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1. Introduction
The rapid advancement of deep learning has

significantly improved image processing capabili-
ties, facilitating research in environmental science.
For instance, convolutional neural networks (CNNs)
have been employed to automate the identifica-
tion of microplastics in images, enhancing effi-
ciency. However, this progress introduces a new
challenge—the demand for compact and lightweight
models suitable for real-world environmental appli-
cations. Researchers in the environmental domain
often lack the computational resources and exper-
tise to deploy large-scale deep learning models, ne-
cessitating alternative lightweight solutions for im-
age processing tasks. To address this limitation, we
proposed UEMNet, a lightweight general-purpose
Convolutional Neural Network designed for efficient
image analysis in environmental field. The main
novelties behind the UEMNet includes (1) the use
of octave convolutions over standard convolutions,
(2) a simple parameter-free attention module, and
(3) an ingenious integration of both U-Net++ and
UNet3+. We intend to evaluateUEMNETon two envi-
ronmental tasks: microplastic image segmentation
and remote sensing image segmentation. Although
our proposed model has yet to undergo experimen-
tal validation, its theoretical design already presents
several advantages over existing architectures, thus
making it a promising alternative for environmental
applications.

2. Related work
2.1 U-Net++ and UNet3+
U-Net++ is an upgrade of the ubiquitous U-Net [1]

where the simple skip connections are replaced by
nested, dense skip connections togetherwith the use
of deep supervision, which gives the U-Net++ the
ability to undergo model pruning to yield a smaller
and yet functional model when necessary [2].
UNet3+ is a further improvement over U-Net++

in which (1) full-scale skip connections replaced the
nested, dense skip connections, (2) use of deep su-
pervision on feature maps of different resolution
from decoder network and (3) use of a new hybrid
loss function for model training [3].

2.2 MobileNetV2
MobileNetV2 serves to improve upon Mo-

bileNetV1 [4] with the introduction of linear
bottlenecks and inverted residuals, which is built
upon the idea that feature maps inside of a CNN
can actually be represented by manifolds that exist
in lower-dimensional subspaces, which is well
represented by the use of bottleneck layers [5].

2.3 Octave convolutions
In Octave convolutions, the input feature maps

are first decomposed into a high-frequency factor
and a low-frequency factor by a user pre-determined
ratio, after which the low-frequency factor is then
downsampled to reduce the feature map size to save
on computational resources while maintaining all
the low-frequency information. Information update
between input and output factors of the same fre-
quency, and information exchange between input
and output factors of different frequencies occur si-
multaneously via the use of standard convolutions
[6].

2.4 SimAMmodule
The Simple, Parameter-Free Attention Module

(SimAM) is modelled after how the attention mech-
anism works in the human brain, and serves as an
upgrade over existing attention modules which fo-
cuses either on the channel domain or spatial do-
main, corresponding to the feature-based attention
and spatial-based attention mechanism in the hu-
man brain respectively [7], by integrating these two
mechanisms together via the use of 3-D weights to
generateweights for eachneuron [8]. In fact, SimAM
does not introduce additionalmodel parameters ow-
ing to its simple design, whichmakes it practical and
easily implementable for many scenarios.

3. Network architecture
In this section, we discussed the main ratio-

nales behind the design of our proposed model, the
U-Environ-MobileV2-Net (UEMNet) for the sake of
brevity. Figure 1 provides an overview of the archi-
tecture of UEMNet.
Wemodified the nested dense skip connections in

U-Net++ to keep only the ones at the same resolution
as the input image, and also to upsample and con-
catenate the feature maps from the deeper layers di-
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Fig. 1: An overview of the proposed UEMNet architecture

rectly to the full resolution layers so that the encoder
layers can be updated directly through LU−Net++,
which is the same loss function used in [2].
In addition, we only utilize a portion of the fea-

ture maps from the higher resolution for computing
the loss function instead of all resolutions as in [3],
and also a portion of the feature maps from the full
resolution feature maps instead of all feature maps
as in [2]. This is to ensure that the updates to the
weights from the loss functions will not be too rapid
and cause the algorithm to diverge from the opti-
mum loss value.
Furthermore, the SimAM is placed before every

octave convolution (except for the case where the in-
put is the input image itself) to refine the outputs
from the featuremaps so that the octave convolution
can extract more informative features from the up-
dated feature maps [8].

4. Future work
As a next step towards validating our findings, we

intend to utilize two datasets, one from the domain
of microplastics segmentation and another from the
remote sensing domain.
MP-Set is a dataset of Nile Red-stained microplas-

tics together with annotated masks which is created
and introduced for the study of using U-Net with
ResNet-101 encoder for the semantic segmentation
of microplastics from microscopy fluorescence im-
ages [9]. It consists of a spiked and a real component,
thus making it suitable for evaluating our model in
both controlled and natural environments.
Global Building Dataset (GBD) is a dataset consist-

ing of approximately 800,000 high spatial resolution
(0.25 m) of diverse building styles worldwide which
covers all continents of the Earth except Antarctica,
hence rendering it a benchmark dataset to test the

generalization ability ofmodels in segmentingbuild-
ings from remote sensing images under all possible
environments [10].
We would also be evaluating the UEMNet against

some general and domain-specificmodels, using the
Intersection over Union (IoU), precision, recall and
F1 score as our evaluation metric.
The general models consist of base U-Net, U-

Net with ResNet-101 encoders and DeepLabV3+ [11],
while domain-specific models include U-MobileNet
[12] (simplified U-Net with MobileNetV2 structure as
encoders) in the domain of robotics navigation and
BuildTransformer [13] (Vision Transformers (ViTs)
with a dual-path structure) for building segmenta-
tion from remote sensing images.
We will publish our results in a separate journal

paper, once the experiments have been completed,
to demonstrate the efficacy and robustness of our
proposed UEMNet.
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