Under review as a conference paper at ICLR 2026

APPENDIX

A FULL EVALUATION SETUP

A.1 POST-TRAINING METHODS

Reinforcement Learning Reinforcement Learning (RL) has recently proven effective at steering
large language models toward complex, multi-step objectives by optimizing policies with scalar
reward signals (Zeng et al., 2025). For our experiments, we utilized the easy-r1 framework,
a fork of the original veRL project (Yaowei Zheng, 2025). We employed its implementation of
the Group Relative Policy Optimization (GRPO) (Shao et al., 2024) algorithm to fine-tune the
Qwen?2.5-7B-Instruct model, using final answer correctness as the reward signal. Our RL
configuration uses a learning rate of 1 x 10~ with the AdamW optimizer and a weight decay of
1.0 x 1072, We generate 5 responses per prompt with a maximum total sequence length of 4096
tokens, using a temperature of 1.0 and a top-p of 0.99. The model is updated with a global batch
size of 16. KL-divergence regularization was enabled with a coefficient of 1.0 x 102, We trained
the model for 5 epochs and selected the checkpoint with the best validation performance.

Supervised Fine-Tuning Supervised Fine-Tuning (SFT) remains a fundamental technique
for adapting large pre-trained models by directly minimizing cross-entropy on high-quality
datasets (Parashar et al., 2025). We use the LLaMA-Factory framework (Zheng et al., 2024), which
is an extensible and user-friendly framework supporting multiple architectures and advanced opti-
mization algorithms, to fine-tune our model on teacher-generated chain-of-thought traces. We use
1 x 1076 as learning rate, the batch size is 512 and we train for 5 epoch to align with our RL settings.

A.2 DATASETS AND BENCHMARKS

Our analysis was conducted across the following four benchmarks, chosen to cover a range of math-
ematical and general reasoning tasks:

* MATH (Hendrycks et al., 2021): A challenging dataset of 12,500 competition mathematics prob-
lems designed to test mathematical problem-solving.

* GSMBSK (Cobbe et al., 2021): A dataset of 8,500 high-quality, linguistically diverse grade school
math word problems created to measure multi-step reasoning.

* HeadQA (Vilares & Gomez-Rodriguez, 2019): A multiple-choice question answering dataset
sourced from Spanish medical board exams, covering a wide range of topics and requiring spe-
cialized knowledge.

* DeepScaler (Luo et al.): A proprietary, in-house dataset created to evaluate specific mathematical
reasoning abilities. It contains approximately 40,000 unique math problem-answer pairs compiled
from sources like the AIME, AMC, Omni-MATH, and Still datasets.

A.3 IMPLEMENTATION DETAILS
All experiments were conducted on a single server equipped with 4 NVIDIA A100 (80GB) GPUs.

Our implementation relies on PyTorch and the Hugging Face Transformers library.

B DETAILED DATA FOR DIFFICULTY-STRATIFIED ANALYSIS

B.1 AUTOMATED DIFFICULTY LEVEL ANNOTATION

To ensure a systematic and reproducible partitioning of our datasets into difficulty levels (L1-L5),
we employed an automated annotation pipeline. Instead of relying on subjective manual labeling,
we developed a detailed rubric based on the cognitive complexity required for each problem and
used a large language model (Gemini 2.5 Pro) to assign a difficulty score to each problem in
our corpus.

12

Under review as a conference paper at ICLR 2026

The process was guided by the five-level standard defined below. For each problem, the full text of
this rubric was provided to the LLM, which was then prompted to return the single most appropriate
difficulty level.

Level 1: Direct Application of Basic Rules. Problems that can be solved in one or two steps,
where each step is a direct application of a basic formula or operational rule. The solution
path is linear and requires minimal strategic planning.

Level 2: Identification of Standard Models. Problems that require identifying the correct standard
model or general formula from a set of known methods. This tests for ”’pattern recognition”

of classic problem types.

Level 3: Multi-Step, Cross-Conceptual Planning. Problems that cannot be solved by a single
standard model and require a coherent plan that links multiple concepts or steps, often
from different mathematical areas.

Level 4: Application of Abstract Concepts. Problems requiring a deep understanding and flexible
application of a major, abstract mathematical theory. The solution process is often non-
intuitive and relies on a foundational result within a branch of mathematics.

Level 5: Axiomatic Reasoning and Creation. Problems that require reasoning from first princi-
ples” within an axiomatic framework. This involves performing logical deductions, con-
structing proofs, or finding counterexamples based on the foundational rules of a mathe-
matical structure.

The entire dataset was processed using a parallelized script with a thread pool executor to efficiently
query the LLM API. The script included robust error handling and checkpointing to ensure the
complete and accurate annotation of the corpus.

B.2 RESULT

This section provides the full cross-difficulty generalization performance matrices that form the
basis for the analysis in Section 3.1 and the visualizations in Figure 2. Table 5 presents
the results for the Qwen2.5-3B-Instruct model, and Table 6 presents the results for the
Qwen2.5-7B-Instruct model.

The data in these tables highlights the two key phenomena discussed in the main text. First, the
asymmetric generalization is visible by comparing the top-right and bottom-left quadrants of the
matrices. For instance, in Table 6, the model trained on Level 5 achieves 94.50% on Level 1, while
the model trained on Level 1 only achieves 52.00% on Level 5. Second, the deceptive nature of the
average score is evident in the rightmost ‘Average column, where the scores for all five specialist
models are remarkably similar (e.g., ranging only from 78.60% to 80.10% for the 7B model), despite
their vastly different generalization profiles.

Table 5: Cross-Difficulty Generalization Performance Matrix for the Qwen2.5-3B-Instruct model.
All values are pass@1 accuracy.

Evaluated on Training Set of Level

Trained on

Level 1 Level 2 Level 3 Level 4 Level 5 Average
Level 1 94.50% 85.00% 71.00% 66.00% 41.00% 71.50%
Level 2 93.00% 87.50% 73.00% 65.00% 42.50% 72.20%
Level 3 92.50% 86.00% 75.00% 66.00% 40.00% 71.90%
Level 4 92.50% 86.50% 72.00% 68.00% 43.00% 72.40%
Level 5 94.00% 87.00% 73.00% 62.00% 46.50% 72.50%
Original 92.00% 83.50% 69.50% 62.50% 43.50% 70.20%

13

Under review as a conference paper at ICLR 2026

Table 6: Cross-Difficulty Generalization Performance Matrix for the Qwen2.5-7B-Instruct model.
All values are pass@ 1 accuracy.

. Evaluated on Training Set of Level
Trained on

Level 1 Level 2 Level 3 Level 4 Level 5 Average
Level 1 97.00% 90.00% 78.00% 76.00% 52.00% 78.60%
Level 2 94.00% 91.50% 82.50% 76.00% 54.00% 79.60%
Level 3 95.50% 91.00% 83.50% 72.50% 56.50% 79.80%
Level 4 93.50% 88.50% 81.00% 80.00% 57.00% 80.00%
Level 5 94.50% 91.00% 78.00% 73.00% 64.00% 80.10%
Original 95.50% 87.50% 76.50% 74.00% 52.00% 77.60%

C A SUPPLEMENTARY EXPERIMENT TO THE DIFFICULTY TEST

This appendix provides the full performance data for the “generalist-optimized” models described
in our supplementary experiment on the difficulty test. The performance lift curves presented in
Figure 4 in the main text are directly derived from the raw accuracy scores presented here. Table 7
details the results for the 7B model, while Table 8 shows the results for the 3B model.

Setup. To investigate the impact of training data difficulty on final generalization, we conduct
a complexity test. We first train five generalist-optimized models, My, for i € {1,...,5}, on the
previously defined difficulty-stratified training sets, D;f;m- The key difference from our prior analysis
lies in the evaluation protocol, which is centered around a novel, balanced test set.

* Test_Balanced: This is the unified and balanced evaluation suite, constructed by sampling an
equal number of problems from each of the five difficulty levels. This results in a test set Dy

. .. L;
composed of five equal-sized partitions, {Dtegl, bal}?:r

Unlike the models in the first experiment, these models are ”generalist-optimized,” meaning we
select the checkpoint for each M|, with the highest overall accuracy on the Test _Balanced set.

25% _e- Easy/Mid-Trained (Avg. L1-L3) a 5% —e- EasyMid-Trained (Avg. L1-L3)

@ Hard-Trained (Avg. L4 & L5) @ Hard-Trained (Avg. L4 & L5)
20% Baseline 4% Baseline i .

15% » 3%

10% I a e 2%

5% 1%

Performance Lift (%)
N
Performance Lift (%)

0B o

0% .
5% 1%

10% |evel1 Level2 Level 3 Level 4 Level5 2% levell Level2 Level 3 Level4 Level5

(a) Performance lift of the 3B model. (b) Performance lift of the 7B model.

Figure 4: Asymmetric Generalization is consistent across model scales. Across both the 3B model
(a) and the 7B model (b), training on high-difficulty problems (L4-L5, orange line) yields a uni-
formly superior performance lift over training on easier problems (L1-L3, blue line), proving that
mastering complexity is essential for acquiring robust, transferable skills.Full performance data is
provided in Table 8 and Table 7.

Our complexity test reveals a stark pattern of asymmetric generalization, as illustrated in Figure 4.
Models trained on high-difficulty problems (L4-L5) demonstrate a uniformly superior performance
profile, outperforming their counterparts trained on easier data (L1-L3) across all evaluated task
complexities. This finding has a critical implication for how we create datasets to train capable
models: the training data must include a significant proportion of difficult problems. Therefore,
for benchmark suites to drive meaningful progress, it is crucial that their provided training sets
are sufficiently challenging to promote the development of truly robust models. The data in these

14

Under review as a conference paper at ICLR 2026

tables clearly illustrates the “asymmetric generalization” phenomenon. For example, in Table 8,
the model trained on Level 1 (M,) achieves high accuracy (97.50%) on Level 1 test problems but
sees its performance drop to just 32.50% on Level 5 problems. In contrast, the model trained on
Level 5 (M|,,) maintains robust performance across all levels, demonstrating a more generalizable

capability.

Table 7: Performance of Qwen2.5-7B generalist-optimized models on the balanced test set. Each
row represents a model trained on a specific difficulty level (L;), evaluated across test questions of

all five difficulty levels.

Evaluated on Test Set Questions of Level

Trained on

Level 1 Level 2 Level 3 Level 4 Level 5 Average
Level 1 97.50% 90.00% 82.50% 75.00% 50.00% 79.00%
Level 2 95.00% 90.00% 80.00% 77.50% 47.50% 79.00%
Level 3 97.50% 85.00% 85.00% 77.50% 50.00% 79.00%
Level 4 97.50% 87.50% 85.00% 80.00% 55.00% 81.00%
Level 5 97.50% 92.50% 82.50% 82.50% 52.50% 81.50%
Original 97.50% 87.50% 82.50% 77.50% 50.00% 79.00%

Table 8: Performance of Qwen2.5-3B generalist-optimized models on the balanced test set. The
performance decay for models trained on easy levels (L1, L2) is particularly pronounced.

Evaluated on Test Set Questions of Level

Trained on

Level 1 Level 2 Level 3 Level 4 Level 5 Average
Level 1 97.50% 82.50% 75.00% 72.50% 32.50% 72.00%
Level 2 95.00% 87.50% 80.00% 65.00% 35.00% 72.00%
Level 3 97.50% 90.00% 80.00% 72.50% 45.00% 77.00%
Level 4 95.00% 87.50% 87.50% 75.00% 47.50% 78.50%
Level 5 95.00% 87.50% 87.50% 75.00% 47.50% 78.50%
Original 92.50% 87.50% 77.50% 65.00% 22.50% 69.00%

D DATA CONSTRUCTION PROTOCOL FOR THE DISTRIBUTION TEST

This section details the step-by-step procedure used to construct the specialized training and test sets
for the Distribution Test, as described in Section 3.2.1. The entire process is designed to create a
controlled environment for measuring generalization as a function of semantic distance. The process

consists of three main stages:

Step 1: Semantic Embedding and Clustering. We began with our full corpus of approximately
44785 mathematics problems. To understand their semantic relationships, we first encoded each
problem into a high-dimensional vector representation using the all-mpnet-base-v2 sentence
encoder. We then applied K-Means clustering to this high-dimensional embedding space. Using a
combination of the Elbow method and Silhouette score analysis, we determined the optimal number
of clusters to be k = 3, effectively partitioning the entire dataset into three broad, semantically

coherent groups.

Step 2: Core Training Set (Train _Core) Selection. Our goal was to create a highly concen-
trated, semantically narrow training set. To achieve this, we first projected the high-dimensional
embeddings into a 2D space using t-SNE for visualization. We then focused on a single target clus-
ter (e.g., Cluster 1). Instead of sampling from the high-dimensional space, our selection was based
on the visual density in the 2D projection. Using the ‘NearestNeighbors* algorithm on the 2D t-SNE
coordinates, we identified the point within the target cluster whose 2,000 nearest neighbors occupied
the smallest possible Euclidean radius. These 2,000 points, representing the most visually compact
region of the cluster, formed our exclusive Train_Core training set.

15

Under review as a conference paper at ICLR 2026

Step 3: Distance-Stratified Test Set Construction. To create test sets with increasing semantic
distance, we used the remaining 42785 problems not selected for Train_Core. First, we calcu-
lated the geometric centroid of the 2,000 Train_Core points in the 2D t-SNE space. Then, for
every other point in the dataset, we computed its Euclidean distance to this centroid. All candidate
test points were then sorted based on this distance, from nearest to farthest. This sorted list was
partitioned into five equal-sized bins. Finally, we randomly sampled 80 problems from each bin to
create our five final test sets, D1 (semantically closest) through D5 (semantically farthest).

The entire data construction pipeline is visually summarized in Figure 5. Panel (a) illustrates the
outcome of the Train_Core selection process described in Step 2, while Panel (b) shows the
resulting distribution of the five distance-stratified test sets as detailed in Step 3.

-50 Other Data Points

o Test Set Level 1
e Test Set Level 2
Cluster 0 o Test Set Level 3
Cluster 1 Test Set Level 4
-150 Cluster 2 150 Test Set Level 5
e Visually Tightest 2000 Points e Core Training Set

t-SNE Component 2
o

t-SNE Dimension 2
o

-100
—100

—100 - 50 100 -100 =50 50 100

50 0 0
t-SNE Component 1 t-SNE Dimension 1

(a) Training set selection. (b) Test set distribution.

Figure 5: Visualization of the experimental data construction for the distribution test. (a) The highly
concentrated D, set is selected from a semantic cluster. (b) The test sets are sampled and binned
based on their increasing semantic distance from the Dy centroid.

E THE COUNTERFACTUAL ROBUSTNESS TEST

This section provides detailed, qualitative examples of how fine-tuned models fail on counterfactual
reasoning tasks, as discussed in Section 3.2.2. Each table analyzes a specific failure case, comparing
the required reasoning path (based on the novel, counterfactual premise) with the model’s actual
thought process. These examples concretely illustrate the models’ strong tendency to disregard
explicit instructions and default to their pre-trained, memorized knowledge.

E.1 METHODOLOGY: AUTOMATED DATASET GENERATION

To ensure the diversity and systematic nature of our counterfactual examples, we developed and
executed the following automated pipeline, moving beyond manual creation.

Step 1: Strategy — LLM as Data Creator. Our core strategy was to leverage a powerful Large
Language Model to act as a creative research assistant. This approach allows for the large-scale and
consistent application of complex transformation rules needed to create a high-quality counterfactual
dataset.

Step 2:Task Definition — The Counterfactual Transformation. We provided the LLM
(Gemini 2.5 Pro) with a detailed, multi-step prompt that precisely defined the transformation
task. The instructions guided the model to first analyze a given standard problem to identify a core
logical or mathematical rule. Subsequently, the model was tasked to invent a plausible but contrary-
to-fact rule, rewrite the problem statement to include this new premise, and finally, generate a new
step-by-step solution based exclusively on the novel rule.

Step 3: Execution — Parallelized Pipeline. This generation process was applied to our entire
source dataset. To manage the scale, the pipeline was executed in parallel using a Python script with
aThreadPoolExecutor to handle concurrent API requests. The full, unabridged master prompt
used in this process is available in our supplementary materials to ensure full reproducibility.

16

Under review as a conference paper at ICLR 2026

E.2 CASE STUDY: ARITHMETIC ORDER OF OPERATIONS

A novel order of operations, PESAMD, is defined: Parentheses, Exponents, S/A, then M/D.

The model is asked to evaluate f(z) = 32=2.
Correct Reasoning (PESAMD) Model’s Actual Reasoning
1. Numerator (S first): 3x (0—2) = —6 1. Numerator (M first): It computes 3 x
2. Denominator: 0 — 2 = —2 0 = 0 first, then 0 — 2 = —2. This fol-
3. Division (last): :—g =3 lows the memorized PEMDAS rule,
The final correct answer is 9. violating the premise.

2. Denominator: Correctly computes 0 —

2=-2

3. Division: =2 = 1.

The final incorrect answer is %t

E.3 CASE STUDY: NUMBER THEORY DIVISOR RULE

A new system defines the number of divisors of N = p{* - - - as the sum of (a; + 1) values.
Find the number of divisors for NV = 12.

Correct Reasoning (Sum Rule) Model’s Actual Reasoning

1. Prime factorization of 12 is 22 x 3. 1. Correctly finds prime factorization:

2. The exponents are a; = 2,a, = 1. 12 =22 x 3L,

3. Apply the new sum rule: (2+1)+(1+ 2. Ignores the ”sum” rule and applies the
1) =5. memorized “product” rule: (2 + 1) x

The final correct answer is 5. (1+1)=6.

The final incorrect answer is 6.

E.4 CASE STUDY: PHYSICS SPEED FORMULA

A car travels 120 km in 2 hours. In this reality, ’average speed’ is calculated as: speed =
time / distance. Find the speed.

Correct Reasoning (New Formula) Model’s Actual Reasoning

1. Identify Time = 2 hours, Distance = 120 1. Correctly identifies Time and Distance.
km. 2. Ignores the new formula and applies the

2. Apply the new formula time / distance: memorized, standard formula ‘distance
2+120 = %. / time‘: 120 = 2 = 60.

The final correct answer is % km/h. The final incorrect answer is 60 km/h.

17

Under review as a conference paper at ICLR 2026

F USAGE OF LARGE LANGUAGE MODELS

We declare that LLMs were used solely for language polishing purposes in this work. Specifically,
after completing the initial draft entirely through human effort, we employed LLM assistance exclu-
sively for grammatical refinement and improving the clarity of English expression to meet academic
writing standards. All intellectual contributions, from conceptualization to initial manuscript prepa-
ration, were performed by the human authors. The use of LLM was limited to post-writing language
enhancement, similar to traditional proofreading services, ensuring that non-native English speakers
can present their research with appropriate linguistic quality while maintaining complete authorship
and originality of the scientific content.

18

	INTRODUCTION
	Diagnosing Generalizatgion Benchmarking with Oracle Performance Gap
	Analysis Framework
	Oracle Performance Gap (OPG)
	Experiment Setup

	Result

	Deconstructing Generalization and Deriving Benchmark Principles
	The Paradox of Average Scores
	The Impact of Training Difficulty

	Preliminary evidence of potential benchmarking improvement
	The Distribution Test: A Proposed Method for Quantifying Brittleness
	The Counterfactual Robustness Test: Reasoning vs. Recitation

	Related work
	Reasoning in Large Language models
	Reinforcement Learning for LLM Alignment
	Analysis and Critique of Benchmarks

	Conclusion
	Full Evaluation Setup
	Post-training Methods
	Datasets and Benchmarks
	Implementation Details

	Detailed Data for Difficulty-Stratified Analysis
	Automated Difficulty Level Annotation
	Result

	A Supplementary Experiment to the Difficulty Test
	Data Construction Protocol for the Distribution Test
	 The Counterfactual Robustness Test
	Methodology: Automated Dataset Generation
	Case Study: Arithmetic Order of Operations
	Case Study: Number Theory Divisor Rule
	Case Study: Physics Speed Formula

	USAGE OF LARGE LANGUAGE MODELS

