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ABSTRACT

Deep generative diffusion models are a promising avenue for 3D de novo molec-
ular design in materials science and drug discovery. However, their utility is still
limited by suboptimal performance on large molecular structures and limited train-
ing data. To address this gap, we explore the design space of E(3)-equivariant dif-
fusion models, focusing on previously unexplored areas. Our extensive compara-
tive analysis evaluates the interplay between continuous and discrete state spaces.
From this investigation, we present the EQGAT-diff model, which consistently
outperforms established models for the QM9 and GEOM-Drugs datasets. Signifi-
cantly, EQGAT-diff takes continuous atom positions, while chemical elements and
bond types are categorical and uses time-dependent loss weighting, substantially
increasing training convergence, the quality of generated samples, and inference
time. We also showcase that including chemically motivated additional features
like hybridization states in the diffusion process enhances the validity of gener-
ated molecules. To further strengthen the applicability of diffusion models to lim-
ited training data, we investigate the transferability of EQGAT-diff trained on the
large PubChem3D dataset with implicit hydrogen atoms to target different data
distributions. Fine-tuning EQGAT-diff for just a few iterations shows an efficient
distribution shift, further improving performance throughout data sets. Finally,
we test our model on the Crossdocked data set for structure-based de novo ligand
generation, underlining the importance of our findings showing state-of-the-art
performance on Vina docking scores.

1 INTRODUCTION

The enormous success of machine learning (ML) in computer vision and natural language process-
ing in recent years has led to the adaptation of ML in many research areas in the natural sciences,
such as physics, chemistry, and biology, with promising results. Specifically, modern drug discov-
ery widely utilizes ML to efficiently screen the vast chemical space for de novo molecule design
in the early-stage drug discovery pipeline. An important aspect is the structure-based or target-
aware design of novel molecules in 3D space (Schneuing et al., 2023} Guan et al., 2023}, Stark et al.,
2022; Corso et al., [2023). However, incorporating the 3D geometries of molecules for rational and
structure-based drug design is challenging, and the development of ML models in this domain is
anything but easy, as these models need to function with just a limited amount of data to learn
physical rules in 3D space accurately. Fortunately, applying geometric deep learning to molecule
generation has gained attention in the scientific community in recent years, paving the way for in-
novative approaches. These result in diffusion models quickly becoming state-of-the-art in this area
due to their ability to effectively learn complex data distributions (Hoogeboom et al.| [2022} |Igashov
et al., 2022; |Schneuing et al., [2023} |Vignac et al., [2023} |Guan et al., |2023). While this has enabled
researchers to develop generative models for molecular design that can sample novel molecules in
3D space, several drawbacks and open questions remain prevalent for practitioners. Molecule gener-
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ative models are required to both generate realistic molecules in 3D space and preserve fundamental
chemical rules, i.e., correct bonding and valencies. Various design decisions have to be taken into
account that heavily impact the performance and complexity of those models. Hence, there is a high
need to better understand the design space of diffusion models for molecular modeling. Moreover,
the availability of molecular data is not as abundant, confronting ML models with relatively narrow
and specific data distributions. That is, ML models are usually trained explicitly for each data set,
which is unfavorable regarding the efficient use of training data and computing resources.

This work introduces the E(3)-equivariant graph attention denoising neural network EQGAT-diff.
We systematically explore the design space of 3D equivariant diffusion models, including various
parameterizations, loss weightings, data, and input feature modalities. Beyond that, we explore an
efficient pre-training scheme on molecular data with implicit hydrogens. This enables a data- and
time-efficient training and fine-tuning procedure leading to higher molecule stability. Our contribu-
tions are the following:

* We propose EQGAT-diff — a fast and accurate 3D molecular diffusion model that employs
E(3)-equivariant graph attention. Our proposed model achieves SOTA results in shorter
training time and with less trainable parameters than previous architectures.

* We systematically explore various design choices for 3D molecular diffusion models and
provide a thorough ablation study across the popular benchmark sets QM9 and GEOM-
Drugs. We propose a time-dependent loss weighting as a crucial component for fast training
convergence, better inference speed, and sample quality.

* We demonstrate the transferability of an EQGAT-diff model pre-trained on the PubChem3D
dataset to smaller but complex molecular datasets. After a short fine-tuning on the target
distribution, we show that the model outperforms models trained from scratch on the target
data by only training on subsets.

* We extend the diffusion process by modeling chemically motivated additional features and
show a further significant increase in performance.

In summary, we found the following ingredients to be crucial: E(3)-equivariant graph attention,
time-dependent loss weighting, unconditional pretraining on large databases comprising 3D con-
formers like PubChem3D, and adding chemical features like aromaticity and hybridization state as
feature input to the denoising diffusion model.

2 RELATED WORK

Denoising diffusion probabilistic models (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Kingma et al., [2021; [Song et al., [2021b)) have achieved great success in various generation tasks
due to their remarkable ability to model complicated distributions in the image and text processing
community (Popov et al., 2021; Kong et al., [2021; Salimans & Hol 2022; Rombach et al., 2022;
Karras et al) 2022} [Li et al.l 2022} Kingma & Gao}, 2023). Deep generative modeling in the life
sciences has become a promising research area, e.g., conditional conformer generation based on the
2D molecular graph, in which (Mansimov et al.,2019; Simm & Hernandez-Lobato, |2020) leverage
the idea of variational autoencoders, while recent work by (Xu et al 2022} Jing et al.| [2022) use
DDPMs, to predict the 3D coordinates with the help of 3D equivariant graph neural networks. In
the de novo setting, another line of research focuses on directly generating the atomic coordinates
and elements, using either autoregressive models (Gebauer et al., |2019; [2022; Luo & Ji, [2022),
where atomic elements are generated one by one sequentially, or neural learning algorithms based
on continuous normalizing flows (Satorras et al., [2021) that are computationally expensive due to
the integration of an ordinary differential equation, leading to limited performance and scalability
on large molecular systems. Diffusion models offer efficient training by progressively applying
Gaussian noise to transform a complex data distribution to approximately tractable Gaussian prior,
intending to learn the reverse process. [Hoogeboom et al.| (2022) introduced E(3) equivariant dif-
fusion model (EDM) for de novo molecule design that simultaneously learns atomic elements next
to the coordinates while treating chemical elements as continuous variables to utilize the formal-
ism of DDPM. Follow-up works leverage EDM and develop diffusion models for linker design
(Igashov et al.}2022)) or ligand-protein complex modeling (Schneuing et al.l 2023)). Another line of
work leverages the formalism of stochastic differential equations (SDEs) (Song et al.| [2021b) and
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Schroedinger Bridges with extension to manifolds (De Bortoli et al., 2021} 2022)) to generating 3D
conformer of a fixed molecule into a protein pocket (Corso et al., 2023), while (Wu et al., [2022)
modifies the forward diffusion process to incorporate physical priors.

3 BACKGROUND

Problem Formulation and Notation We investigate the generation of molecular structures in a
de novo setting, where atomic coordinates, chemical elements, and the bond topology are sampled.
A molecular structure is given by , where the vertices V = (vy, ..., vy) refer to the N atoms. Each
vertex is a tuple v; = (r;, h;) comprised of the atomic coordinate in 3D space r; and chemical

element h;. The latter is one-hot encoded for K elements, i.e., h; = (0,0,...,1, O)T. The edges
F = (eij)f\szo describe the connectivity of the molecule, where each edge feature can take five
distinct values, namely the existence of no bond or a single-, double-, triple- or aromatic bond
between atom ¢ and j. Additionally, we exclude self-loops in our data representation. We write
node features as matrices X € RV*3 and H € {0, 1}V*X, while the bond topology is given by
E € {0,1}V*N*5 We aim to develop a probabilistic model that is invariant to the permutation of
atoms of the same chemical element and roto-translation of coordinates in 3D space. That means,
regardless of how atom indices in the node-feature matrix H are shuffled and coordinates X roto-
translated, the probability for a molecular structure X’ remains unchanged.

3.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Discrete-time diffusion models (Sohl-Dickstein et al., |2015; [Ho et al., 2020)) are latent variable gen-
erative models characterized by a forward and reverse Markov process over T steps. Given a sample

from the data distribution z¢ ~ ¢(xg), the forward process q(z1.7|xo) = ]_[thl q(x¢|xi—1) trans-
forms it into a sequence of increasingly noisy latent variables z1.7 = (z1, Z2,...,27) and z; € X.

The learnable reverse Markov process pg(xo.7) = p(z1) H?:l po(x¢—1|x4) is trained to gradually
denoise the latent variables approaching the data distribution. [Sohl-Dickstein et al.| (2015) initially
proposed a diffusion process for binary and continuous data, while the latter consists of Gaussian
transition kernels. The learning process for discrete data has been introduced by |Hoogeboom et al.
(2021) and |Austin et al.| (2021)), leveraging categorical transition kernels in the form of doubly
stochastic matrices. Crucially, both forward processes define tractable distributions determined by
a noise schedule {3t}7_,, such that the reverse generative model can be trained efficiently. As
molecular data consists of atoms, bonds, and 3D coordinates, recent work leverages a combination
of Gaussian and categorical diffusion for 3D molecular generation (Peng et al., [2023}; |Vignac et al.
2023} |Guan et al.l 2023). A subtle property of tractable transition kernels is that the distribution of a
noisy state conditioned on a data sample is also tractable, and for continuous or discrete data follows
a multivariate normal or categorical distribution

q(x¢|x0) = N (x¢|Vauxo, (1 — a)I) and q(ci|co) = C(elaueo + (1 — ay)€), (D

where &; = [t_,(1— %) € (0,1), and (1—a;) determine a variance-preserving (VP) noise sched-
uler|Song et al.|(2021b). The vector ¢ with ¢T1x = 1 determines the prior distribution of the cate-
gorical diffusion, as @z — 0. Possible prior distributions are the uniform distribution over K -classes
or the empirical distribution of categories in a dataset. In this work, we perturb atomic coordinates
X, chemical elements H, and edge features E independently, using Gaussian and categorical diffu-
sion. To conserve the edge-symmetry between atoms ¢ and j, we only perturb the upper-triangular
elements of E. Diffusion models are trained by maximizing the variational lower-bound of the data
log-likelihood (Sohl-Dickstein et al., 2015; Kingma et al., 2021; |Austin et al.,|2021) decomposed as
logp(z) > Lo + Lprior + Ef:f Ly, where Lo = log p(wo|r1) and Lyior = —Drr(q(zr[p(27))
denote the reconstruction, and prior loss. These two loss terms are commonly neglected during op-
timization, while the diffusion loss Ly = —Dgr[q(2¢—1|zt, o) |po(2¢—1|z¢)] has a closed-form ex-
pression since g(x¢_1|z¢, 2o) is either a multivariate normal or categorical distribution, enabling ef-
ficient KL divergence minimization by predicting the corresponding distribution parameters. These
are defined as a function of x; and x(, implying that the diffusion model is tasked to predict the
clean data sample % to optimize L; (Ho et al.,[2020; [Austin et al., 2021).
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4 EQGAT-DIFF

An essential requirement to obtain a data-efficient model is to reflect the permutational symmetry of
atoms of the same chemical element and the roto-translational symmetries of 3D molecular struc-
tures. In machine learning force fields, it has been shown that rotationally invariant features alone
do not accurately represent the 3D molecular structure and hence require higher-order equivariant
features (Schiitt et al., 2021} |Batzner et al., 2022; Tholke & Fabritiis, 2022} [Batatia et al., [2022).

In short, a function f : X — ) mapping from input space X" to output space ) is equivariant to
the group G iff f(g.z) = g.f(x), where g. denotes the action of the group element ¢ € G on an
object x,y € X, ). As graph neural networks operate on graphs and map nodes into a feature space
through shared transformations among all nodes, permutation equivariance is naturally preserved
Bronstein et al.| (2021)). In contrast, point clouds are embedded in 3D space, so we additionally con-
sider the rotation, reflection, and translation group in R3, often abbreviated as E(3). For the atomic
coordinates, we require that f(XQ + t) = f(X)Q + t, where Q € O(3) is a rotation or reflection
matrix and t € R? a translation vector added row-wise. Group equivariance of a function f in the
context of a diffusion model for molecular data is a requirement to preserve the group invariance
for a probability density, as shown by Kohler et al.| (2020) and Xu et al.| (2022)). To better address
the challenge of molecular modeling, we propose a modified version of the EQGAT architecture
Le et al.|(2022), coined EQGAT-diff, which leverages attention-based feature aggregation of neigh-
boring nodes. EQGAT-diff employs rotation equivariant vector features that can be interpreted as
learnable vector bundles, which the denoising networks of EDM Hoogeboom et al.[(2022) and MiDi
Vignac et al.| (2023) are lacking. Point clouds are modeled as fully connected graphs, so message
passing computes all pairwise interactions. Equivariant vector features are obtained through a tensor
product of scalar features with normalized relative positions xj; ) = m (xj —x;) as similarly

proposed in the works of Jing et al.| (2021)) and |Schiitt et al.| (2021). We iteratively update hidden
edge features within the EQGAT-diff architecture to handle the edge prediction between two atoms.
To achieve this, we modify the message function of EQGAT as

(l) MLP([h;l); hgl); wWe @. d -d @. d(l (l pgl)D

50J17j1,1j77,7
where ; denotes concatenation of E(3) invariant embeddings and MLP is a 2-layer multi-layer per-

ceptron. The message embedding mgl) = ( (l) b(ll)7 gll)’ dgll), a ))T € RX is further split into
sub-embeddings that serve as filter to aggregate node information fzrom all other source nodes j.

20
ex

h(*) = +§ p( () )Wﬁf)h;” and et = W0o(el!) +d),
/GXp
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where 1 = (1,1,1)T and o is the SiLU activation function. The embeddings are further updated
and normalized with details explained in the Appendix

5 EXPLORING THE DESIGN SPACE OF 3D MOLECULAR DIFFUSION MODELS

The design space of diffusion models has many degrees of freedom concerning, among others,
the data representation, training objective, forward inference process, and the denoising neural
network. In de novo 3D molecular generation, Hoogeboom et al.| (2022) (EDM) utilized the e-
parameterization and proposed to model chemical elements as well as atomic positions continuously.
Vignac et al.|(2023) proposed MiDi, which generates the molecular graph and 3D structure simulta-
neously. This model uses the z¢-parameterization and employs the framework developed by |Austin
et al.| (2021) to model not only chemical elements but also formal charges and bond types in dis-
crete state space. Both parameterizations optimize the same objective, i.e., aiming to minimize the
KL divergence Dy r[q(z¢—1|Tt, 2o)|po(2¢—1]z¢)]. Ho et al|(2020) found that optimizing the dif-
fusion model in noise-space on images results in improved generation performance than predicting
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Table 1: Comparison of EQGAT-diff on QM9 and GEOM-Drugs trained with w,, or ws(t) loss-
weighting. We report the mean values over five runs of selected evaluation metrics with the margin
of error for the 95% confidence level given as subscripts. The best results are in bold.

QM9 GEOM-Drugs
Weighting \ Mol. Stability T Validity ¥ Connect. Comp. 1 \ Mol. Stability T Validity T Connect. Comp. 1
Wy, 97.3940.23 97.9940.20 99.7040.03 87.594019 T1.4410.92 86.5740.33
wg(t) 98.6810.11  98.96.0.07 99.94..0.03 91.6010.14 84.0210.19 95.08.10.12

the original image from a noised version. While noise prediction might benefit the image domain,
this does not necessarily generalize to 3D molecular data. In fact, MiDi outperforms EDM across
all standard benchmark metrics and datasets. However, whether the improved performance stems
from the x(-parameterization, the employment of categorical diffusion for discrete features, or using
bond types and other chemical features has still been unclear, leaving researchers and practitioners
guessing which kind of diffusion model to deploy in their respective tasks.

In this section, we explore the design space of de novo molecular diffusion models in these three
aspects while consistently using EQGAT-diff as the denoising neural network to isolate the effect
of each change for better comparison. The diffusion models are evaluated on the QM9 dataset
(Ramakrishnan et al.,|2014) containing molecules with up to 9 heavy atoms, and the GEOM-Drugs
dataset (Axelrod & Gémez-Bombarelli, 2022)) containing up to 15 heavy atoms. We utilize the data
splits from |Vignac et al.|(2023)) and benchmark all models on full molecular 3D graphs that include
explicit hydrogens.

5.1 TRAINING DETAILS

We either employ noise prediction (e-parameterization) or data prediction (zg-parameterization)
to train EQGAT-diff , such that the group equivariant network fy(x;) receives a noisy molecule
x¢ = (X4, Hy, E;) and either outputs the applied noise é; = (€x,, €m,, €g, ) or a prediction of the
clean data zo = (Xo, I:IO,]:JO) of coordinates, chemical elements as well as bonds. We draw a
random batch of molecules and uniformly sample steps ¢ € /(1,T) and optimize the diffusion loss
L, for each sample. While we use the mean squared error loss for the e-model, the xy-model is
optimized using loss functions /; depending on the data modality d. Here, [4 is a mean squared error
for continuous and the cross-entropy loss for categorical data. This leads to a composite loss

Li.=w(t)||e — €9<.’L‘t,t)”2 and Ly 0 = w(t) - la(zo, Zo(ze,1); Am), )

where \,, denotes a modality-dependent weighting, which we adopt from [Vignac et al.| (2023)) and
setto A\, = 3, \;, = 0.4, A\ = 2. For noise learning, we adopt an atom-type feature scaling of 0.25
as in[Hoogeboom et al.[(2022)). Notably, w(t) is a loss weighting commonly set to 1 across all time
steps, which has been previously found to work best (Ho et al., 2020). In contrast to this result, we
find this term to be crucial for molecular design, as discussed in Sec. [A.4] Following [Vignac et al.
(2023)), we also employ an adaptive noise schedule (see Appendix [A.T.I).

5.2 METRICS

Following (Hoogeboom et al.l 2022), we measure validity using the success rate of RDKit sani-
tization over 10,000 molecules (pre-selecting connected components only) - with the caveat that
the RDKit sanitization might add implicit hydrogens to the system to satisfy the chemical con-
straints. Therefore, checking atomic and molecular stability for the correct valencies using a pre-
defined lookup table that complements the validation is essential. Further, we propose to include
diversity/similarity measures. We evaluate the diversity of sampled molecules using the average
Tanimoto distance and measure the similarity with the training dataset via Kullback-Leibler diver-
gence and the Tanimoto distance. Lastly, following [Vignac et al.| (2023), we use the atom and bond
total variations (AtomsTV and BondsTV) that measure the /; distance between the marginal distri-
bution of atom types and bond types for the generated set and the test set, respectively. Moreover,
we employ the Wasserstein distance between valencies, bond lengths, and bond angles, with the
latter two being 3D metrics to evaluate conformer accuracy. For more details, we refer to [Vignac
et al.|(2023) and Appendix
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Kingma et al| (2021)) have shown that the intermediate KL-divergence loss L, in the variational
lower bound (VLB) for a Gaussian diffusion can be simplified to

1 1
Ly = 5 (w(t))llzo = wo(ws, )I5 = GEenn(o.n[(SNR(t = 1) = SNR(#))[|z0 — w0 (1, 1)][3];
where SNR(t) = 12-“ refers to the signal-to-noise ratio. However, the weighting coefficients in

diffusion models for molecules are commonly set to 1, i.e., w,, = 1 in EDM or MiDi (Hoogeboom
et al.,[2022; |Vignac et al., [2023)).

We hypothesize that denoising requires high accuracy for timesteps close to the data distribution
to generate valid molecules, while errors close to the noise distribution are neglectable. Such loss
weighting has been proposed by [Salimans & Ho| (2022)) as ’truncated SNR’, which we modify for
our use case. Specifically, we perform experiments with the loss weighting

we(t) = max(0.05, min(1.5, SNR(%))), 3)

which matches our hypothesis about learning with higher weightings approaching the data distri-
bution (see [A.4.T and Fig. [5). We clip the maximum value of 1.5 to enforce larger weightings to
enhance learning compared to uniform weighting, followed by an abrupt exponential decay. We train
EQGAT-diff using Gaussian diffusion on atomic coordinates and categorical diffusion for chemical
elements, formal charges, and bond features following the parameterization proposed by |[Vignac
et al.| (2023)), predicting a clean data sample Z( given a noisy version x;. As shown in Table(l} train-
ing EQGAT-diff on GEOM-Drugs with ws(t) results in a better generative model that can sample
molecules preserving chemistry rules, measured in increased molecule stability of 91.60%, com-
pared to the EQGAT-diff which was trained with w,,, only achieving 87.59%. As the w,(¢) loss
weighting achieved better evaluation metrics and significantly faster training convergence on the
QM9 and GEOM-Drugs datasets, we choose it as default for the following experiments conducted
in this work. We provide further empirical evidence in Appendix

Table 2: Overall performance of EQGAT-diff on QM9 and GEOM-Drugs for discrete and continuous
diffusion as well as noise (¢) and data learning (z(). Discrete or continuous diffusion is denoted as
’disc’ and ’cont’, respectively, given as subscripts, e- and xg-parameterization as superscripts. We
report mean values over five sampling runs with 95% confidence intervals as subscripts. The best
results are in bold.

Dataset QM9 GEOM-Drugs

Model EQGATY,. EQGATZ, EQGAT: | EQGAT;, EQGAT:, EQGAT:,.
Mol. Stab. 1 98.68.10.11 96.4540.17 96.18+0.16 91.6040.14 90.4640.09 85.1940.72
Atom. Stab 1 99.92.¢.00 99.79+0.01 99.68+0.02 99.7210.01 99.7310.01 99.3240.04
Validity 98.96.0.07 96.79+0.15 97.0440.17 84.0240.19 80.96-+0.38 79.1340.58
Connect. Comp. 1 99.94. .03 99.8210.05 99.7140.03 95.08.0.12 93.30+0.21 94.1040.48
Novelty 64.03+0.24 60.96-+0.54 73.40-0.32 99.87+0.04 99.83.10.04 99.8240.0
Uniqueness T 100.00-0.00 100.010.00 100.0010.00 | 100.0010.00 100.0010.00  100.00-+0.00
Diversity 1 91.72+0.02 91.51+0.03 91.89-0.03 89.00-10.03 88.87+0.04 88.97+0.05
KL Divergence 1 91.36.£0.29 91414054 88.97+0.31 87.1710.34 87.35+0.35 87.70-10.58
Train Similarity | 0.076-+0.00 0.076-+0.00 0.075+0.00 0.1134.0.00 0.11410.00 0.114+0.00
AtomsTV [107?] 4 1.0+0.00 2.0+0.00 2.7+0.00 3.4+0.10 3.6+0.10 2.9+0.20
BondsTV [1072] 4 1.240.00 1.840.00 1.240.00 2.4.40.00 2.4.10.00 2.410.00
ValencyW; [1072] | 0.6+0.10 1.9+0.00 0.9+0.00 1.240.10 1.940.10 1.610.00
BondLenghtsWy [1072] ] 0.210.10 0.540.00 0.250.10 0.240.10 0.310.00 0.740.40
BondAnglesW: | 0.4210.03 1.86+0.06 0.5210.03 0.9210.02 0.95+0.02 1.07 £0.06

5.3 DIFFUSION PARAMETERIZATION: € VS g AND DISCRETE VS CONTINUOUS

Diffusion models for continuous data are commonly implemented using the e-parameterization [Ho
et al.| (2020), which is connected to denoising score matching models proposed by [Song & Ermon
(2019). Diffusion models have quickly adapted this setting for 3D molecular design (Hoogeboom
et al.| [2022; [gashov et al., 2022} [Schneuing et al., |2023). However, no comparative study of x
and e-parameterization in this domain has been performed yet. To close this gap, we benchmark the
e- vs. the xp-parameterization on data modalities subject to a Gaussian diffusion. That is, we treat
all node features (including atomic elements, charges, and coordinates) as well as the bond features
as continuous variables and optimize our diffusion model using either the e- or xy-parameterization
with the loss functions defined in Eq. ().
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Figure 1: Selected evaluation metrics for EQGAT-diff trained on GEOM-Drugs subsets (25, 50,
75%) from scratch or fine-tuned. We also report the results of the pre-trained, not fine-tuned model
(0%).

In the following, we abbreviate EQGAT-diff with EQGAT to keep the notation clear, depicting
the diffusion type subscripted and the parameterization superscripted. Table 2] shows that the (-
parameterization (EQGATZ? ,) achieves higher molecule stability on QM9 and GEOM-Drugs than
the e-parameterization (EQGATS,,;). The performance gap is pronounced on the GEOM-Drugs
dataset, which covers a broader range of larger and more complex molecules. On this more de-
manding benchmark, EQGAT®? . outperforms the e-model with 90.46% molecule stability against
85.19%. The lower molecule stability for the e-model is due to the molecular graph not being ac-
curately denoised during the sampling. Thus, the final edge features do not preserve the valency

constraints of the chemical elements.

Next, we compare how the choice of categorical or Gaussian diffusion for modeling the chemical
elements, charges, and edge features affects the generation performance. Recall that the noising pro-
cess in the categorical diffusion perturbs the one-hot encoding of discrete features by jumping from
one class to another, or staying on the same class. Alternatively, noise from a multivariate normal
distribution is added to the (scaled) one-hot encodings, as described in Eq. (T). For both settings, the
diffusion models (EQGAT}?, . and EQGAT,S,,) are tasked with predicting the original data point
Tq, as there is no e-parameterization when employing categorical diffusion. The previous ablation
has shown that data prediction is superior to noise prediction when dealing with molecular data in
a continuous setting. We discover that EQGAT?_ . outperforms EQGAT?),,, in all evaluation met-
rics on the QM9 and GEOM-Drugs dataset as shown in Table [2| Hence, employing the categorical
diffusion for discrete state-space in the xy-parameterization is the preferred choice.

6 TRANSFERABILITY OF MOLECULAR DIFFUSION MODELS

In many molecular design scenarios, only a limited amount
of training data is available for a desired target distribution,
e.g., in structure-based drug design. However, 3D generative
molecular diffusion models require a lot of training data to
yield a high ratio of valid and novel molecules. This sec-
tion investigates how well a diffusion model pre-trained on
a general large set of molecules transfers to a target distri-
bution specified by a small training set of complex molecu-
lar structures. We use the PubChem3D dataset [Bolton et al. T EQGATS.
(2011) for pre-training, which consists of roughly 95.7 mil- 20 30 4‘0Nm5£) o S?ang 80 90
lion compounds from the PubChem database. It includes all

molecules with chemical elements H, C, N, O, F, Si, P, S, Cl,
Br, and I with less than 50 non-hydrogen atoms and a max-
imum of 15 rotatable bonds. The 3D structures have been
computed using OpenEye’s OMEGA software (Hawkins &
Nicholls, 2012). We train EQGAT-diff on PubChem3D on
four Nvidia A100 GPUs for one epoch (~ 24 hours). In-
terestingly, we found that by reducing the size of molecular
graphs using only implicit hydrogens, we could reduce the
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generated molecules with an increas-
ing number of atoms. Standard devi-

ations are plotted in shaded areas.
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Table 3: Comparison of EQGAT ;5. models trained for 800 epochs on GEOM-Drugs. The super-
scripts *ft” and ’af’ abbreviate fine-tuned and additional-features. The margin of error for the 95%
confidence level is given as subscripts. We also compare EDM and the current SOTA, MiDi. Train-
ing details for MiDi are given in Appendix @ The best results are in bold.

Dataset GEOM-Drugs

Model EQGATZ, EQGAT:/" EQGAT::*/ EQGAT:’*//' | EDM MiDi
Mol. Stab. 1 93.1140.31 93.9240.13 94.51 1015 95.01.10.37 40.3 89.7+0.60
Atom. Stab 1 99.7910.01 99.81.10.01 99.83 10.01 99.84 .00 97.8 99.710.01
Validity 1 85.8640.33 88.04.0.17 87.8940.31 88.42. .26 87.8 70.540.41
Connect. Comp. T 96.32.1(.05 96.57 1018 96.36.10.25 96.71.10.00 414 88.76.0.55
Novelty T 99.8240.05 99.84 10.02 99.82.10.05 99.8210.03 | 100.00  100.00.0.00
Diversity 89.03.10.03 89.05.0.05 88.98..0.02 88.96..01 - -
KL Divergence 1 87.66+0.31 87.5840.56 88.38.10.05 87.6210.19

Train Similarity | 0.114 4100 0.113.0 0.114 0.0 0.114 0.0 - -
AtomsTV [107‘21 4 3.0240.08 3.0240.10 2.88.40.10 2914010 21.2 5114019
BondsTV [1072] | 2444001 2.40.0.00 24240.00 2.40.40.00 4.8 244 0.00
ValencyW, [1072] | 1.1840.09 1.2040.00 0.8540.12 0.90.10.10 28.5 248052
BondLenghtsW; [1072] | 0.5640.38 0.10-0.00 0.5010.51 0.2040.10 0.2 0.2+0.10
BondAnglesW; | 0.8310.03 0.794£0.02 0.6510.01 0.62.10.01 6.23 1.7310.32

pre-training time significantly without sacrificing performance in fine-tuning. For a comparison to
keeping explicit hydrogens in the pre-training, see Appendix [A.5] During fine-tuning, the diffusion
model is tasked to adapt to the distribution of another dataset, now including explicit hydrogens.

To evaluate the effectiveness of pre-training, we fine-tune subsets of (25, 50, 75%) of the QM9 and
GEOM-Drugs datasets. Our results suggest that using a pre-trained model and subsequent fine-
tuning shows consistently superior performance across datasets, partly by a large margin (see Fig.
[I). We demonstrate the importance of pre-training by evaluating molecule stability, validity, and
the number of connected components of a fine-tuned model compared to training from scratch on
the full data and its 25, 50, 75% subsets. As a reference point (0%), we show the pre-trained model
without fine-tuning evaluated on the aforementioned metrics. Interestingly, the fine-tuned model
shares similar (best) scores with EQGAT??_ _ trained from scratch on 100% of the data when looking
at atom type variation and valency as well as angle distance metrics using a hold-out test set as a
reference. These metrics capture how well the model learns the underlying data distribution.

We find that the fine-tuned model effectively learns a distribution shift on GEOM-Drugs by only
being trained on small subsets of the data. We list more detailed evaluation metrics and the evalu-

ation on QM9 in Appendix Comparing the fine-tuned model EQGATE?S{ " with EQGAT?_ .,
and EQGAT??, ,, respectively, shown in Fig. 2| we can also observe that the fine-tuning leads to
significantly more stable predictions for larger molecules. We suspect that these findings might also
apply to learning building blocks on large databases like the Enamine REAL Space to bias the gen-
erative model towards, e.g., higher synthesizability while ensuring an efficient distribution shift on
the target distribution.

7 INSERTING CHEMICAL DOMAIN KNOWLEDGE

In the previous sections, we examined and outlined the importance of design choices when em-
ploying diffusion models for 3D molecular generation. Taking these results, we select the best two

models - with and without fine-tuning: EQGAT:”O’f " and EQGATZ? - and train them to full con-

disc disc

vergence, comparing with EDM and MiDi. We demonstrate in Tab. that EQGATIO’f * and even

disc

more so EQGAT?:* and EQGATZ://* outperform MiDi on all evaluation metrics by a large
margin, while, most notably, our models converge significantly faster and are twice as fast compu-
tationally (see Appendix [A.6). Given the demonstrated ability of diffusion models to learn the data
distribution of complex molecular structures, we insert more chemical domain knowledge into the
diffusion model, going beyond bonding. We additionally utilize aromaticity, ring correspondence,
and hybridization states to provide a more comprehensive description of the molecular structure.
The new additional features are independently perturbed using the categorical transition kernels (see
Eq. (1)) and subsequently denoised by our model. We observe that these additional chemical fea-
tures again improve the performance of our models (EQGAT%:*/ and BQGAT%::*"/*) compared
to our previous models as well as EDM and MiDi.
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8 STRUCTURE-BASED DE NOVO LIGAND DESIGN

We train EQGAT-diff on the Crossdocked dataset|Francoeur et al.[(2020) for de novo structure-based
ligand design. Following (Guan et al [2023) and (Schneuing et al., 2023)), we consider the protein
pocket as a condition to generate novel ligands. Here, the pocket is seen as a fixed 3D context, while
the ligand’s coordinates, atom and bond types get diffused and denoised. In Tab. 4] we report the
validity, number of connected components as well as the Wasserstein distances of bond lengths and
angles between generated set to the training set, respectively. We observe that the finetuned model
with timestep loss weighting significantly outperforms the models that are trained from scratch on
all metrics. For the models trained from scratch, using timestep weighting shows better performance
than no loss weighting. These results further underline the relevance of our findings allowing for an
effective transfer of our model to structure-based molecule generation.

Table 4: Comparison of EQGAT-diff models trained on the Crossdocked dataset for pocket-
conditioned de novo ligand generation. EQGATZ%"__ and EQGATZ,?;{ " are compared with and with-

disc
out loss weighting, each trained for 300 epochs. Mean values are reported over five runs of selected
evaluation metrics with the margin of error for the 95% confidence level given as subscripts and best

results in bold.

Model Validity Connect. Comp. T BondLengths W1 [1072] |  BondAngles W1 |
EQGATZ, .(wy) 85.51£0.00 95.1540.14 0.20+0.0 4.371£0.20
EQGAT%Y. .(ws(t))  89.6210.08 97.65+0.11 0.1210.0 2.1240.26
EQGATS T (w,(t))  95.6510.12 99.66-0.10 0.1110.0 1.5510.21

Based on these results, we sample ligands from EQGAT;;?&ZZ * for docking. Following [Luo et al.

(2021), [Peng et al.| (2022)), we draw 100 valid ligands per protein pocket and evaluate them using
Vina (Hassan et al., 2017) as an empirical proxy of the ligand binding affinity. As shown in Tab. [5]

EQGATmO’f ¢ outperforms both TargetDiff|Guan et al.|(2023) and DiffSBDD |Schneuing et al.| (2023)

disc
on the docking score and across all other metrics while generating more diverse ligands.

Table 5: Docking performance comparison between EQGAT”’O’f ¢ TargetDiff and DiffSBDD trained

disc >
on the Crossdocked dataset for pocket-conditioned de novo ligand generation. Best results in bold.

Model Vina (All) | Vina (Top-10%) | QED 1 SA 1  Lipinski T Diversity 1
EQGATg?S‘ft (ws(t))  -7.42312.33 95714214 05224018  0.697:020  4.6610.72  0.74210.07
TargetDiff -7.31842.47 -9.6691255 04831020 0.584:0.13 45941083 0.71810.00
DiffSBDD-cond -6.950+2.06 9.12042.16 04691021 05781013 4.5621089 0.72810.07

9 CONCLUSIONS

In this work, we have introduced EQGAT-diff, a framework for fast and accurate end-to-end differ-
entiable de novo molecule generation in 3D space, jointly predicting geometry, topology, chemical
composition and optionally other chemical features like the hybridization. The findings presented
here are underpinned by comprehensive ablation studies, which address a previously scientific blank
spot by thoroughly exploring the design space of 3D equivariant diffusion models. We have specif-
ically designed an equivariant diffusion model that combines Gaussian and discrete state space
diffusion. Crucially, we have incorporated a timestep-dependent loss weighting that significantly
enhances the performance and training time of EQGAT-diff and, furthermore, showcased the trans-
ferability of our model being pre-trained on PubChem3D on small datasets. Our proposed models
have significantly surpassed the current state-of-the-art 3D diffusion models, particularly in gener-
ating larger and more complex molecules, as evidenced by their high molecule stability and validity,
which evaluate that chemistry rules are preserved. Most notably, we also showcased that our frame-
work seamlessly transfers to target-conditioned de novo ligand design superior docking scores while
ensuring high diversity in samples. Given these achievements, we anticipate our findings will open
avenues for ML-driven de novo structure-based drug discovery.
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CODE AVAILABILITY

Our source code and implementation will be released under https://github.com/
pfizer-opensource/eqgat—-diff.
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A APPENDIX

A.1 MODEL DETAILS

Before message passing, we create a time embedding ¢, = % = ﬁ and concatenate those to the
geometric-invariant (scalar) features, including atomic elements and charges, to pass the timestep in-
formation into the network. After each round of message passing, we employ a normalization layer
for the position updates as proposed by [Vignac et al.|(2023), while scalar and vector features (h, v)
are normalized using a Layernorm followed by an update block using gated equivariant transforma-
tion as proposed in the original EQGAT architecture (Le et al., 2022). After L round of message
passing and update blocks, we leverage the last layers’ embeddings to perform the final prediction
To = (X H E) as shown in Flgure For the case that additional (geometric) invariant features are
modeled, 1nclud1ng the atomic formal charges, aromaticity, or hybridization state, the hidden node
matrix H includes them as output prediction by simple concatenation, i.e., predicting more output
channels.

We implement EQGAT-diff using PyTorch Geometric (Fey & Lenssen, 2019) and leverage the
(sparse) coordinate (COO) format that stores the molecular data and respective edge indices of the
fully connected graphs.

A.1.1 MODEL TRAINING

We optimize EQGAT-diff under x(y parameterization utilizing Gaussian diffusion for coordinates
and categorical diffusion for discrete-valued data modalities, including chemical elements and bond

types.
Loy = wy(t) (/\,CHXO — Xol[? + ACE(Hy, Hy) + A CE(E,, EO)), (4)

where CE refers to the cross-entropy loss and (A;, Ap, Ae) = (3,0.4,2) are weighting coefficients
adapted from Vignac et al.[(2023).

In all experiments, EQGAT-diff uses 256 scalar and vector features each and 128 edge features across
12 layers of fully connected message passing. This corresponds to 12.3M trainable parameters.

We train for 200 epochs on QM9 and 400 epochs on GEOM-Drugs to achieve comparability across
models while ensuring computational feasibility regarding many ablation experiments. We use
fewer epochs for QM9 since the diffusion models quickly overfit such that the novelty of sampled
molecules decreases. This is not the case with GEOM-Drugs.

We use the AMSGrad with a learning rate of 2 - 10~%, weight-decay of 1 - 1072, and gradient
clipping for values higher than ten throughout all experiments. The weights of the final model are
obtained by an exponential moving average with a decay factor of 0.999.

HD EW y® x@
| | |

Figure 3: Prediction module that processes EQGAT-diff embeddings to obtain the predicted data
modalities. The computational graph reads from top to bottom.
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On the QM9 dataset, we use a batch size of 128; on the GEOM-Drugs dataset, we use an adaptive
dataloader with a batch size of 800 following (Vignac et al.,|2023)). All models are trained on four
Nvidia A100 GPUs.

For training, we use an adaptive noise schedule proposed by (Vignac et al.||2023):

o~
Gt = cos (T HUT+9)"
2 1+s '

The respective scaling hyperparameter v was set to v, = 2.5,v, = 1.5,1; = 1. = 1 on the QM9
dataset. At the same time, for GEOM-Drugs we use v, = 2 with v, v, v, and v, denoting atom
coordinates, atom types, bond types, and charges, respectively. This noise scheduler accounts for
the various variables of graph and 3D structure not being equally informative for the model and has
been found by [Vignac et al.|(2023) to outperform the cosine schedule (Nichol & Dhariwal, 2021}
Hoogeboom et al., 2022) significantly.

A.1.2 MODEL SAMPLING

As mentioned in Sec. the diffusion loss term L; = —Dgr[q(zi—1|ze, 20)|po(mi—1|2)] iS
optimized by minimizing the KL-divergence. For the case of continuous data types, i.e., coordinates,
the tractable reverse distribution (Sohl-Dickstein et al., 2015 [Ho et al., [2020) is

q(xe—1|x4,%0) = N (x¢—1|pre—1(x¢, %0), By—1), (5
with g1 (x¢,%xg) = ¥ ‘f”_”(ilft Xg + \/(T”gl__jt‘l)xt and ¥;_1 = lzfgl B3:1, where we assume that

the coordinate matrix is vectorized to have shape 3N.

Sampling from that reverse distribution is obtained through the denoising network that predicts the
clean coordinate matrix to parameterize pp(x;—1|x¢) = q(x;—1|X¢, X0 ) and sample via

VariB . ol —ay M—a,
X1 = ! }ﬂtxo + il ! I)Xt + %1515  €CM, (6)
1—0[,5 1—Oét l—Oét

1 3N . . . .
where ecpq = € — sy 2l €ilsa Gaussian noise vector with zero mean.

For discrete variables, we obtain a tractable reverse distribution that is categorical |Austin et al.
2021)
q(ci—1]co, ct) = C(ci—1|pi—1(co, ct)), @)

c: U] OcoUs_y
Coﬁtc;r
transition probability to jump from state ¢ to j and is defined as

with probability vector defined as p;_1(co, ct) = where the entry [Ug|;; denotes the
Uy = (1= Bk + filxe’ = adg + (1 —a,)1xe’, ®)

while the cumulative product after ¢ timesteps starting from 1 can be simplified to
U, =U,U,... U, = aIg + (1 —ay)1gé’. )

We recall that the one-hot encoding of each node or edge is perturbed independently during the
forward process, such that the encoding c; € {0, 1}* is obtained by sampling from the categorical
distribution g(c¢|co) = C(c¢|arco + (1 — ay)€) as described in Eq. (T).

Similar to (Austin et al., [2021} Vignac et al.| 2023, we obtain the reverse process for discrete data
types by marginalizing the network predictions (for each node in the graph)

K

po(ciiles) o Y glei—iler, ex)éo k. (10)
k=1

where ej, is an one-hot-encoding with 1 at index k and ¢oj is the k-th entry in the softmaxed
probability vector &.
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A.2 METRICS

The Wasserstein distance between valencies is given as a weighted sum over the valency distribu-
tions for each atom type

ValencyW, = Z p(z)W1 (Dval(x), Dval(ﬂﬁ)) ; (11)

x € atom types

with p* (z) being the marginal distribution of atom types in the training set and Dy () the marginal
distribution of valencies for atoms of type x in the generated set and Dy, (x) the same distribution
in the test set. For the bond lengths metric, a weighted sum of the distance between bond lengths for
each bond type is used

BondLenghtsW; = Z p(y)Wr (ﬁdist(y), Ddist(y)) ) (12)

y € bond types

where p¥ (y) is the proportion of bond of types y in the training set, Dyis; (y) is the generated
distribution of bond lengths for the bond of type y, and Dyis(y) is the same distribution computed
over the test set. Lastly, the distribution of bond angles for each atom type is a weighted sum using
the proportion of each atom type in the dataset, restricted to atoms with two or more neighbors,
ensuring that angles can be defined

BondAnglesW (generated, target) = Z p(z)W, (ﬁangles(x), Dangles(x)) , (13)

T € atom types

with p¥ (z) denoting the proportion of atoms of types z in the training set, and Dypgles () the
distribution of geometric angles of the form Z (r — r;,7; — r;), where ¢ is an atom of type z, and
k and j are neighbors of ¢ (Vignac et al.| 2023).

A.3 RESULTS AND DETAILS

We visualize the empirical distribution of the number of atoms and the chemical composition for
the QM9, GEOM-Drugs, and PubChem3D datasets in Figure @] For PubChem3D, we show the
empirical distribution for the datasets with implicit and explicit hydrogens.

0-141 s PubChem3D-H 0.7 s PubChem3D-H
0.12 1 PubChem3D-noH ’ PubChem3D-noH
GEOM-Drugs 0.6 1 GEOM-Drugs

0.10 QM9 QM9

> > 0.5 1

g 0.08 A g

e Soat bl

g g L i

5 0061 5031
0.04 0.2 | I |
- i K
0.00 - Ui, : 0.0 | : I,ll,",l e

0 20 40 60 80 100 HBCNOFAISi PSClAsBr I HgBi
Number of atoms Atomic elements

Figure 4: Empirical distributions over QM9, GEOM-Drugs, and PubChem3D with implicit and
explicit hydrogens. a) Frequency for the number of atoms. b) Frequency for atomic elements.

A.4 TIME-DEPENDENT LOSS WEIGHTING
A.4.1 LosS WEIGHTING AND FINE-TUNING

In the study in Section[A 4] we conducted an ablation analysis to evaluate the efficacy of loss weight-
ing, comparing two weighting strategies denoted as w,(t) and w,,, across different subsets (25, 50,
75, and 100%) of the QM9 and GEOM-Drugs datasets. In Fig. [5] the truncated loss weighting is
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Figure 5: Comparison of EQGAT-diff trained with w,(¢) and w,,, respectively, on GEOM-Drugs. a)
Uniform (w,,) versus modified SNR(t) loss-weighting (ws(t)). b) Unweighted prediction errors for
models trained with w,, or w(t) loss-weightings over increasing timesteps. ¢) Comparison between
wy, and w,(t) regarding molecule stability convergence during training.
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Figure 6: Comparison of different models and data subsets for training on GEOM-Drugs and QM9,
respectively. The dotted, solid lines depict the fine-tuned model using w;(¢)-weighting. The solid
lines show the model using w, (t)-weighting and the dashed lines show the model trained without
loss-weighting. While training, after every 20 epochs, 1000 sampled molecules are evaluated on
molecule stability and validity.

depicted (left) besides the effect on the loss for lower timesteps illustrating the unweighted loss
over time steps for a batch of 128 molecules, where the model trained with ws(t) achieves lower
prediction error for steps closer to 1 (middle) and the effect on the molecule stability while training
showing better performance and faster training convergence for molecule stability when using w (t)
(right).

As illustrated in Figure@ applying loss weighting using w,(t) consistently results in performance
enhancements for the model. These enhancements are characterized by accelerated training conver-
gence, leading to improved molecule stability and validity, even when the model operates on smaller
subsets of the data. Notably, in the case of GEOM-Drugs, when trained with only 25% of the data
and optimized with ws(t) (indicated by the yellow solid line), the model exhibits convergence be-
havior similar to that of the model trained on 100% of the data with uniform weighting w,, (indicated
by the yellow dashed line). Furthermore, fine-tuning leads to superior performance (dotted, solid
lines). After just 20 epochs of fine-tuning and only using 25% of the data, the model already out-
performs all its counterparts on molecule stability and validity even when they are trained on 100%
of the data and holds for both the GEOM-Drugs (first row) and QM9 (second row) datasets. Our
findings, as summarized in Table @ underscore the critical role of loss weighting using w (t) in the
training of diffusion models for molecular data and also highlight the importance of pre-training,
especially when the target distributions are small and do not contain many data points.
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Table 6: Comparison of EQGAT-diff on QM9 and GEOM-Drugs trained on subsets of 25, 50 and
75% of the data. We report the mean values over five runs of Molecular Stability (Mol. Stability),
Validity, and the number of Connected Components (Connect. Comp.) for training from scratch
with and without modified SNR(t) weighting and compare it with the performance of the fine-tuned
model (SNR(t)+fine-tune). The best results are written in bold, and results with overlapping margins
of errors are underlined. The margin of error for the 95% confidence level is given as subscripts.

QM9 GEOM-Drugs
Subset | Mol. Stability Validity ~ Connect. Comp. | Mol. Stability Validity =~ Connect. Comp.
25% 96.0140.22  96.6810.24 99.59+0.05 74.1240.29  51.32410.38 68.8810.25
w 50% 96.8440.16  97.4510.15 99.7540.03 85.2040.27  64.1940.39 82.76+0.26
“ 75% 96.1940.18  96.8310.17 99.8410.03 87.08+0.33 74.2740.29 88.6910.20
100% 97.3940.23  97.9910.20 99.70+0.03 87.59+0.10 T1.4440.22 86.57+0.33
25% 97.3440.15  97.7710.09 99.81+0.03 88.39+0.39  75.4410.46 85.3540.51
ws(t) 50% 98.3240.11  98.65+0.07 99.9340.03 89.4140.26 77.2140.28 89.4340.23
s 75% 98.45+0.08 98.77+0.04 99.93+0.02 91.8840.20 82.77+0.16 93.39+40.20
100% 98.68+0.11  98.96+0.07 99.94 103 91.66+0.14 84.0240.19 95.0840.12
25% 99.0040.13  99.2410.10 99.96+0.01 90.8240.67  83.01+1.30 93.77+0.76
wa)s fineune 0% | 992Liop  99A4Lioor 99.961001 | 9124108 83.8311.51 94.660.77
s 75% 98.79+0.10  99.1240.12 99.95+0.03 92.9710.15 86.5110.17 95.92_0.14
100% 98.9440.07  99.28+0.09 99.95+0.02 93.1910.07 86.8310.20 96.3110.01
0.0012 A Samples
PubChem3D-noH
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Figure 7: Comparison of the energy distributions calculated using xXTB-GFN2
(2019) for the GEOM-Drugs training dataset against the energies of sampled molecules. We also

provide the energy distribution of PubChem3D (implicit hydrogens) to showcase the distribution
shift; for quantum physics-based software, those molecules appear to be radicals, and hence, the
energy distribution is shifted towards high energies. Nevertheless, the model effectively has to do
this shift while fine-tuning.

A.5 PRE-TRAINING ON PUBCHEM3D

To emphasize more the capability of the model to learn the underlying data distribution, we follow
(Hoogeboom et al.l 2022)) and plot the distribution of energies for sampled molecules of a model
trained on GEOM-Drugs against the energy distribution of the training dataset, as shown in Fig.
We observe that EQGAT-diff learns the training distribution well, showing a high overlap. Further-
more, to highlight the shift in physical space the diffusion model has to perform while fine-tuning,
we also report the energy distribution of PubChem3D with implicit hydrogens. All energies were
calculated using the semi-empirical xTB-GFN?2 software (Bannwarth et al.,[2019).

We also pre-trained a model on the PubChem3D dataset with explicit hydrogens. Interestingly, as
shown in Tab. [/| we see a decrease in performance for the model that is fine-tuned on the pre-
training with explicit hydrogens compared to the model using implicit hydrogens, even though pre-
training with explicit hydrogens takes almost three times as long. We suspect that when using
explicit hydrogens in pre-training, the model overfits too much on the PubChem3D data distribution,
having a more challenging time transferring to the GEOM-Drugs distribution.

We subsampled 1M molecules from PubChem3D and GEOM-Drugs and enumerated over bonds of
selected pair atoms including carbon, hydrogen, nitrogen and oxygen atoms. We computed distances
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Table 7: Comparison of EQGAT-diff pre-trained with or without explicit hydrogens on PubChem3D
and fine-tuned on GEOM-Drugs for 400 epochs. We report the mean values over five runs of selected
evaluation metrics with the margin of error for the 95% confidence level given as subscripts. The
best results are in bold.

Pretraining Mol. Stab. 1 Validity T Connect. Comp. 1
PubChem3D-noH 93.19:‘:0,07 86.83:‘:0'20 96.31i0_21
PubChem3D-H 92.7010,09 85.46i0,19 94.78i0,19
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Figure 8: Selected atom-pair distance distribution on PubChem3D and GEOM-Drugs.

and noticed that the hydrogen-oxygen distance distribution in PubChem3D seems to have a smaller
variance than GEOM-Drugs in the last panel of Figure [§]

A.6 EQGAT-DIFF VS MID1

We found EQGAT-diff outperforming MiDi by a large margin across both datasets, QM9 and
GEOM-Drugs, and all metrics. In Fig. [0] we underpin this observation by comparing training
curves of EQGATZY, and the MiDi model, observing that our model not only outperforms MiDi
on molecule stability, validity and in the adaptation to the underlying data distribution, but also
converges significantly faster. EQGAT%, converges to SOTA performance already after 150-200

epochs, while MiDi needs roughly 700 epochs weakly indicating convergence but to lower values.

Furthermore, EQGAT-diff needs ~5 minutes per epoch using four Nvidia A100 GPUs, adaptive
dataloading (taken from the MiDi code based on pyg.loader.Collater) with a batch size of
200 per GPU. In contrast, MiDi takes ~12 minutes, so EQGAT-diff is more than twice as fast.

For training MiDi, we used the official codebase on GitHub [ﬂ and the given hyperparameter settings
but trained on four Nvidia A100 GPUs (instead of two). As seen in TabE] and shown here in Fig. @b,
we could not reproduce the results reported in the paper. We also re-evaluated the checkpoint given
on GitHub and again could not confirm the reported results.

A.7 EQGAT-DIFF WITH IMPLICIT HYDROGENS ON GEOM-DRUGS

We trained EQGAT-diff on GEOM-Drugs with implicit hydrogens. To this end, we pre-process
the GEOM-Drugs dataset using the RDKit and remove hydrogens from a molecule object mol
using the Chem.RemoveHs function, with subsequent kekulization Chem.Kekulize. We list
the evaluation results of models EQGAT?. . and EQGAT,S,, in Table 8| below. We discover that

con

the Gaussian and categorical diffusion for the xy parameterization achieves similar performance

'https://github.com/cvignac/MiDi
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Figure 9: Comparison between EQGAT-diff and MiDi for training on GEOM-Drugs. We com-
pare both models regarding a) molecular stability, b) validity, c) AtomsTV, and d) AnglesW1 while
training by sampling 1000 molecules every 20 epochs over 800 epochs of training. For molecular
stability and validity, higher is better; for AtomsTV and AnglesW 1, lower is better.

related to validity and connected components. At the same time, the Wasserstein-1 distance on
the histograms for empirical bond angles is lower for the generated set from EQGAT;?. . to the
histogram of the reference set.

Table 8: Comparison of EQGAT-diff with implicit hydrogens on GEOM-Drugs for 400 epochs. We
report the mean values over five runs of selected evaluation metrics with the margin of error for the
95% confidence level given as subscripts. The best results are in bold.

Model Validity T  Connect. Comp. T BondLengths W1 |  BondAngles W1 |
EQGATZ,?SC 98~29i0.08 98.90i0,10 0-59i0.62 0.44i0‘01
EQGAT.,, 98.48.0.14 98.36-+0.00 1.3440.07 0.56+0.03

Table 9: Classifier-guidance on EQGAT-diff to shift the reverse sampling towards low or high po-
larizability values. We report the mean polarizability values of sampled molecules with standard
deviations as subscripts.

Guidance Polarizability
Minimization 195.1944.9
Maximization 400.2145.3

A.8 CLASSIFIER GUIDANCE FOR CONDITIONAL MOLECULE DESIGN

For conditional molecule design, we can use a trained unconditional EQGAT-diff model together
with classifier-guidance, as proposed in (Dhariwal & Nichol, |[2021), to steer the generation of sam-
ples using the gradient of an external classifier/regressor during the reverse sampling trajectory from
noise to data. As a proof of concept, we explored classifier-guidance to generate molecules opti-
mizing for low/high polarizability showing promising results. For this, we trained a polarizability
regressor model and applied it to the reverse sampling of an unconditional EQGAT-diff model test-
ing for guiding towards low and high polarizability values, respectively. Afterwards we re-calculate
the polarizability of all sampled molecules for both cases and compared the mean values. In Tab.
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[0) we summarize the results. The mean value of the GEOM-Drugs training dataset is 245.9 + 41.9.
Hence, we see that we can successfully push the distribution of sampled molecules in the respective
direction.

A.9 COMPARISON TO MOLDIFF

We compare against MolDiff |Peng et al.| (2023) by utilizing their evaluation pipeline that includes
post-processing steps on the generated molecules to potentially fix valency and aromaticity issues
when parsing into the RDKit. Selecting the 5 x 10, 000 generated samples from our best performing

model EQGAT‘;(S)éaf /" we report mean validity and mean success rate in Table m As shown,
our proposed best-performing EQGAT-diff model achieves superior performance over MolDiff in
generating chemically valid molecules but has lower diversity, which we believe is caused by longer
training time on our side. However, we believe the generative model should be able to faithfully
sample molecules that satisfy valency constraints, as it was also trained in such data. Suppose we
do not employ the post-processing scheme from MolDiff and determine the validity by parsing the
generated molecule into RDKit’s sanitization pipeline. In that case, EQGAT-diff obtains a mean
validity of 0.916 and a mean success rate of 0.887. This shows that the post-processing applied in
MolDiff substantially impacts model evaluation.

Table 10: Evaluation metrics from EQGAT-diff against MolDiff.

Model EQGAT-diff | MolDiff
Validity 0.998 0.947
Connectivity | 0.968 0.908
Succ. Rate 0.966 0.860
Novelty 1.000 1.000
Uniqueness 1.000 1.000
Diversity 0.320 0.422

A.10 IMPROVED SAMPLING TIME

We experimented with the DDIM |Song et al.| (2021a) sampling algorithm known for enhancing
inference/sampling time in diffusion models trained via the standard DDPM procedure in image
processing. The difference between DDIM and DDPM lies in the sampling algorithm, which we
believe could also be applied in our molecular data setting. However, our best-performing scenario
utilizes the x( parameterization to preserve the correct data modalities for coordinates, atom, and
bond features. Hence, applying DDIM directly to discrete-valued data modalities is not straightfor-
ward. We restricted DDIM to continuous coordinate updates, while discrete-valued data modalities
follow the approach outlined by (Austin et al., [2021)) and explained in our Appendix in Eq. (T0).
Table [ 1| compares the evaluation performance of our base models when generating samples using
DDIM or DDPM for varying numbers of reverse sampling steps 500, 250, 167. Given that all mod-
els underwent training with 7' = 500 discretized timesteps, we conducted DDIM sampling every 2
or 3 steps of the reversed trajectory starting from index 500. Notably, we observed that employing
DDIM did not enhance the quality of molecule generation with fewer sampling steps (250 or 166)
compared to the 500 steps the models were trained on.

Another way to enhance sampling time, is to train the diffusion models with less discretized
timesteps. We performed additional experiments and trained EQGAT??_  with 7" = 100 timesteps
using the uniform and truncated SNR(t) loss weighting. The rationale behind these experiments is
to assess how the reduced number of timesteps affects performance while enabling faster inference
time. We compare against the two corresponding models trained with 7" = 500 timesteps and ob-
serve that the model trained with truncated SNR(t) loss weighting over 7" = 100 timesteps performs
better than the model trained with 7" = 500 timesteps but uniform loss weighting as illustrated
in Figure [I0] This result clearly speaks for the usage of the proposed loss weighting while also
achieving a diffusion model that has a faster sampling time using 100 reverse sampling steps only,
i.e. around 5x faster sampling time. Comparing the two models trained with truncated SNR(t) loss
weighting, we notice that the model trained with T" = 500 discretized steps still performs better than
the identical model but trained with 7" = 100 timesteps.
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Table 11: Sampling results of trained models for DDPM and DDIM for 500 Molecules.

Model Steps  Sampling Runtime Mol. Stability  Validity = AnglesW1
Discrete-SNR(t) 500 DDPM 26min 0.9160 0.8100 0.83
Continuous-SNR(t) 500 DDPM 27min 0.8920 0.7600 0.90
Discrete-Uniform 500 DDPM 26min 0.8600 0.5960 1.36
Discrete-SNR(t) 250 DDIM 13min 0.6580 0.6260 2.26
Continuous-SNR(t) 250 DDIM 13min 0.5680 0.3920 3.95
Discrete-Uniform 250 DDIM 13min 0.5400 0.3880 3.21
Continuous-SNR(t) 250 DDPM 13min 0.5160 0.3400 4.74
Discrete-SNR(t) 250 DDPM 13min 0.4860 0.4600 4.60
Discrete-Uniform 250 DDPM 14min 0.2620 0.1940 7.60
Discrete-SNR(t) 166 DDIM 9min 0.1980 0.2280 5.58
Discrete-Uniform 166 DDIM 9min 0.1240 0.1080 8.24
Continuous-SNR(t) 166 DDPM 8min 0.1000 0.0380 13.68
Continuous-SNR(t) 166 DDIM 9min 0.0900 0.0520 14.11
Discrete-SNR(t) 166 DDPM 9min 0.0660 0.5200 12.21
Discrete-Uniform 166 DDPM 9min 0.0200 0.0120 14.83
1.0
0.9 A
20.81
%
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Figure 10: Molecule stability learning curves for diffusion models trained with 7" = 500 and T" =
100 discrete timesteps. Again, we observe that the truncated SNR(t) loss weighting w,(t) greatly
improves performance.
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