑
t=1

∥∥∥h(
E

(
x
(s)
1:t

))
− µc

∥∥∥2
2
I
(
x
(s)
t+1 = c

)
. (3)

Neural collapse (NC) (Papyan et al., 2020) is originally observed when neural networks are solving
classification problems, where the representations from the penultimate layer and the final classifier
weights collapse into certain geometric structures.

Neural Collapse in Language Models. From the perspective of token predictions (Eq. 1), we can
see that the pretraining and fine-tuning of language model are actually classification tasks, and
the word embedding layer E = {wc ∈ Rd|c = 1, · · · , C} is typically the classifier. Therefore, we
can expect neural collapse also happens in language models, between the mean embedding µc and
the word embedding layer E.
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Specifically, inherited from Papyan et al. (2020), the neural collapse behavior in Language Models
can also be defined from four perspectives (Wu & Papyan, 2024):

• NC1 measures the separability between classes via intra-class variability over inter-class distance:

NC1 := Ec,c′
σ2
c+σ2

c′

2∥µc−µc′∥2
2

(∀c ̸= c′). A less NC1 indicates a more collapsed classifier.

• (G)NC2 measures the separability from the geometric (G) perspective, where the class means
tend to become equinorm and equiangular vectors and formulate a simplex known as equiangular
tight frame (ETF). This can further be relaxed to account for noises and imbalances in practice:

(G)NC2 := Ec,c′ log
∥∥∥ µc−µ
∥µc−µ∥2

− µc′−µ
∥µc′−µ∥2

∥∥∥−1

(∀c ̸= c′). A less (G)NC2 indicates more
expanded and collapsed class means.

• (U)NC3 quantifies the alignment between classifiers and class means, termed as “uniform (U)

duality”. We first measure
〈

wc

∥wc∥2
, µc−µ
∥µc−µ∥2

〉
for each class, and then calculate their standard

deviations std(·) across classes. A less (U)NC3 indicates class means are more consistently
correlated with the classifier, i.e., more collapsed.

• NC4 simplified the linear projection in Eq. 1 into nearest-class center (NCC) classifier
argmax

c∈V
⟨wc,h⟩+ bc → argmin

c∈V
∥h− µc∥2 and further measure the token prediction accuracy by

nearest neighbors. A greater NC4 indicates a stronger (more collapsed) NCC classifier.

3.2 DEBIASED LMS ARE MORE COLLAPSED THAN BIASED LMS

In the context of fairness of language models, the main idea is to pursue debiased word embeddings.
For example, people measure the geometry of gender-related tokens in the embedding space (Caliskan
et al., 2017; May et al., 2019; Guo & Caliskan, 2021) and try to remove gender-related information
of stereotypical words and mitigate biases in the word embedding space. To counteract artifacts from
training that leads to the encoding of stereotypes, people even adopt static embeddings (Mikolov
et al., 2013; Bolukbasi et al., 2016; Caliskan et al., 2017; Manzini et al., 2019).

Inspired by these previous works, we are expecting to see more collapse between the word embedding
layer and token representations in debiased language models.

3.2.1 NC METRICS IN DEBIASED LMS

We first evaluate NC metrics in popular debiased language models and compare them with their
biased baselines.

Settings. Following previous works, we measure NC metrics based on different training datasets
used in each work, concerning the subset of the whole vocabulary of only gender-related words,
dubbed Vgender (see Appendix A for the full list of words). The detailed datasets used by these works
are listed as follows: Mabel on SNLI (Bowman et al., 2015) and MNLI (Williams et al., 2017);
ASE on OntoNotes (Hovy et al., 2006); BEC on TinyStories (Eldan & Li, 2023); Among these, only
BEC’s training dataset (Webster et al., 2018) is relatively small, while the datasets in other works
exceed 100K sentences. To ensure meaningful comparisons, we evaluated BEC on a larger dataset
TinyStories (Eldan & Li, 2023).

We show this result in Table 1. All methods start from the same pretrained BERT model. However,
each work studied the BERT model on its own training data, leading to different NC measurements
for the same BERT model. From Table 1, we can see that debiased language models exhibit neural col-
lapse in certain perspectives: NC3 is consistently improved (minimized) in debiased models, whereas
NC1/2/4 are diverging. This indicates that the alignments between token representations (“class
means”) and debiased word embeddings (“classifier weights”) are more consistent, as illustrated in
Figure 1. For evaluations of additional models, please refer to Appendix C.

Our explanations are as follows. The neural collapse behavior manifests under certain conditions (Pa-
pyan et al., 2020), including: 1) models are trained towards zero training loss; 2) clean labels with
balanced classes; 3) the number of classes is not greater than the model’s hidden dimension. How-
ever, these conditions are commonly violated in practice: 1) The training loss is difficult to be
minimized to zero due to the complexity of language data; 2) The occurrence of tokens in V is
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Table 1: (U)NC3 is consistently improved (minimized) on all debiasing methods. Metrics are
measured on the subset of the whole vocabulary of only gender-related words Vgender (Appendix A).
In these three groups, each pair of “(BERT, debiased model)” is tested on a customized dataset as
detailed in Section 3.2.1, leading to different measurements for the same pretrained BERT model.

Model NC1 ↓ (G)NC2 ↓ (U)NC3 ↓ NC4 ↑ NC(w)
1 ↓ (G)NC(w)

2 ↓
BERT 0.967 0.148 0.096 2.799 827.8 0.337
MABEL 0.786 0.181↑ 0.145 0.003↑ 0.070 0.026↑ 2.235 0.564↓ 724.3 103.5↑ 0.331 0.006↑

BERT 2.430 0.051 0.063 1.113 1134.7 0.364
ASE 3.008 0.578↓ 0.500 0.449↓ 0.056 0.007↑ 0.023 1.090↓ 382.6 752.1↑ 0.372 0.008↓

BERT 2.358 0.152 0.062 10.44 1032.7 0.359
BEC 2.509 0.151↓ 0.185 0.033↓ 0.056 0.006↑ 7.442 2.998↓ 1015.6 17.1↑ 0.335 0.024↑

highly unbalance due to the nature of languages; 3) Not all language models have greater hidden
sizes than the vocabulary size1. Therefore, token representations and word embeddings are typically
not balanced and well-trained in practical language models, and thus not all perspectives of neural
collapse (NC1/2/3/4) can be consistently observed in debiased models. Instead, in the next section,
we study how to calibrate these metrics to be more consistent with fairness encoded in models.

3.2.2 CALIBRATIONS OF NC1 AND NC2
When we further analyze Table 1 to understand why only NC3 is reduced in debiased LMs as we
expected, we find that only NC3 involves the classifier weights wc, but NC1/2/4 all consider class
means µc. We hypothesize that noises in language data and the complexity of different fine-tuning
methods make measurements of NC1/2/4 unstable and inconsistent.

To calibrate these representation-based collapse metrics, we further study replacing class means with
classifier weights in NC1/2.

• NC(w)
1 := Ec,c′

σ2
c+σ2

c′

2∥wc−wc′∥2
2

(∀c ̸= c′).

• (G)NC(w)
2 := Ec,c′ log ∥wc −wc′∥−1

(∀c ̸= c′).

Note that we cannot calibrate NC4 in this way since that will trivially reduce NC4 back to the
standard token prediction (Eq. 1).

We show the results of these calibrated NC1/2 in Table 1 (right two columns). Debiased language
models exhibit either comparable or more collapsed measurements on NC(w)

1 and (G)NC(w)
2 ,

showing greater consistency than the uncalibrated NC1 and (G)NC2 metrics. This suggests that
these calibrated metrics more reliably capture neural collapse in debiased language models.

3.3 DEBIASED LMS ARE MORE COLLAPSED IN FAIRNESS-SENSITIVE WORDS

Beyond using different versions of metrics to quantify neural collapse in language models, we
further study the impact of different choices of fairness-sensitive words on neural collapse. Our core
questions are:

1. Do debiased language models collapse more across the whole vocabulary, or only on fairness-
sensitive words?

2. Will the size of subsets of words affect the comparison of NC metrics?

To answer the above two questions, we calculate NC metrics on both the whole vocabulary set, and
also a random vocabulary subset of the same size as that we used Table 1 (Appendix A). Our gender
word list includes 210 female-related words and 215 male-related words.

From Table 2 and Table 3, it is evident that gaps of NC metrics between BERT and debiased BERT
models are much smaller than gaps in Table 1. This indicates that debiased BERT models exhibit
more different token representations and word embeddings only on gender-related vocabulary, and
they perform much more similarly with BERT on the whole vocabulary. This also explains why

1Eg. The hidden size of BERT is 768, which is smaller than the vocabulary size of 30,522.
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Table 2: NC metrics of different debiased language models on the whole vocabulary V. Gaps of NC
metrics between BERT and debiased BERT models are much smaller than gaps in Table 1.

Model NC1 ↓ (G)NC2 ↓ (U)NC3 ↓ NC4 ↑ NC(w)
1 ↓ (G)NC(w)

2 ↓
BERT 0.340 0.248 0.056 0.712 446.8 0.407
MABEL 0.293 0.047↑ 0.240 0.008↑ 0.064 0.006↓ 0.865 0.153↑ 383.7 63.1↑ 0.397 0.010↑

BERT 0.922 0.212 0.062 0.125 806.9 0.413
ASE 1.321 0.329↓ 0.417 0.205↓ 0.049 0.013↑ 0.002 0.123↓ 193.1 613.8↑ 0.418 0.005↓

BERT 1.308 0.009 0.050 0.734 815.9 0.415
BEC 1.334 0.026↓ 0.011 0.002↓ 0.047 0.003↑ 0.516 0.218↓ 798.4 17.5↑ 0.408 0.007↑

Table 3: NC metrics of different debiased language models on the same number of words as used in
Table 1 (Vgender) but words are randomly selected. Gaps of NC metrics between BERT and debiased
BERT models are much smaller than gaps in Table 1.

Model NC1 ↓ (G)NC2 ↓ (U)NC3 ↓ NC4 ↑ NC(w)
1 ↓ (G)NC(w)

2 ↓
BERT 0.320 0.248 0.057 0.407 434.3 0.400
MABEL 0.314 0.006↑ 0.237 0.011↑ 0.060 0.003↓ 1.910 1.503↓ 406.4 27.9↑ 0.392 0.008↑

BERT 1.086 0.197 0.059 0.235 859.7 0.406
ASE 1.158 0.072↓ 0.404 0.207↓ 0.046 0.013↑ 0.000 0.235↓ 167.1 692.6↑ 0.436 0.030↓

BERT 1.555 0.021 0.047 0.145 866.7 0.411
BEC 1.501 0.054↑ 0.031 0.010↓ 0.044 0.003↑ 1.079 0.934↑ 822.5 44.2↑ 0.405 0.006↑

neural collapse cannot determine if a language model is debiased or not across the whole vocabulary,
as none of the original NC1/2/3/4 metrics show consistent improvement in Table 2. Moreover, as
shown in Table 3, this observation also holds on a random subset of vocabulary with matched size
with gender-related words in Table 1. Meanwhile, in this context, NC measurements are generally
smaller than those measured on only gender words, which implies that it is generally challenging to
learn more separable representations of gender words compared with others insensitive to fairness.

4 BIAS MITIGATION VIA ENFORCING EXPLICIT COLLAPSE IN LMS

Motivated by our observations in Section 3, we further ask: can we enforce explicit neural collapse in
language models and thus improve their fairness?

We propose minimizing the regularization of language models using (U)NC3 as an auxiliary objective
during fine-tuning:

LNC3
= std

(〈
wc

∥wc∥2
,

µc − µ

∥µc − µ∥2

〉)
, c ∈ Vgender. (4)

Although sounds straightforward, this principled approach could potentially be very important in
improving the fairness of language models from two perspectives:

1. Our method is simple, principled, and is agnostic to any pretraining or fine-tuning methods for
fairness. As we will show in our results, it can be adopted in a wide range of fairness algorithms
in a plug-and-play fashion.

2. Our method can avoid manual filtration or augmentation of the underlying language training data.

In the following experiments, we demonstrate that our regularization consistently de-biases language
models across different fairness metrics (Sec. 4.1), while still preserving models’ language modeling
performance (Sec. 4.2). We also provide ablation studies on the strength of this regularization in
Appendix B.

4.1 ENFORCING NC PROMOTES FAIRNESS, BOTH INTRINSICALLY AND EXTRINSICALLY

4.1.1 IMPLEMENTATION DETAILS

We conduct experiments following the original settings of each work. Mabel+(U)NC3: We im-
plement Mabel with a batch size of 24, a learning rate of 5 × 10−5, and use the Adam optimizer,
training it for two epochs. ASE+(U)NC3: ASE is trained for 50 epochs with the Adam optimizer.
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The learning rate is set to 2 × 10−5, a dropout probability of 0.1 is used, and a batch size of 6 is
chosen. BEC+(U)NC3: BEC is trained for three epochs using the Adam optimizer, with a learning
rate of 2× 10−5 and a batch size of 16. Due to the short fine-tuning duration, we directly accumulate
µc for regularization when computing (U)NC3.

The evaluation of the fairness of language models can be categorized into addressing intrinsic and
extrinsic biases (Li et al., 2023a), which we detail in the following subsections. We also select
Sent-Debias (Liang et al., 2020), Context-Debias (Kaneko & Bollegala, 2021), and FairFil (Cheng
et al., 2021) as our primary baselines, all of which introduce general-purpose methods for generating
debiased representations.

4.1.2 INTRINSIC METRICS

Table 4: Results on StereoSet. ⋆: results are re-
ported in He et al. (2022); We follow previous
works to evaluate on their datasets. ⋄: the closer to
50, the better. LM: language modeling score, SS:
Steoreotype score, ICAT: combined score, defined
as LM · (min(SS, 100− SS))/50.

StereoSet
Model LM ↑ SS ⋄ ICAT ↑
BERT⋆ 84.17 60.28 66.86

BERT+DROPOUT⋆ 83.04 60.66 65.34
BERT+CDA⋆ 83.08 59.61 67.11
SENT-DEBIAS⋆ 84.20 59.37 68.42
CONTEXT-DEBIAS⋆ 85.42 59.35 69.45
FAIRFIL⋆ 44.85 50.93 44.01
ADEPT 86.37 58.70 71.34

MABEL⋆ 84.80 56.92 73.07
MABEL+(U)NC3 83.55 55.38 74.55
ASE 83.83 57.33 71.54
ASE+(U)NC3 84.06 56.36 73.37
BEC 86.02 58.30 71.73
BEC+(U)NC3 85.95 57.89 72.38

The goal of intrinsic debiasing is to reduce bias
within model representations before they are
applied to downstream tasks, making it task-
agnostic. Following previous works (He et al.,
2022; Bartl et al., 2020), we consider two pop-
ular datasets for intrinsic metrics.

StereoSet (Nadeem et al., 2020) evaluates
the language model by testing for stereotypi-
cal associations. Following He et al. (2022), we
concentrate on examples within sentences that
pertain to the gender domain. When encounter-
ing a partial context sentence, this task presents
a fill-in-the-blank challenge where the model
must choose from an unrelated word, an anti-
stereotypical word, or a stereotypical word. The
Language Modeling Score (LM) quantifies the
percentage of times the model correctly identi-
fies a relevant word, whether it is stereotypical
or anti-stereotypical, or an irrelevant one. Mean-
while, the Stereotype Score (SS) is a fairness-
sensitive metric, revealing how often the model
shows a preference for the stereotype compared
to the anti-stereotype. Lastly, the Idealized Con-
text Association Test (ICAT) score integrates
both LM and SS into a single metric, quantifying the balance between language modeling and
fairness.

As shown in Table 4, our method consistently improves both SS and ICAT on all fairness methods.
With our assistance, Mabel’s SS score improved by 1.54 and ICAT increased by 1.48, reaching a
value of 74.55. Similarly, ASE achieved a significant ICAT improvement of 1.83.

Table 5: Results on BEC-Pro. We show the mean
association scores between gender words and pro-
fessions. “Diff” represents the score difference
between female and male (smaller the better).

Model Female Male Diff ↓
BERT -0.0931 -0.3388 0.2457
ADEPT -0.0056 0.0476 0.0532

MABLE -0.0641 -0.0237 0.0404
MABLE+(U)NC3 0.0039 -0.0038 0.0077
ASE -0.7534 -0.5125 0.2409
ASE+(U)NC3 -1.0093 -0.9613 0.0480
BEC 0.0841 0.1349 0.0508
BEC+(U)NC3 0.1145 0.1435 0.0290

BEC-Pro (Bartl et al., 2020) create a template-
based corpus in two languages, English and Ger-
man, to measure bias in BERT. The sentence
templates include a gender-denoting noun phrase,
or <person word>, along with a <profession>. Ta-
ble 5 presents the average association scores
between person-related terms (targets) and pro-
fessions (attributes) before and after applying
(U)NC3 to the debiased model on the GAP cor-
pus (Webster et al., 2018), with Counterfactual
Data Substitution (CDS) (Maudslay et al., 2019)
applied, highlighting the difference between fe-
male and male associations.

We observe a significant reduction in the mean
association score difference between female and
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male after applying our method. This indicates that the model perceives less distinction between
these two concepts, implying a reduction in bias. Specifically, Mabel and ASE show a significant
order-of-magnitude decrease in the score difference with our method, and BEC also shows over 40%
reduction.

4.1.3 EXTRINSIC METRICS

Extrinsic metrics (Huang et al., 2019; Smith et al., 2022; Lai et al., 2017) focus on enhancing
fairness in downstream tasks, such as sentiment analysis (Mohammad et al., 2018) and machine
translation (Levy et al., 2021), by ensuring that models produce consistent outputs across different
demographic groups.

WinoBias Zhao et al. (2018) is an intra-sentence coreference resolution task designed to assess a
system’s ability to correctly associate a gendered pronoun with an occupation in both pro-stereotypical
and anti-stereotypical contexts. Coreference can be inferred using syntactic cues in Type 1 sentences,
or more challenging semantic cues in Type 2 sentences. We fine-tune models on the OntoNotes 5.0
dataset (Hovy et al., 2006) and then evaluate on the WinoBias benchmark. We report the average
F1-scores for pro-stereotypical and anti-stereotypical examples, along with two fairness metrics:
TPR-1 (Type 1: pro-stereotypical minus anti-stereotypical) and TPR-2 (Type 2: pro-stereotypical
minus anti-stereotypical), measured by average F1-scores.

As shown in Table 6, after adding (U)NC3 as the regularization, all the models exhibit significant
improvements on both fairness metrics. Especially, Mabel equipped with our (U)NC3 improves 6.8
on TPR-1 and more than a 40% improvement on TPR-2 over the Mabel baseline, achieving the best
results for our tested models.

Table 6: Average F1-scores on WinoBias, and TPR scores across Winobias categories. 1 = Type 1; 2
= Type 2. A = anti-stereotypical; P = pro-stereotypical. TPR-1 = 1P - 1A; TPR-2 = 2P - 2A.

Model 1A ↑ 1P ↑ 2A ↑ 2P ↑ TPR-1 ↓ TPR-2 ↓
BERT 53.96 86.57 82.20 94.67 32.79 12.48

SENT-DEBIAS 54.11 85.09 83.29 94.73 30.98 11.44
CONTEXT-DEBIAS 59.40 85.54 83.63 93.20 26.14 9.57
FAIRFIL 53.24 85.77 77.37 91.40 32.43 14.03
ADEPT 62.50 84.04 87.66 91.51 21.54 3.85

MABEL 61.21 84.93 92.78 96.20 23.73 3.41
MABEL+(U)NC3 64.15 81.08 93.55 95.51 16.93 1.97
ASE 56.00 87.02 76.44 91.06 31.02 14.62
ASE+(U)NC3 58.57 85.71 84.38 92.54 27.14 8.16
BEC 60.32 84.04 86.86 93.98 23.72 7.12
BEC+(U)NC3 62.98 84.88 87.50 94.40 21.91 6.90

Bias-in-Bios (De-Arteaga et al., 2019) is a third-person biography dataset labeled by both occupa-
tion and gender. We fine-tune the encoder with the linear classification layer to predict an individual’s
occupation from their biography. During evaluation, we present the overall accuracy for the task,
as well as the accuracy segmented by gender. Additionally, we use two widely adopted fairness
metrics De-Arteaga et al. (2019); Ravfogel et al. (2020): 1) GAPTPR, which captures the disparity
in true positive rates (TPR) between male- and female-labeled instances; and 2) GAPRMS , which
represents the root-mean-square (RMS) of TPR gaps across different occupation categories (C), the
closer their score is to 0, the better. Their formula is as follows:

GAPTPR = |TPRM − TPRF |, GAPRMS =

√
1

|C|
∑
y∈C

(GAPTPR,y)2. (5)

In Table 7, we observe that introducing (U)NC3 during the fine-tuning process improves the model’s
performance on these two TPR metrics. Additionally, it enhances the model’s accuracy in predicting
female-related occupations, helping BEC achieve an accuracy of 85.17 for female predictions.
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Furthermore, we also conducted validation on the Bias-NLI (Dev et al., 2020), and the results can be
found in the Appendix D.

Table 7: Fine-tuning results on Bias-in-Bios.

Acc. Acc. Acc. GAP GAP
Model (All) ↑ (M) ↑ (F) ↑ TPR ↓ RMS ↓

BERT 84.14 84.69 83.50 1.189 0.144

SENT-DEBIAS 83.56 84.10 82.92 1.180 0.144
CONTEXT-DEBIAS 83.67 84.08 83.18 0.931 0.137
FAIRFIL 83.18 83.52 82.78 0.746 0.142
ADEPT 84.07 83.64 84.58 0.945 0.121

MABLE 84.85 84.92 84.34 0.599 0.132
MABLE+(U)NC3 84.30 84.09 84.54 0.455 0.126
ASE 84.63 84.19 85.14 0.949 0.127
ASE+(U)NC3 84.55 84.21 84.95 0.740 0.126
BEC 84.43 83.99 84.95 0.954 0.124
BEC+(U)NC3 84.66 84.23 85.17 0.938 0.128

4.2 ENFORCING NC PRESERVES LM PERFORMANCE ON NLU TASKS

We also evaluate language models fine-tuned with our method on general natural language under-
standing (NLU) tasks. As shown in Table 8, fine-tuning with Eq. 4 preserves the performance of
language models on general tasks with minimal difference from each baseline model. This indicates
that our method can debias language models without catastrophically forgetting and sacrificing their
pretrained knowledge.

5 ABLATION STUDIES AND VISUALIZATIONS

Fairness Can Be Improved Solely via NC. As we have seen that debiased language models
can implicitly become more collapsed, here we further provide an ablation study to verify that the
effectiveness of our regularization is not because of any external debiasing algorithm, namely, by only
adopting our NC-based regularization (Eq. 4) we can already encourage fairness in language models.
We perform this ablation study in the standard language model fine-tuning for masked language
modeling (MLM), where pronouns in the input sentence are replaced with [MASK] tokens. The
model is then trained to predict the correct gendered pronoun for each [MASK] token in the masked
sentence. The training objective is to minimize the cross-entropy loss between the original pronouns
and the predicted logits corresponding to the [MASK] tokens. The MLM loss is denoted as LMLM:

LMLM =
1

|M |

M∑
m∈masked

CE(W⊤hm, xm) (6)

where CE denotes the cross entropy loss, and hm ∈ Rd is the last hidden state of the masked token
xm. W ∈ Rd,C is a linear layer for the MLM task.

We fine-tune the language model using LMLM alone, and compare against the fine-tuning with the
addition of LNC3

. We fine-tune models for three epochs. This allows us to more clearly observe the
gains brought by (U)NC3. We evaluate the model on StereoSet using intrinsic metrics, and as shown
in Table 9, it is evident that not only does it help to reduce bias in the model, but also enhances the
language capabilities. Notably, we achieve a significant improvement of 4.29 on the ICAT metric.

Visualizations of Debiased Token Representations. In addition to comparing quantitative results,
we also conducted t-SNE visualizations of models’ logits to analyze the two training methods.
Specifically, we visualize two opposing word pairs: (“Herself”, “Himself”) and (“Mother”, “Father”).
As shown in Figure 2, with the original training method, words of the same gender tend to cluster
together (e.g., “Himself” and “Father”). However, after introducing (U)NC3, we can find that:
1) token representations from different classes (words) are more clearly separated to each other;
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Table 8: Fine-tuning results on the GLUE benchmark: (U)NC3 preserves LM performance while
encouraging fairness. BERT-NLI: BERT fine-tuned on NLI data then fine-tuned on GLUE. Bold
numbers indicate the best for different metrics.

CoLA ↑ SST-2 ↑ MRPC ↑ QQP ↑ MNLI ↑ QNLI ↑ RTE ↑ STS-B ↑
Model (mcc.) (acc.) (f1/acc.) (acc./f1) (acc.) (acc.) (acc.) (pears./spear.)

BERT 56.5 92.3 89.5/85.3 90.7/87.5 84.3 92.2 65.0 88.4/88.2
BERT-NLI 58.6 93.6 89.4/85.1 90.4/86.8 83.3 89.0 69.0 88.3/87.9

SENT-DEBIAS 50.5 89.1 87.5/81.6 87.5/90.7 83.9 91.4 63.2 88.1/87.9
CONTEXT-DEBIAS 55.2 92.0 85.1/77.5 90.7/87.4 84.6 89.9 57.0 88.4/88.1
FAIRFIL 55.5 92.4 87.5/80.6 91.2/88.1 84.8 91.3 63.2 88.4/88.1
ADEPT 57.3 92.4 88.0/82.4 - - / - - 84.1 91.0 61.4 85.8/85.7

MABEL 57.8 92.2 89.5/85.0 91.2/88.1 84.5 91.6 64.3 89.6/89.2
MABEL+(U)NC3 56.3 92.1 90.5/86.5 91.0/88.0 84.5 91.1 60.7 89.1/88.7

ASE 54.9 92.9 87.3/80.9 - - / - - 84.4 91.2 59.3 88.4/88.1
ASE+(U)NC3 55.3 92.8 87.5/81.4 - - / - - 84.6 91.4 61.7 88.2/87.9

BEC 55.5 92.2 88.8/83.8 - - / - - 84.9 91.5 65.7 89.2/88.9
BEC+(U)NC3 55.7 92.5 88.7/83.6 - - / - - 84.9 91.6 66.4 89.2/88.9

Table 9: Fine-tuning BERT with only mask-token predictions (Eq. 6) and (U)NC3 (Eq. 4). Metrics
are consistent with Table 4: “LM” for language modeling score, “SS” for Steoreotype score, “ICAT”
for combined score, defined as LM · (min(SS, 100− SS))/50.

StereoSet
Model LM ↑ SS ⋄ ICAT ↑
BERT+LMLM 72.85 58.65 60.24
BERT+LMLM+LNC3

75.43 57.23 64.53

2) tokens from each word are more clustered. This indicates that intra-class variances have been
significantly reduced, thus gender-related words are more collapsed to their class means.

Father

Himself

Herself

Mother

BERT + Lmlm+ LNC3BERT + Lmlm

Figure 2: t-SNE plots of logits of two models in Table 9. We collect 15 samples each of “Herself,”
“Himself,” “Mother,” and “Father.”

6 CONCLUSION

Aiming to provide a principled understanding and improvement of debiasing language models, we
try to find connections between language models and neural collapse for fairness purposes. We
demonstrated that debiased models exhibit more collapsed token representations, especially for
fairness-sensitive words, leading to better alignment with word embeddings. Leveraging this insight,
we introduced a principled regularization method based on neural collapse that can consistently
improve fairness in language models across various tasks without sacrificing performance. Our
method is simple, effective, and applicable to a wide range of debiasing techniques, providing a
robust tool for enhancing fairness in language models. We expect our understanding and fine-tuning
to become a principled method for debiasing language models.
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A GENDER WORDS

Male: countryman, fraternal, wizards, manservant, fathers, divo, actor, bachelor, papa, dukes, barman,
countrymen, brideprice, hosts, airmen, andropause, penis, prince, governors, abbot, men, widower,
gentlemen, sorcerers, sir, bridegrooms, baron, househusbands, gods, nephew, widowers, lord, brother,
grooms, priest, adultors, andrology, bellboys, his, marquis, princes, emperors, stallion, chairman,
monastery, priests, boyhood, fellas, king, dudes, daddies, manservant, semen, spokesman, tailor,
cowboys, dude, bachelors, barbershop, emperor, daddy, masculism, guys, enchanter, guy, fatherhood,
androgen, cameramen, godfather, strongman, god, patriarch, uncle, chairmen, sir, brotherhood, host,
testosterone, husband, dad, steward, males, cialis, spokesmen, pa, beau, stud, bachelor, wizard, sir,
nephews, fathered, bull, beaus, councilmen, landlords, grandson, fiances, stepfathers, horsemen,
grandfathers, adultor, schoolboy, rooster, grandsons, bachelor, cameraman, dads, him, master, lad,
policeman, monk, actors, salesmen, boyfriend, councilman, fella, statesman, paternal, chap, landlord,
brethren, lords, blokes, fraternity, bellboy, duke, balletdancer, dudes, fiance, colts, husbands, suitor,
paternity, he, businessman, masseurs, hero, deer, busboys, boyfriends, kings, brothers, masters,
stepfather, grooms, son, studs, cowboy, mentleman, sons, baritone, salesman, paramour, malehost,
monks, menservants, mr., headmasters, lads, congressman, airman, househusband, priest, barmen,
barons, abbot, handyman, beard, fraternities, stewards, colt, czar, stepsons, himself, boys, lions,
gentleman, penis, his, masseur, bulls, uncles, bloke, beards, hubby, lion, sorcerer, macho, father, gays,
male, waiters, sperm, prostate, stepson, prostaticutricle, businessmen, heir, waiter, headmaster, man,
governor, god, bridegroom, grandpa, groom, dude, gay, gents, boy, grandfather, gelding, paternity,
roosters, prostaticutricle, priests, manservants, stailor, busboy, heros.

Female: countrywoman, sororal, witches, maidservant, mothers, diva, actress, spinster, mama,
duchesses, barwoman, countrywomen, dowry, hostesses, airwomen, menopause, clitoris, princess,
governesses, abbess, women, widow, ladies, sorceresses, madam, brides, baroness, housewives,
goddesses, niece, widows, lady, sister, nun, adultresses, obstetrics, bellgirls, marchioness, princesses,
empresses, mare, chairwoman, convent, priestesses, girlhood, gals, mommies, maid, female ejacula-
tion, spokeswoman, seamstress, cowgirls, chick, hairsalon, empress, mommy, feminism, enchantress,
gal, motherhood, estrogen, camerawomen, godmother, strongwoman, goddess, matriarch, aunt, chair-
women, ma’am, sisterhood, hostess, estradiol, wife, mom, stewardess, females, viagra, spokeswomen,
ma, belle, minx, maiden, witch, miss, nieces, mothered, cow, belles, councilwomen, landladies,
granddaughter, fiancees, stepmothers, horsewomen, grandmothers, adultress, schoolgirl, hen, grand-
daughters, bachelorette, camerawoman, moms, mistress, lass, policewoman, saleswomen, girlfriend,
councilwoman, stateswoman, maternal, wenches, sorority, ballerina, chicks, fiancee, fillies, suit-
ress, maternity, she, businesswoman, masseuses, heroine, doe, busgirls, girlfriends, queens, sisters,
mistresses, stepmother, daughter, minxes, cowgirl, mezzo, saleswoman, nuns, maids, mrs., head-
mistresses, lasses, congresswoman, airwoman, housewife, priestess, barwomen, baronesses, abbesses,
handywoman, toque, sororities, stewardesses, filly, czarina, stepdaughters, herself, girls, lionesses,
vagina, hers, masseuse, aunts, wench, toques, heiress, waitress, headmistress, bride, grandma, lesbian,
girl, grandmother, hens, uterus, maidservants, seamstress’, busgirl, heroines.

B ABLATION STUDY ON NC3 REGULARIZATION

Our method is simple and principled. It adds our NC3 constraint to the original training loss used in
each work, as shown in the following formula:

Ltotal := Loriginal + α · LNC3
, (7)

where Loriginal represents the original loss from the respective study, and LNC3
denotes our regular-

ization term.

From Table 10, it’s clear that as α increases, the SS metric generally improves, indicating that the
model becomes more biased. However, a more appropriate value of α can strike a better balance
between language quality and bias, resulting in a higher ICAT score.

C NC EVALUATIONS FOR MORE LANGUAGE MODELS

In addition to the three debiasing methods tested in Section 3, we supplement our analysis here with
experiments from two popular models: BERT base and RoBERTa base. The results from these models
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Table 10: StereoSet results on different hyper-parameter settings of α. Metrics are consistent
with Table 4: “LM” for language modeling score, “SS” for Steoreotype score, “ICAT” for combined
score, defined as LM · (min(SS, 100− SS))/50.

ASE+(U)NC3 Mabel+(U)NC3 BEC+(U)NC3

LM ↑ SS ⋄ ICAT ↑ LM ↑ SS ⋄ ICAT ↑ LM ↑ SS ⋄ ICAT ↑
α = 1 83.78 57.38 71.41 α = 10 83.57 55.53 74.33 86.02 58.07 72.12
α = 3 84.06 56.36 73.37 α = 30 83.54 55.63 73.88 85.95 57.89 72.38
α = 5 82.96 55.84 73.27 α = 50 83.55 55.38 74.55 85.70 58.92 71.44

(Table 11, 12, and 13) are consistent with the observations made in Section 3. The three additional
model setups are as follows: Adept on News-Commentary v15 (Tiedemann, 2012); Roberta and
FairBERTa on PANDA (Qian et al., 2022); Mabel under Roberta as the backbone.

Table 11: The performance of more debiasing methods on NC metrics varies across datasets on the
gender words (Vgender).

Model NC1 ↓ (G)NC2 ↓ (U)NC3 ↓ NC4 ↑ NC(w)
1 ↓ (G)NC(w)

2 ↓
BERT 2.090 0.088 1.317 0.169 1197.6 0.359
ADEPT (YANG ET AL., 2023) 1.941 0.072 0.074 0.118 1143.5 0.364

ROBERTA 0.868 0.010 0.066 0.513 11.53 1.614
FAIRBERTA (QIAN ET AL., 2022) 1.287 0.661 0.038 0.000 5.883 1.698

ROBERTA 0.443 0.059 0.062 0.250 10.22 1.488
MABEL-ROBERTA (QIAN ET AL., 2022) 0.513 0.013 0.058 0.250 9.878 1.487

Table 12: NC metrics of more debiased language models on the whole vocabulary (V).

Model NC1 ↓ (G)NC2 ↓ (U)NC3 ↓ NC4 ↑ NC(w)
1 ↓ (G)NC(w)

2 ↓
BERT 1.235 0.165 0.064 0.013 946.2 0.413
ADEPT (YANG ET AL., 2023) 1.133 0.149 0.066 0.012 889.2 0.420

ROBERTA 0.405 0.116 0.065 0.647 8.334 1.617
FAIRBERTA (QIAN ET AL., 2022) 0.766 0.520 0.036 0.000 4.545 1.732

ROBERTA 0.246 0.135 0.060 0.369 6.219 1.567
MABEL-ROBERTA (QIAN ET AL., 2022) 0.242 0.061 0.061 0.568 5.363 1.567

Table 13: NC metrics of more debiased language models on the same number of words as used in
Table 11 (Vgender) but words are randomly selected.

Model NC1 ↓ (G)NC2 ↓ (U)NC3 ↓ NC4 ↑ NC(w)
1 ↓ (G)NC(w)

2 ↓
BERT 1.292 0.158 0.065 0.002 974.7 0.409
ADEPT (YANG ET AL., 2023) 1.111 0.150 0.064 0.002 888.6 0.423

ROBERTA 0.407 0.116 0.067 0.811 8.416 1.618
FAIRBERTA (QIAN ET AL., 2022) 0.728 0.511 0.036 0.000 4.414 1.733

ROBERTA 0.217 0.146 0.058 0.162 5.653 1.561
MABEL-ROBERTA (QIAN ET AL., 2022) 0.237 0.063 0.064 0.280 5.267 1.572

D EXTRA EXTRINSIC METRICS

Bias-NLI Dev et al. (2020) is an NLI dataset composed of neutral sentence pairs, systematically
generated by populating sentence templates with a gendered word and an occupation that has a strong
gender association (e.g., “The woman ate a bagel” “The nurse ate a bagel”). Bias is measured as a
deviation from neutrality and is evaluated using three metrics: Net Neutral (NN), Fraction Neutral
(FN), and Threshold:τ (T:τ ). Specifically, 1) NN represents the mean probability assigned to the
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neutral label across all entailment pairs; 2) FN calculates the proportion of sentence pairs classified
as neutral; and 3) Threshold:τ (T:τ ) is a hyperparameter that determines the proportion of entailment
pairs for which the probability of being neutral exceeds a given threshold. In this paper, τ is set to
0.5 and 0.7. And a bias-free model would achieve a score as 1 across all three metrics. NN and FN
are defined in the following manner:

NN =
1

M

M∑
i=1

ni, FN =
1

M

M∑
i=1

ni1[ni = max{ei, ni, ci}], (8)

We fine-tune the model on SNLI and assess its performance on Bias-NLI during inference. After
incorporating (U)NC3 during fine-tuning, we find that in such a rare-class classification scenario, the
improvement is relatively limited. However, it generally helps the model maintain its performance,
leading to some gains in accuracy across various metrics for ASE and BEC. Specific details can be
found in Table 14.

Table 14: Results on Bias-NLI. We fine-tune the models on SNLI and then evaluate on Bias-NLI.

Model TN ↑ FN ↑ T:0.5 ↑ T:0.7 ↑
BERT 0.799 0.879 0.874 0.798

SENT-DEBIAS 0.793 0.911 0.897 0.788
CONTEXT-DEBIAS 0.858 0.906 0.902 0.857
FAIRFIL 0.829 0.883 0.846 0.845
ADEPT 0.841 0.937 0.934 0.866

MABLE 0.900 0.977 0.974 0.935
MABLE+(U)NC3 0.882 0.977 0.974 0.919

ASE 0.886 0.974 0.971 0.932
ASE+(U)NC3 0.910 0.974 0.973 0.948
BEC 0.933 0.955 0.955 0.934
BEC+(U)NC3 0.883 0.980 0.978 0.943

E NC EVALUATIONS FOR NEUTRAL WORDS

In addition to gender-related words such as "female" and "male," there are also neutral words. To
assess the impact of these neutral words, we conducted ablation experiments. The experimental setup
is as follows:

• Gender words + Neutral words: including 425 gender-related words from Appendix A and 208
neutral words mentioned below.

• Gender words + Random words: including 425 gender-related words from Appendix A and 208
Random words.

Neutral: aerobics, adventurer, apparel, aggressive, assistant, tycoon, baker, warrior, bathing, ambi-
tious, beautiful, trucker, beauty, welder, blonde, strong, bookkeeper, terrorist, ca, soldier, cashier,
astronomer, chatty, sniper, cheerleader, skipper, cheerleading, banker, clerk, baseball, cocktail,
sergeant, cooking, bodyguard, counselor, boss, crafting, boxer, cute, cabbie, dancer, captain, educa-
tor, cardiologist, emotional, carpenter, flirt, ceo, flirtatious, chairperson, flower, chancellor, gossip,
chef, graceful, colonel, hairdresser, commander, hairdryer, conductor, homemaker, police, hooker,
custodian, housekeeper, dentist, housekeepers, detective, housework, diplomat, hula, doctor, indoor,
driving, jealousy, drummer, jewelry, economist, kawaii, electrician, laundering, engineer, librarian,
engineering, librarians, entrepreneur, lotion, lovely, firefighter, marvelous, footballer, mirror, gambler,
moisturizer, gamer, nanny, gangster, neat, geek, nurse, geeks, nursery, gentle, nurses, guitarist, nurtur-
ing, industrialist, parenting, inventor, passive, investigator, pink, laborer, pretty, lawyer, receptionist,
leader, ribbon, lieutenant, romance, lifeguard, romantic, magistrate, secretary, manager, selfie, mar-
shal, server, mathematician, sew, mechanic, sewing, muscle, shopping, muscular, smoothie, owner,
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soft, philosopher, softball, physicist, stylist, pilot, submissive, plumber, sweet, politician, tailor, presi-
dent, tall, professor, teacher, programmer, thin, rugby, violinist, sailor, waiter, science, weak, scientist,
yoga, sculptor, hysterical, blue, makeup, football, executive, management, professional, corporation,
salary, office, business, career, home, parents, children, family, cousins, marriage, wedding, relatives,
math, algebra, geometry, calculus, equations, computation, numbers, addition, poetry, art, dance,
literature, novel, symphony, drama, sculpture, science, technology, physics, chemistry, Einstein,
NASA, experiment, astronomy, Shakespeare.

As shown in Table 15 and Table 16, results of the two different word combinations on the NC
metrics are very similar, which further supports the rationale for considering only gender-related
words in our method. However, upon closer inspection, we can observe that when using neutral words,
the metric values tend to be closer to those obtained with only gender words (Table 1 and Table 11),
whereas the values with random words are more aligned with those generated by random words
(Table 3 and Table 13). This further supports the validity of the NC metric.

Table 15: NC metrics of different debiased language models on Gender words + Neutral words.

Model NC1 ↓ (G)NC2 ↓ (U)NC3 ↓ NC4 ↑ NC(w)
1 ↓ (G)NC(w)

2 ↓
BERT 0.894 0.139 0.066 1.634 790.3 0.337
MABEL (HE ET AL., 2022) 0.698 0.141 0.069 1.421 687.6 0.330
BERT 2.182 0.073 0.064 0.684 1155.1 0.354
ASE (PARK ET AL., 2023) 2.975 0.566 0.054 0.013 324.3 0.363

BERT 1.988 0.145 0.060 6.260 1033.0 0.351
BEC (BARTL ET AL., 2020) 2.105 0.183 0.055 4.469 1014.7 0.346
BERT 2.275 0.071 0.070 0.099 1267.4 0.351
ADEPT (YANG ET AL., 2023) 2.104 0.053 0.070 0.070 1206.4 0.357

ROBERTA 0.737 0.018 0.065 0.693 10.48 1.621
FAIRBERTA (QIAN ET AL., 2022) 1.138 0.632 0.035 0.000 5.459 1.706

ROBERTA 0.317 0.075 0.065 0.155 6.986 1.553
MABEL-ROBERTA (QIAN ET AL., 2022) 0.333 0.069 0.065 0.134 5.573 1.553

Table 16: NC metrics of different debiased language models on Gender words + Random words.

Model NC1 ↓ (G)NC2 ↓ (U)NC3 ↓ NC4 ↑ NC(w)
1 ↓ (G)NC(w)

2 ↓
BERT 0.466 0.225 0.061 1.137 533.5 0.390
MABEL (HE ET AL., 2022) 0.413 0.219 0.065 1.132 475.6 0.384
BERT 1.534 0.142 0.064 0.644 943.3 0.391
ASE (PARK ET AL., 2023) 2.076 0.445 0.055 0.012 288.17 0.397

BERT 1.742 0.052 0.083 5.721 891.8 0.399
BEC (BARTL ET AL., 2020) 1.903 0.093 0.051 4.115 892.6 0.389
BERT 1.555 0.140 0.068 0.093 1043.0 0.394
ADEPT (YANG ET AL., 2023) 1.473 0.117 0.069 0.067 1010.9 0.397

ROBERTA 0.515 0.093 0.068 0.256 9.151 1.631
FAIRBERTA (QIAN ET AL., 2022) 0.909 0.552 0.037 0.000 5.032 1.731

ROBERTA 0.255 0.135 0.063 0.591 6.508 1.564
MABEL-ROBERTA (QIAN ET AL., 2022) 0.260 0.040 0.062 1.617 5.595 1.567

F DETAILED EXPLANATION OF BEC-PRO

The association score accurately measures the correlation between a <person word> and a <profes-
sion>, with smaller values indicating a weaker correlation. However, it is important to note that the
association score itself does not directly indicate gender bias. For instance, both male and female
associations could be weak, but the difference between these scores can reveal gender bias, where the
profession may show varying inclinations toward males and females. When examining the disparity
in association scores between <female> and <male> with respect to a particular profession, this
difference can be interpreted as a measure of gender bias in occupational associations. As such, this
metric serves as a more relevant and intrinsic measure of gender bias, specifically addressing how
professions are biased in their associations with gender.
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To aid in understanding, we conducted an experiment in Table 17, which (U)NC3 was optimized in
BEC using different sets of words. The results demonstrate that both gender and profession words
can reduce the association scores. However, regularizing (U)NC3 using gender-specific words leads
to a reduced distinction between female and male associations (i.e., a decrease in the difference),
whereas regularizing with profession words actually escalates the gender bias.

Table 17: More results on BEC-Pro. We train BEC by utilizing different word lists (gender/profession)
for (U)NC3. α = 10 (Eq. 7)

Model Female Male Diff ↓

BEC 0.0841 0.1349 0.0508
BEC+(U)NC3 ON GENDER 0.0632 ↓ 0.1103 ↓ 0.0471 ↓
BEC+(U)NC3 ON PROFESSION 0.0429 ↓ 0.1200 ↓ 0.0771 ↑

G ABSOLUTE CHANGES OF NC AFTER DEBIASING

From Figure 3, it is evident that NC is more sensitive to fairness-related words, such as gender.
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Figure 3: Absolute changes of NC metrics after debiasing Mabel, ASE, BEC. Values used in these
plots are based on Table 1, Table 2, and Table 3.
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