A Appendix

In this appendix, we provide the architecture of the foreground prediction branch (in Figure[6) and
detailed experimental settings first. Then some annotations in UVO dataset are visualized in Figure
to show the challenges of open world instance segmentation. Finally, additional visualization results
of proposed TOIS are shown in Figure[8]

Foreground prediction branch

e
2 5 >

5 B—5—-:-% 3 =
S o %] O —» 3 > 0 —
© O — = — 0 c £
o o — = — O (o] oo

0 — 4 — W O (7]

Multi-scale features Feature fusing Prediction head

Figure 6: Architecture of foreground prediction branch. Multi-scale features extracted from
backbone are fed into the feature fusing module to exchange and fuse the multi-scale information.
Then a fused feature is sent to the prediction head to predict the final foreground map. Considering
the efficiency, we follow [27] to introduce the gOctConv [27]] and PallMSBlock [27] to perform
feature fusing.

A.1 Detailed experimental settings

Implementation details For feature extracting, we obtain the multi-scale features through a sequen-
tial backbone network [21)[22]], and FPN [28]]. The multi-scale features contain D-dimensional feature
maps with resolutions of 1/4, 1/8, 1/16, and 1/32. In the pixel decoder module, six MSDeformAttn
layers are employed, while the transformer decoder have three layers with 100 queries by default.

In the fully-supervised setting, the total loss L y can be formulated as: Ly = a Ly, + 8L, +vLc.+wL,.

In COCO—UVO evaluation, we set the weight « of mask loss (L,,,) to 5.0, the weight 3 of foreground
loss (L) to 2.0, the weight «y of cross-task consistency loss (L) to 2.0 and the weight w of objectness
loss (L,) to 2.0.

In UVO—UVO evaluation, we set the weight o of mask loss (L) to 5.0, the weight 3 of foreground
loss (L) to 1.0, the weight -y of cross-task consistency loss (L) to 1.0 and the weight w of objectness
loss (L,) to 2.0.

In Cityscapes—Mapillary evaluation, we set the weight « of mask loss (L) to 4.0, the weight /3 of
foreground loss (L,,) to 2.0, the weight «y of cross-task consistency loss (L) to 2.0 and the weight w
of objectness loss (L,) to 2.0.

In COCO(VOC)—COCO(noneVOC) evaluation, we apply the same hyper-parameter setting as that
in COCO—UVO evaluation for convenience. Perhaps fine-tuning these hyper-prameters can lead to
better performance.

Training settings Specifically, AdamW [29] optimizer and the step learning rate schedule are
applied to optimize our model. An initial learning rate of 0.0001 and a weight decay of 0.05 are
utilized for all backbones. We set a learning rate multiplier of the backbone to 0.1 and we decay the
learning rate at 0.9 and 0.95 fractions of the total number of training steps by a factor of 10. For data
augmentation, we use the large-scale jittering (LSJ) augmentation with a random scale sampled from
range 0.1 to 2.0 followed by a fixed size crop to 1024 x1024 on COCO dataset and 640x640 on
UVO dataset. Besides, a Cutout [30] strategy that randomly cuts out a region of size [1/8-w, 1/8-h] to
[1/3-w, 1/3-h] is introduced during training. On COCO dataset, we train our models for 38 x 10*
iterations with a batch size of 16, while on UVO dataset, we train our models for 12 x 10% iterations
with the same batch size.

11



O X N AN R W N =

P
N =S

TOIS training process with pseudo-labeling on COCO dataset

Algorithm 1: TOIS training process with pseudo-labeling

Data: Image dataset

Result: Proposed TOIS Model M,

initialization the student model M,,, and teacher model M;=M,,.copy();

while Image i ¢ & do

read image ¢ and corresponding groundtruth gt;;

extract backbone feature X;

pred_masks < M;.predictor(X;);

pseudo_proposals<— filter_masks_with_confidence(pred_masks, confidence_threshold);
pseudo labels <« filter_masks_with_IOU(pseudo_proposals, IOU_threshold);
training labels <— merge(gt;, pseudo labels);

aug_data<— Cutout(X;, training labels);

M, < M, training(aug_data);

M, < M;.EMA _update(M;,M,)

end

A.2 Visualization of annotations and our results on UVO dataset

Unlike in closed-world instance segmentation, where the object categories have been clearly defined,
instance definition in OWIS is much more ambiguous and harder for annotators to follow. Inevitably,
the instance annotation could become inconsistent across images, as shown in Figure[/| Our method
is motivated by this observation that the instance annotation in the existing datasets is very noisy. Our
solution to this issue is to introduce a self-correcting mechanism to combat erroneous annotations,
which provides additional guidance to both prediction tasks when the noisy annotations fail to provide
correct supervision. The visualization results in Figure [§]demonstrate that our proposed TOIS can
segment many novel objects that have not been unseen in the training set.

References

[1] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll4r, and C. L. Zitnick,
“Microsoft coco: Common objects in context,” in European conference on computer vision,
pp. 740-755, Springer, 2014.

[2] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth,
and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[3] W. Wang, M. Feiszli, H. Wang, and D. Tran, “Unidentified video objects: A benchmark for
dense, open-world segmentation,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 10776-10785, 2021.

[4] W. Wang, M. Feiszli, H. Wang, J. Malik, and D. Tran, “Open-world instance segmentation:
Exploiting pseudo ground truth from learned pairwise affinity,” CVPR, 2022.

[5] K. Saito, P. Hu, T. Darrell, and K. Saenko, “Learning to detect every thing in an open world,”
arXiv preprint arXiv:2112.01698, 2021.

[6] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar, “Masked-attention mask
transformer for universal image segmentation,” 2022.

[7] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE
international conference on computer vision, pp. 2961-2969, 2017.

[8] H. Chen, K. Sun, Z. Tian, C. Shen, Y. Huang, and Y. Yan, “Blendmask: Top-down meets
bottom-up for instance segmentation,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 8573-8581, 2020.

[9] J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation via multi-task network
cascades,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 3150-3158, 2016.

[10] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time instance segmentation,” in
Proceedings of the IEEE/CVF international conference on computer vision, pp. 9157-9166,
2019.

12



W

/ (il
rfgbe’xed

Figure 7: Visualizations of UVO annotations. It is notable that the same class of object may be
labeled as an instance or as background in different images. (as shown in the area highlighted by the
ellipse). This inconsistency of annotations pose a great challenge to the algorithms.
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Figure 8: Visualizations results of our proposed TOIS in UVO dataset. TOIS can discover many
novel objects, as shown in regions in red boxes.
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