
XCiT: Cross-Covariance Image Transformers

Appendix

A Preliminary study on Vision Transformers (ViT)

In this appendix we report the results associated with our preliminary study on high-resolution
transformers. Most of the experiments were carried out on the ViT architecture [21] with DeiT
training [64], and intended to analyze different aspects of transformers when considering images with
varying resolution or high-resolution images specifically.

A.1 Impact of resolution versus patch size
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Variable patch size

Image Size 80 112 160 256 320 384

Patch Size 5 7 10 16 20 24

Top-1 78.2 79.7 80.5 80.7 80.9 80.7

Variable number of tokens

Image Size 160 224 256 288 320 384

# of tokens 100 196 256 324 400 576

Top-1 77.4 79.9 80.7 81.2 81.5 82.3

Figure A.1: Impact of input resolution on accuracy for DeiT-S. We consider different image resolutions, and
either (1) increase the patch size while keeping the number of tokens fixed; or (2) keep the patch size fixed and
use more tokens. Larger input images are beneficial if the number of tokens increases. The impact of a change
of a resolution for a constant number of patches (of varying size) is almost neutral. As one can observe, the main
driver of performance is the number of patches. The patch size has a limited impact on the accuracy, except
when considering very small ones. We have observed and confirmed similar trends with XCiT models.

A.2 Approximate attention models in ViT with DeiT training

In Table A.1, we report the results that we obtain by replacing the Multi-headed Self-attention
operation with efficient variants [30, 56, 69, 70] in the DeiT-S backbone. First, we can notice that
for all efficient self-attention choices there is a clear drop in performance compared to the Deit-S
baseline. The spatial reduction attention (SRA) proposed in PVT [70] has a significantly weaker
performance compared to the full-attention with a quadratic complexity that is more efficient than
full-attention by only a constant factor R2. Linformer [69] provides a better accuracy compared to
SRA, however, it is also clearly weaker than full-attention. Moreover, Linformer does not have the
flexibility of processing variable length sequences which limits its application in many computer
vision tasks. Efficient attention [56] provides a better trade-off than the aforementioned methods, with
improved accuracy and linear complexity. However, it has a 3.6% drop in performance compared to
full-attention. Finally, axial attention [30] provides the strongest performance among the efficient
attention variants we studied with a 1.5% drop in accuracy compared to the baseline. We observe a
saving in memory usage, but a drop in speed due to the separate row and column attention operations.
Our observations are consistent with [21].

A.3 Training and testing with varying resolution

As discussed in the main manuscript, for several tasks it is important that the network is able to
handle images of varying resolutions. This is the case, for instance, for image segmentation, object
detection, or image retrieval where the objects of interest may have very different sizes. We present
an analysis of train/test resolution trade-off in Table A.2.
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Table A.1: ImageNet Top-1 accuracy of efficient self-attention variants (after 300 epochs of training).

Model Complexity Top-1

DeiT-S [64] O(N2) 79.9

SRA (Average Pool) [70] O(N2/R2) 73.5

SRA (Convolutional) [70] O(N2/R2) 74.0

Linformer (k=
√
n) [69] O(kN) 75.7

Efficient Transformer [56] O(N) 76.3

Axial [30] O(N
√
N) 78.4

Table A.2: Trade-off between train and test resolutions for DeiT. MS refers to multi-scale training, where
the models have seen images from different resolutions at training time.

Test / Train 160 224 256 288 320 MS

160 77.2 75.9 73.3 68.2 59.6 76.3
224 78.0 79.9 79.9 79.0 77.9 79.6
256 77.3 80.4 80.7 80.2 79.9 80.6
288 76.3 80.4 81.0 81.2 80.8 81.0
320 75.0 80.1 80.9 81.3 81.5 81.3

B Additional details of training and our architecture

B.1 Sinusoidal positional encoding

We adopt a sinusoidal positional encoding as proposed by Vaswani et al. [68] and adapted to the 2D
case by Carion et al. [11]. However we depart from this method in that we first produce this encoding
in an intermediate 64d space before projecting it to the working space of the transformers. More
precisely, in our implementation each of the x and y coordinates is encoded using 32 dimensions
corresponding to cosine and sine functions, with 16 different frequencies for each function. The
encoding of both coordinates are eventually concatenated to obtain a 64 dimension 2d positional
encoding. Finally, the 64 dimension positional encoding is linearly projected to the working dimension
of the model d.

B.2 Obtaining feature pyramid for dense prediction

For state-of-the-art detection and segmentation models, FPN is an important component which
provides features of multiple scales. We adapt XCiT to be compatible with FPN detection and
segmentation methods through a simple re-scaling of the features extracted from different layers.
In particular, for models with 12 layers, we extract features from the 4th, 6th, 8th and 12th layer
respectively. As for models with 24 layers, we extract features from the 8th, 12th, 16th and 24th layer.
Concerning the re-scaling of the features, the 4 feature levels are downsized by a ratio of 4, 8, 16
and 32 compared to the input image size. Feature downsizing is performed with max pooling and
upsampling is achieved using a single layer of transposed convolutions with kernel size k = 2 and
stride s = 2.

B.3 Hyper-parameters: LayerScale initialization and Stochastic Depth drop-rate

We list the stochastic depth dr and LayerScale initialization ǫ hyperparameters used by each of our
models in Table B.1.

C Pseudo-code

In Algorithm 1 we provide a PyTorch-style pseudo code of the Cross-covariance attention operation.
The pseudo code resembles the Timm library [72] implementation of token self-attention. We
show that XCA only requires few modifications, namely the ℓ2 normalization, setting the learnable
temperature parameters and a transpose operation of the keys, queries and values.
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Table B.1: Hyperparameters used for training our models, including the Stochastic depth drop rate dr and
LayerScale initialization ǫ.

Model Patch size dr ǫ

XCiT-N12 8 & 16 0.0 1.0
XCiT-T12 8 & 16 0.0 1.0

XCiT-T24 8 & 16 0.05 10−5

XCiT-S12 8 & 16 0.05 1.0

XCiT-S24 8 & 16 0.1 10−5

XCiT-M24 8 & 16 0.15 10−5

XCiT-L24 16 0.25 10−5

XCiT-L24 8 0.3 10−5

Algorithm 1 Pseudocode of XCA in a PyTorch-like style.

# self.qkv: nn.Linear(dim, dim * 3, bias=qkv_bias)
# self.temp: nn.Parameter(torch.ones(num_headss, 1, 1))

def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
qkv = qkv.permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # split into query, key and value

q = q.transpose(-2, -1)
k = k.transpose(-2, -1) # Transpose to shape (B, h, C, N)
v = v.transpose(-2, -1)

q = F.normalize(q, dim=-1, p=2) # L2 Normalization across the token dimension
k = F.normalize(k, dim=-1, p=2)

attn = (k @ q.transpose(-2, -1)) # Computing the block diagonal cross-covariance matrix
attn = attn * self.temp # Adjusting the activations scale with temperature parameter
attn = attn.softmax(dim=-1) # d x d attention map

x = attn @ v # Apply attention to mix channels per token
x = x.permute(0, 3, 1, 2).reshape(B, N, C)
x = self.proj(x)
return x

D Additional results

D.1 More XCiT models

We present additional results for our XCiT models in Table D.1. We include performance of 384×384
images using a 16×16 patch size as well as results for images with 224×224 resolution using patch
size of 8×8.

Table D.1: ImageNet-1k top-1 accuracy of XCiT for additional combinations of image and patch sizes.

Models Depth d #Blocks params 16× 16 patches 8× 8 patches

GFLOPs @224 @224Υ @384↑ GFLOPs @224 @224Υ @384↑

XCiT-N12 12 128 4 3M 0.5 69.9 72.2 75.4 2.1 73.8 76.3 77.8
XCiT-T12 12 192 4 7M 1.2 77.1 78.6 80.9 4.8 79.7 81.2 82.4
XCiT-T24 24 192 4 12M 2.3 79.4 80.4 82.6 9.2 81.9 82.6 83.7
XCiT-S12 12 384 8 26M 4.8 82.0 83.3 84.7 18.9 83.4 84.2 85.1
XCiT-S-24 24 384 8 48M 9.1 82.6 83.9 85.1 36.0 83.9 84.9 85.6
XCiT-M24 24 512 8 84M 16.2 82.7 84.3 85.4 63.9 83.7 85.1 85.8
XCiT-L24 24 768 16 189M 36.1 82.9 84.9 85.8 142.2 84.4 85.4 86.0

D.2 Transfer learning

In order to further demonstrate the flexibility and generality of our models, we report transfer learning
experiments in Table D.2 for models that have been pre-trained using ImageNet-1k and finetuned
for other datasets including CIFAR-10, CIFAR-100 [40], Flowers-102 [47], Stanford Cars [39] and
iNaturalist [31]. We observe that the XCiT models provide competitive performance when compared
to strong baselines like ViT-B, ViT-L, DeiT-B and EfficientNet-B7.
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Table D.2: Evaluation on transfer learning.

Architecture CIFAR10 CIFAR100 Flowers102 Cars iNat18 iNat19

EfficientNet-B7 [58] 98.9 91.7 98.8 94.7 _ _
ViT-B/16 [21] 98.1 87.1 89.5 _ _ _
ViT-L/16 [21] 97.9 86.4 89.7 _ _ _

Deit-B/16 [64] Υ 99.1 91.3 98.8 92.9 73.7 78.4

XCiT-S24/16 Υ 99.1 91.2 97.4 92.8 68.8 76.1
XCiT-M24/16 Υ 99.1 91.4 98.2 93.4 72.6 78.1
XCiT-L24/16 Υ 99.1 91.3 98.3 93.7 75.6 79.3

D.3 Image retrieval

Context of this study. Vision-based retrieval tasks such as landmark or particular object retrieval
have been dominated in the last years by methods extracting features from high-resolution images.
Traditionally, the image description was obtained as the aggregation of local descriptors, like in
VLAD [36]. Most of the modern methods now rely on convolutional neural networks [6, 24, 60].
In a recent paper, El-Nouby et al. [22] show promising results with vision transformers, however
they also underline the inherent scalability limitation associated with the fact that ViT models do not
scale well with image resolution. Therefore, it cannot compete with convolutional neural networks
whose performance readily improve with higher resolution images. Our XCiT models do not suffer
from this limitation: our models scale linearly with the number of pixels, like convnets, and therefore
makes it possible to use off-the-shelf methods initially developed for retrieval with high-resolution
images.

D.3.1 Datasets and evaluation measure

In each benchmark, a set of query images is searched in a database of images and the performance is
measured as the mean average precision.

The Holidays [35] dataset contains images of 500 different objects or scenes. We use the version of
the dataset where the orientation of images (portrait or landscape) has been corrected. Oxford [49] is
a dataset of building images, which corresponds to famous landmark in Oxford.

Table D.3: The basic statistics on the image retrieval datasets.

number of images
nb of instances

Dataset database queries

Holidays 1491 500 500
R-Oxford 4993 70 26

We use the revisited version of the Oxford benchmark [51], which breaks down the evaluation into
easy, medium and hard categories. We report results on the "medium" and "hard" settings, as we
observed that the ordering of techniques does not change under the easy measures.

D.3.2 Image representation: global and local description with XCiT

We consider three existing methods to extract an image vector representations from the pre-trained
XCiT models. Note that to the best of our knowledge, for the first time we extract local features from
the output layer of a transformer layer, and treat them as patches fed to traditional state-of-the-art
methods based on matching local descriptors or CNN.

CLS token. Similar to El-Nouby et al. [22] with ViT, we use the final vector as the image descriptor.
In this context, the introduction of class-attention layers can be regarded as a way to learn the
aggregation method.
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Table D.4: Instance retrieval experiments. The default resolution is 768. The default class token size is 128
dimensions. The "local descriptor" representation extracted from the activations is in 128 dimensions. To our
knowledge the state of the art with ResNet-50 on Holidays with Imagenet pre-training only is the Multigrain
method [6], which achieves mAP=92.5%. Here we compare against this method under the same training setting,
i.e., off-the-shelf network pre-trained on ImageNet-1k only and with the same training procedure and resolution.
We refer the reader to Tolias et al. [61] for the state of the art on R-Oxford, which involves some training on the
target domain with images depicting building and fine-tuning at the target resolution.

Base model parameters R-Oxford5k (mAP) Holidays (mAP)

Medium Hard

XCiT– class token

XCiT-S12/16 30.1 8.7 86.0
XCiT-S12/8 33.2 12.1 86.4

XCiT-S12/16 resolution 224 12.7 2.4 71.5
XCiT-S12/16 resolution 384 20.1 4.6 83.4
XCiT-S12/16 resolution 512 26.6 5.8 84.6
XCiT-S12/16 resolution 768 30.1 8.7 86.0
XCiT-S12/16 resolution 1024 30.3 11.2 86.3

XCiT-S12/16 self-supervised DINO 35.1 11.9 87.3
XCiT-S12/8 self-supervised DINO 30.9 7.9 88.3

XCiT– VLAD

XCiT-S12/16 k=256 36.6 11.6 89.9
XCiT-S12/16 k=1024 40.0 13.0 90.7

XCiT– ASMK

XCiT-S12/8 k=1024 36.5 9.4 90.4
XCiT-S12/8 k=65536 42.0 12.9 92.3
XCiT-S12/16 k=1024 35.2 11.5 90.4
XCiT-S12/16 k=65536 40.0 15.0 92.0

ResNet-50 – ASMK

ResNet50 k=1024 41.6 14.6 86.0
ResNet50 k=65536 41.9 14.5 87.9
Multigrain-resNet50 k=1024 32.9 9.4 87.9

VLAD. We treat the patches before the class-attention layers as individual local descriptors, and
aggregate them into a higher-dimensional vector by employing the Vector of locally aggregated
Descriptors [36].

ASMK. We also apply the aggregated selective match kernel from Tolias et al. [59]. This method
was originally introduced for local descriptors, but got adapted to convolutional networks. To the best
of our knowledge this is the state of the art on several benchmarks [61].

For all these methods, we use the models presented in our main paper, starting from the version
fine-tuned at resolution 384×384. By default the resolution is 768. This is comparable to the choice
adopted in the literature for ResNet (e.g., 800 in the work by Berman et al. [6]).

D.3.3 Experimental setting: Image retrieval with models pretrained on ImageNet-1k only

We only consider models pre-trained on Imagenet-1k. Note that the literature reports significant
improvement when learning or fine-tuning networks [52, 61] on specialized datasets (e.g., of buildings
for Oxford5k). We consider only XCiT-S12 models, since they have a number of parameters
comparable to that of ResNet-50. We report the results in Table D.4.

Scaling resolution. As expected increasing the resolution with XCiT improves the performance
steadily up to resolution 768. This shows that our models are very tolerant to resolution changes
considering that they have been fine-tuned at resolution 384. The performance starts to saturates at
resolution 1024, which led us to keep 784 as the pivot resolution.
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Self-supervision. The networks XCiT pre-trained with self-supervision achieve a comparatively
better performance than their supervised counterpart on Holidays, however, we have the opposite
observation for R-Oxford.

Impact of image description. We adopt the class-token as the descriptor, and in our experiments
we verified that this aggregation method is better than average and GeM pooling [8, 52]. In Table D.4
one can see there is a large benefit in employing a patch based method along with our XCiT
transformers: XCiT-VLAD performs significantly better than the CLS token, likely thanks to the
higher dimensionality. This is further magnified with AMSK, where we obtain results approaching the
absolute state of the art on Holidays, despite a sub-optimal training setting for image retrieval. This is
interesting since our method has not been fine-tuned for retrieval tasks, and has not been adapted
in any significant way beyond applying off-the-shelf aggregation techniques. A direct comparison
with ResNet-50 shows that our XCiT method obtains competitive results in this comparable setting,
slightly below the ResNet-50 on R-Oxford but significantly better on Holidays.

D.4 Runtime and memory usage

We present the peak memory usage as well as the throughput of multiple models including full-
attention and efficient vision transformers in Table D.5. Additionally, in Figure D.1 we plot the
processing speed represented as millisecond per image as a function of image resolution for various
models. We can observe that XCiT provides a strong trade-off, possessing the best scalability in
terms of peak memory, even when compared to ResNet-50. Additionally, the processing time scales
linearly with respect to resolution, with only ResNet-50 providing a better trade-off on that front.
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Figure D.1: Throughput in millisecond per image during inference of multiple models. Our XCiT-S12/16
model provides a speed up for images with higher resolution compared to existing vision transformers, especially
the ones with quadratic complexity like DeiT and CaiT.

Table D.5: Inference throughput and peak GPU memory usage for our XCiT small model compared to other
models of comparable size that include token self-attention. All models tested using batch size of 64 on a V100
GPU with 32GB memory.

Model #params ImNet Image Resolution

(×106) Top-1 2242 3842 5122 10242

@224 im/sec mem (MB) im/sec mem (MB) im/sec mem (MB) im/sec mem (MB)

ResNet-50 25 79.0 1171 772 434 2078 245 3618 61 14178

DeiT-S 22 79.9 974 433 263 1580 116 4020 N/A OOM
CaiT-S12 26 80.8 671 577 108 2581 38 7117 N/A OOM
PVT-Small 25 79.8 777 1266 256 3142 134 5354 N/A OOM
Swin-T 29 81.3 704 1386 220 3890 120 6873 29 26915
XCiT-S12/16 26 82.0 781 731 266 1372 151 2128 37 7312
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D.5 Query and key magnitude visualizations

‖Q̂‖ ‖K̂‖

Figure D.2: Visualization of the queries Q̂ and keys K̂ norm across the feature dimension. We empirically
observe that magnitude of patch embeddings in the queries and keys correlates with the saliency of their
corresponding region in the image.

Our XCA operation relies on the cross-covariance matrix of the queries Q̂ and keys K̂ which are ℓ2
normalized across the patch dimension. Therefore, each element in the d × d matrix represents a
cosine similarity whose value is strongly influenced by the magnitude of each patch. In Figure D.2
we visualize the magnitude of patch embeddings in the queries and keys matrices. We observe that
patch embeddings with higher magnitude corresponds to more salient regions in the image, providing
interpretable visualization of which regions in the image contribute more in the cross-covariance
attention.
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