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ABSTRACT

Language model calibration refers to the alignment between the confidence of the
model and the actual performance of its responses. While previous studies point
out the overconfidence phenomenon in Large Language Models (LLMs) and show
that LLMs trained with Reinforcement Learning from Human Feedback (RLHF)
are overconfident with a more sharpened output probability, in this study, we reveal
that RLHF tends to lead models to express verbalized overconfidence in their own
responses. We investigate the underlying cause of this overconfidence and demon-
strate that reward models used for Proximal Policy Optimization (PPO) exhibit
inherent biases towards high-confidence scores regardless of the actual quality
of responses. Building upon this insight, we propose two PPO variants: PPO-M:
PPO with Calibrated Reward Modeling and PPO-C: PPO with Calibrated Reward
Calculation. PPO-M integrates explicit confidence scores in reward model training,
which calibrates reward models to better capture the alignment between response
quality and verbalized confidence. PPO-C adjusts the reward score during PPO
based on the difference between the current reward and the exponential average of
past rewards. Both PPO-M and PPO-C can be seamlessly integrated into the current
PPO pipeline and do not require additional golden labels. We evaluate our methods
on both Llama3-8B and Mistral-7B across six diverse datasets including
multiple-choice and open-ended generation. Experimental results demonstrate
that both of our methods can reduce calibration error and maintain performance
comparable to standard PPO. We further show that they could preserve model
capabilities in open-ended conversational settings. Our code is publicly released. 1

1 INTRODUCTION

As Large Language Models (LLMs) significantly expand their functionality across a wide range
of applications from complex problem solving (Wei et al., 2022; Song et al., 2023a) to science
discovery (Imani et al., 2023; OpenAI, 2023), the importance of their reliability becomes increasingly
critical. A key aspect of this reliability is language model calibration – the alignment between model
confidence and its actual performance. LLM confidence can be assessed using two primary methods:
logit-based approaches, derived from output token probability distributions, and verbalized expres-
sions, where the model explicitly states its confidence level. In this paper, we focus on verbalized
confidence, where we prompt LLMs to express a confidence score for their responses (Figure 1, Top).

Reinforcement Learning from Human Feedback (RLHF) has become a widely adopted technique
to improve the performance and alignment of LLMs. The improvement is achieved through two
primary components: reward modeling, which learns to predict human preferences from ranking
datasets, and policy optimization, guided by reward models and typically implemented with Proximal
Policy Optimization (PPO) (Schulman et al., 2017). However, recent studies (Kadavath et al., 2022;
OpenAI, 2023) show that RLHF-trained LLMs tend to exhibit overconfidence, potentially due to
sharpened output distributions. Previous research has explored various approaches to addressing
LLM overconfidence. Scaling-based approaches (Guo et al., 2017; Zhang et al., 2020) adjust model
logits using decoding temperature, while verbalized confidence is enhanced through prompting

1https://github.com/SeanLeng1/Reward-Calibration
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Figure 1: (Top): Illustration of verbalized confidence generation. An LLM incorrectly answers a
question with high confidence. (Bottom): Comparison between reward scores from a vanilla-trained
reward model Llama-3-8b-rm-mixture and our calibrated reward model Llama-3-8b-crm.
The vanilla model shows bias towards high confidence though the answer is incorrect. Our calibrated
reward model can correctly assign a higher reward to low-confidence one for the incorrect answer.

strategies (Tian et al., 2023) and supervised fine-tuning (Lin et al., 2022) with ground truth accuracy.
Recently, RLHF-based calibration methods (Xu et al., 2024; Tao et al., 2024) have been proposed.

Our study investigates the underlying causes of overconfidence introduced by RLHF. We provide
empirical evidence demonstrating that RLHF-trained LLMs exhibit greater verbalized overconfidence
compared to their pre-RLHF counterparts. Additionally, we uncover a system bias in reward models,
which favors responses with high confidence scores regardless of their actual quality, potentially
leading to poor calibration in RLHF-trained LLMs. To address this issue, we propose two solutions
that can be seamlessly integrated into the RLHF process without requiring additional golden labels.

• PPO with Calibrated Reward Modeling (PPO-M) calibrates the reward modeling process by
integrating explicit confidence scores into the binary pairwise ranking dataset. It encourages the
reward model to better align confidence levels with response quality, as shown in Figure 1, Bottom.

• PPO with Calibrated Reward Calculation (PPO-C) adjusts standard reward model scores during
PPO training. It dynamically adjusts these scores by maintaining an exponential average of past
reward scores as a reference and calibrating them according to the model’s verbalized confidence.

We conduct experiments on Llama3-8B and Mistral-7B across six datasets, demonstrating
that both PPO-M and PPO-C consistently outperform vanilla PPO by achieving a lower Expected
Calibration Error (ECE) while maintaining comparable or higher accuracy (PPO-M on Llama3-8B
reduces ECE by 6.44 points and increases accuracy by 2.73 points on GSM8K (Cobbe et al., 2021)).
Furthermore, evaluations on MT-Bench (Zheng et al., 2024) and Arena-Hard (Li et al., 2024) indicate
that PPO-M and PPO-C effectively preserve model capabilities in general open-ended conversational
settings. Additionally, we show that PPO-M generalizes well to Direct Preference Optimization
(DPO) models (Rafailov et al., 2024), which are implicit reward models. Our proposed extension,
denoted as CDPO, further reduces ECE without compromising accuracy compared to standard DPO.

2 EXPLORING SYSTEMATIC BIASES AND OVERCONFIDENCE IN RLHF-LLMS

In this section, we demonstrate the preliminary experiments that reveal overconfidence in RLHF-
LLMs and systematic biases in Reward Models, which motivated the development of our methods.

2.1 RLHF-LLMS EXHIBIT OVERCONFIDENCE IN THEIR VERBALIZED CONFIDENCE

Previous studies have shown that LLMs tend to exhibit overconfidence when verbalizing their
confidence scores (Tian et al., 2023; Chen et al., 2024a; Xiong et al., 2023). However, there is still a
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lack of systematic comparisons between RLHF-LLMs and their pre-RLHF counterparts. To address
this critical gap, we conduct preliminary experiments here to further investigate this phenomenon.
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Figure 2: Confidence distributions and accuracy of two models on CommonsenseQA before and
after RLHF. Darker color means more samples fall in that confidence bin. Empty bins indicate
no responses with confidence scores in that range. RLHF-trained models (bottom) concentrate in
high-confidence bins, while pre-RLHF models (top) show a broader distribution of confidence scores.

Setup. We show results on a multiple-choice question answering dataset, CommonsenseQA (Talmor
et al., 2019). We use four off-the-shelf models 2 for analysis. We compare RLHF models (trained
with PPO and DPO) with their pre-RLHF versions. For each question, we explicitly prompt the model
to verbalize its confidence score on a scale from 0 to 10 after answering. We report the distribution of
these confidence scores in Figure 2. Details on evaluations across other datasets and information on
the experimental setup, including prompts and parsing details, are provided in Appendix D and E.1.

Observations. As illustrated in Figure 2, there is a clear and consistent trend across both datasets:
RLHF models, whether trained using PPO or DPO, exhibit greater overconfidence compared to their
SFT counterparts. Specifically, SFT models display a more diverse confidence distribution, whereas
RLHF models predominantly assign confidence scores at the higher levels. This observation confirms
the tendency of RLHF models to exhibit greater confidence when verbalizing their confidence scores.

2.2 REWARD MODELS ARE BIASED TOWARD HIGH CONFIDENCE SCORES

In this section, we hypothesize that the observed overconfidence in RLHF-LLMs arises from an
inherent and systematic bias in reward models that favor higher confidence scores being appended
after responses. To validate this, we conduct experiments to demonstrate and analyze this preference.

Setup. We employ the RewardBench Dataset (Lambert et al., 2024), following its experimental
configuration with certain adjustments to examine how reward models process explicit confidence
scores in responses. We evaluate RLHFlow/ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024c)
and allenai/tulu-2-dpo-7b (Ivison et al., 2023). Specifically, we prepend a confidence-query
system prompt as illustrated in Figure 4; if the reward model does not support system prompts, we
prepend it into the user prompt instead. This helps the model interpret the scale of confidence scores.

Subsequently, we append a random confidence score, Confidence:{random score}, to each
model response. For a comprehensive comparison, we evaluate four modes: 1) ANSWER ONLY: The
original RewardBench dataset is used without modifications; 2) CONFIDENCE REVERSED: The
system prompt is prepended, and a high confidence score (random integer from 7 to 10) is appended

2OpenRLHF/Llama-3-8b-sft-mixture
OpenRLHF/Llama-3-8b-rlhf-100k
allenai/tulu-2-7b
allenai/tulu-2-dpo-7b

3
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Figure 3: Preference distributions for ArmoRM-Llama3-8B-v0.1, a reward model for PPO train-
ing (left) and Tulu-2-DPO-7B, a DPO model (right) on the modified RewardBench dataset
across four modes. From top to bottom: CONFIDENCE REVERSED, CHOSEN WITH CONF, RE-
JECTED WITH CONF, ANSWER ONLY. Red bar indicates the preference for a rejected or high-
confidence response, and blue bar indicates the preference for a chosen or low-confidence response.

System Prompt

For the following question, provide your best response first, followed by your
confidence in the accuracy or helpfulness of your response. Rate your confidence
on a scale from 0 to 10.

↪→
↪→
```Example Format:
<Your responses>
Confidence: <Insert your numerical confidence level from 0 to 10, reflecting how

certain you are that your answer is accurate or helpful.>```↪→

Ensure that your response strictly adheres to this format. Explicitly include the word
'Confidence:' in your response.↪→

Figure 4: Confidence-Query System Prompt for verbalizing confidence scores.

to the rejected response, while a low confidence score (random integer from 0 to 3) is appended
to the chosen response; 3) CHOSEN WITH CONF: The system prompt is prepended, but identical
chosen responses are compared with high versus low confidence scores; 4) REJECTED WITH CONF:
similar to CHOSEN WITH CONF, but identical rejected responses are compared with high versus low
confidence scores. We report the preference count for each model. Since DPO models are implicit
reward models (Rafailov et al., 2024), we also include evaluation on DPO models. Additional details
on the modified data and evaluations of other reward models are provided in Appendix C.1 and E.2.

Observations. According to Figure 3, when evaluated on the original RewardBench
dataset (ANSWER ONLY), both models effectively discriminate between chosen and rejected re-
sponses by assigning higher reward scores to chosen responses. It is important to note that in typical
pairwise preference datasets, distinctions between chosen and rejected responses – such as length,
tone, and correctness – are usually pronounced. However, even after accounting for these differences,
simply modifying the query prompt and assigning a low confidence score to the chosen response while
giving a high confidence score to the rejected response can significantly impact model behavior. As
illustrated in CONFIDENCE REVERSED, the number of high-confidence rejected responses preferred
by the model increases substantially, indicating that the model’s ability to distinguish between chosen
and rejected responses becomes impaired. In CHOSEN WITH CONF and REJECTED WITH CONF,
where identical responses are compared with different confidence scores, reward models consistently
favor responses with higher confidence scores, regardless of whether the response was originally cho-
sen or rejected. These findings suggest that reward models exhibit a systematic bias toward responses
with high confidence scores, potentially explaining the overconfidence observed in RLHF-LLMs.

3 CALIBRATED REWARD MODELING AND CALCULATION

Drawing from observations in previous sections, we propose two methods here to address the bias in
reward scores: calibrated reward modeling (PPO-M) and calibrated reward calculation (PPO-C).
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Background: Reward Modeling. Typical reward model training uses pairwise human preference
data with binary ranking labels (chosen and rejected). Let D = {(xi, y

i
c, y

i
r)}ni=1 be the training

dataset for the reward model, where xi is the prompt, and yic is the chosen response preferred over
the rejected response yir. A binary preference ranking loss (Ouyang et al., 2022) is applied to enforce
that the chosen responses receive a higher score than the rejected one, as illustrated in equation 1.

Lpreference = −E(x,yc,yr)∼D [log σ (Rθ(x, yc)−Rθ(x, yr))] (1)

where the reward model Rθ is typically initialized from the SFT model. The LM head on top of the
last layer is replaced with a linear layer to yield a single scalar reward prediction Rθ (x, y) for a given
prompt x and response y. Here, yc and yr denote the chosen and rejected responses respectively.

PPO-M: PPO with Calibrated Reward Modeling. Existing reward model training datasets
generally lack prompts explicitly requesting verbalized confidence scores or responses that include
explicit confidence levels. To address this gap, we propose a straightforward modification to the
existing binary pairwise ranking datasets by incorporating a confidence-query system prompt (shown
in Fig. 4) and appending randomly generated confidence scores to model responses, consistent with
the format in our preliminary experiments. This approach results in a modified training dataset for the
reward model, denoted as D̂ =

{(
x̂i,

(
yic, h

i
c

)
,
(
yic, l

i
c

)
,
(
yir, h

i
r

)
,
(
yir, l

i
r

))}n

i=1
, where x̂i represents

the prompt with confidence-query system prompt prepended, h and l denote randomly assigned high
and low confidence scores, respectively. We propose the following calibrated reward modeling loss:

LCRM =− E(x̂,(yc,hc),(yc,lc),(yr,hr),(yr,lr)))∼D̂

[
log σ (Rθ (x̂, (yc, hc))−Rθ (x̂, (yc, lc)))

+ log σ (Rθ (x̂, (yr, lr))−Rθ (x̂, (yr, hr)))
] (2)

This encourages the reward model to prefer high verbalized confidence for chosen responses while
favoring low verbalized confidence for rejected responses. Note that the calibration dataset is not
designed for training reward models from scratch. Instead, we fine-tune pre-existing reward models
using our proposed loss function applied to the calibration dataset. Subsequently, during PPO training,
the pre-calibrated reward model is replaced with the calibrated version to generate reward scores.

Figure 5: Framework for PPO-C.

PPO-C: PPO with Calibrated Reward Calculation. While PPO-M addresses bias in reward
model training, it necessitates additional fine-tuning. As an alternative, we propose PPO-C, which
directly enhances PPO training by refining the reward calculation process. Notably, PPO-C integrates
seamlessly into the original PPO framework without requiring any modifications to the reward model.

We modify the original PPO training dataset by replacing a portion of prompts with the confidence-
query system prompt (shown in Fig. 4) to elicit both an answer and a verbalized confidence score. This
results in a mixed dataset, where each sample is denoted as (xi, yi, si). Here, xi denotes the prompt,
yi the corresponding model response, and si an optional verbalized confidence score generated by
the model if xi explicitly requests it. For samples without confidence querying, the original reward
ri = R(xi, yi) is used for model updates. For samples with confidence querying, we introduce a
calibrated reward calculation procedure to mitigate the bias in the reward score ri = R(xi, yi, si).

We first extract and remove the confidence score from the model response to obtain an unbiased
response (xi, yi). This step allows us to obtain an unbiased reward score, r̂i = R(xi, yi). To establish
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a dynamic threshold for classifying the current model response as positive or negative, we maintain
an exponential average of the reward scores, defined as ∆rt = α ∗ r̂t + (1− α) ∗∆rt−1, where α is
set to 0.1. r̂t represents the batch mean r̂i at time t. The reward score is then adjusted as follows:

ri = r̂i + w ∗ (r̂i −∆r) ∗ (si − 0.5) (3)

The reward adjustment factor is defined as w ∗ (r̂i−∆r) ∗ (si− 0.5), where w is a scaling coefficient
set to 2.0, which controls the adjustment applied to the unbiased reward r̂i based on the rescaled
confidence score si, normalized to a range between 0 and 1. Missing confidence scores default to 0.5,
ensuring the reward remains unchanged. The overall framework for PPO-C is illustrated in Fig. 5.

4 EXPERIMENTS

We evaluate PPO-M and PPO-C on two model families: Llama3-8B and Mistral-7B.
We use their supervised fine-tuned versions3 (i.e., OpenRLHF/Llama-3-8b-sft-mixture,
teknium/OpenHermes-2.5-Mistral-7B) as the starting point for reward model and RLHF
training. We explore two distinct prompting strategies: Direct Answers (DA) and Zero-Shot Chain-of-
Thought (CoT) (Kojima et al., 2022). For Direct Answers, we utilize regex parsing to extract model
responses and confidence scores. For Zero-Shot CoT, we use gpt-4o-2024-08-06 (Achiam
et al., 2023) to parse confidence scores and compare model responses with golden answers. Detailed
descriptions of prompts, implementation details, and parsing methods are available in Appendix D.5.

We consider three evaluation metrics: Expected Calibrated Error (ECE) (Guo et al., 2017), Area Under
the Receiver Operating Characteristic Curve (AUC) (Hendrycks & Gimpel, 2016), and accuracy.

4.1 EXPERIMENTAL SETUP

We employ OpenRLHF4 (Hu et al., 2024) for reward model and RLHF training. All training
experiments are conducted on four A100 GPUs, and evaluations are carried out on one A100 GPU.

RM Checkpoints. For Llama3-8B, we employ the readily available reward model
OpenRLHF/Llama-3-8b-rm-mixture (Hu et al., 2024), which is trained from its correspond-
ing SFT checkpoint. For Mistral-7B, we train a reward model from scratch using logsigmoid
loss, as defined in Eq. 1, on the Skywork/Skywork-Reward-Preference-80K-v0.1 (Liu
& Zeng, 2024). For details on training procedures and hyperparameters, please refer to Appendix D.1.

RM Calibration Dataset. We employ a mixture of open-source datasets, and filter samples to
ensure a high distinction between scores of chosen and rejected responses. Subsequently, we prepend
the confidence-query system prompt shown in Fig 4 to each response. We then randomly assign
high and low confidence scores to create four response types: chosen with high/low confidence and
rejected with high/low confidence. Detailed information on dataset compositions is in Appendix C.3.

RLHF Dataset. We use a subset of RLHFlow/prompt-collection-v0.1 (Dong et al.,
2024) to accommodate computational resources. We randomly select 20,480 prompts and integrate
a confidence-query system prompt into 25% of single-turn prompts to elicit verbalized confidence
from the model, as exemplified in Figure 4. For clarity, we refer to the original 20,480 prompts as the
clean version and those with the confidence-query system prompts added as the modified version.

Evaluation Datasets. We use six datasets for evaluation: GSM8K (Cobbe et al., 2021), Common-
senseQA (Talmor et al., 2019), SciQ (Welbl et al., 2017), ObjectCounting from BigBench (Srivastava
et al., 2022), four Professional Knowledge datasets in MMLU (Hendrycks et al., 2020), and Truth-
fulQA (Lin et al., 2021). The datasets cover open-ended generation and multiple-choice questions.

Compared Methods. We compare our PPO-M and PPO-C against the following methods: (1) the
SFT model, which serves as the initial checkpoint before RLHF training; (2) the PPO model, which
employs a vanilla reward model during standard PPO training on the clean version dataset without

3These models are instruction-tuned and do not undergo the RLHF process.
4https://github.com/OpenRLHF/OpenRLHF
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confidence-query system prompts; (3) PPO†, an ablation of PPO-M that includes confidence-query
system prompts (modified version) during PPO training but still relies on the vanilla reward model.

4.2 MAIN RESULTS

Both PPO-M and PPO-C consistently outperform other baselines across Llama3-8B and
Mistral-7B. In Table 1, we present the results of all five methods across six datasets. Compared
to SFT, vanilla PPO shows a degradation in calibration (higher ECE and lower AUC) while generally
improving accuracy. Among all methods, PPO-M and PPO-C consistently achieve lower ECE and
higher AUC across both models and prompting strategies, highlighting their superior calibration
ability. Furthermore, PPO-M and PPO-C maintain comparable or even higher accuracy, demonstrating
that improved calibration does not come at the expense of model performance. Compared to PPO†,
an ablation of PPO-M, PPO-M and PPO-C exhibit better calibration. This is because PPO†, while
incorporating confidence-query system prompts during PPO training, still relies on the vanilla
reward model instead of the calibrated reward model introduced in Sec. 3. This further indicates the
importance of properly calibrating reward scores to mitigate bias toward high-confidence responses.
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Figure 6: Preference distributions for Llama3-8b-rm-mixture (Pre-Calibrated Version) and
Llama3-8b-crm (Post-Calibrated Version) on the modified RewardBench dataset across four
modes: CONFIDENCE REVERSED, CHOSEN WITH CONF, REJECTED WITH CONF, ANSWER ONLY.

Calibrated Reward Models. Figure 6 illustrates the preference distributions of the calibrated
reward model compared to the pre-calibrated version. The chosen and rejected ratio on the original
responses without appended confidence scores (row 4) shows no significant difference between two
models. However, when evaluated on rejected responses with high and low confidence scores (row 3),
the pre-calibrated version consistently favors high-confidence responses. In contrast, the calibrated
reward model demonstrates a preference for low-confidence responses – a behavior we aim to achieve.

5 ANALYSIS

In this section, we examine how our proposed methods influence the language model’s abilities in
instruction-following, and its engagement in conversational settings. Furthermore, we present how to
extend our approach to Direct Preference Optimization (DPO) models and the results of the extension.

5.1 INSTRUCTION-FOLLOWING CAPABILITIES

Dataset. To evaluate whether PPO-M and PPO-C compromise the instruction-following abilities
of LLMs gained through PPO, we assess their performance on two benchmarks: MT-Bench (Zheng
et al., 2024) and Arena-Hard (Li et al., 2024). MT-Bench consists of 80 high-quality, multi-turn
questions designed to evaluate LLMs across various aspects, while Arena-Hard contains 500 technical
problem-solving queries and demonstrates a stronger agreement with human preference rankings.

PPO-M and PPO-C do not compromise LLM instruction-following abilities. Table 2
summarizes the average MT-Bench and Arena-Hard scores. As expected, PPO improves
model performance compared to SFT. Additionally, models trained with PPO-M and PPO-C
achieve scores comparable to or even slightly higher than those trained with standard PPO,
highlighting that our calibration methods effectively preserve instruction-following abilities.
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Methods GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
Llama3-8B

DA

SFT 0.8608 0.5184 0.1221 0.0931 0.6067 0.873 0.2075 0.5889 0.7183

PPO 0.8843 0.5021 0.1099 0.0683 0.6507 0.911 0.1729 0.5815 0.7641
PPO† 0.8954 0.5 0.1046 0.0958 0.5047 0.904 0.2222 0.5113 0.7748

PPO-M 0.8393 0.57 0.119 0.0267 0.6115 0.898 0.1206 0.5568 0.7707
PPO-C 0.8025 0.5343 0.1046 0.0319 0.5892 0.906 0.0457 0.5835 0.7699

CoT

SFT 0.4369 0.5138 0.5481 0.0944 0.65 0.856 0.1928 0.6155 0.7101

PPO 0.2566 0.5229 0.7392 0.0862 0.6763 0.879 0.1767 0.6287 0.7363
PPO† 0.2553 0.5044 0.743 0.1265 0.5452 0.868 0.2654 0.5615 0.7191

PPO-M 0.1909 0.5499 0.7703 0.0392 0.6635 0.877 0.1555 0.579 0.7346
PPO-C 0.1546 0.5579 0.7635 0.0183 0.6473 0.868 0.1166 0.6049 0.7191

Mistral-7B

DA

SFT 0.8628 0.5747 0.0902 0.0952 0.5877 0.882 0.1634 0.56 0.774

PPO 0.8675 0.583 0.097 0.0973 0.5497 0.89 0.1772 0.5594 0.7748
PPO† 0.8851 0.5464 0.0877 0.1117 0.5439 0.885 0.1848 0.5674 0.7756

PPO-M 0.7963 0.5055 0.1016 0.0108 0.5090 0.888 0.1163 0.5303 0.7625
PPO-C 0.8161 0.534 0.0849 0.0399 0.5791 0.887 0.1311 0.5426 0.7592

CoT

SFT 0.4124 0.5277 0.5785 0.1124 0.6238 0.872 0.1908 0.6205 0.7518

PPO 0.4146 0.5228 0.58 0.1126 0.5794 0.877 0.1867 0.6238 0.7699
PPO† 0.3932 0.5096 0.6035 0.1044 0.5693 0.885 0.2056 0.6135 0.7518

PPO-M 0.3379 0.5974 0.5982 0.0388 0.6584 0.886 0.1157 0.6118 0.7666
PPO-C 0.377 0.5641 0.6065 0.0848 0.6951 0.886 0.1311 0.6367 0.774

Methods TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
Llama3-8B

DA

SFT 0.4613 0.5506 0.4113 0.5054 0.5212 0.483 0.4308 0.5175 0.4798

PPO 0.425 0.5443 0.4651 0.508 0.4988 0.491 0.4078 0.4944 0.5046
PPO† 0.5477 0.5246 0.4406 0.497 0.5 0.503 0.4951 0.4975 0.5009

PPO-M 0.3991 0.5813 0.47 0.4789 0.5227 0.505 0.3848 0.4926 0.502
PPO-C 0.3486 0.4856 0.4455 0.4405 0.5309 0.509 0.3318 0.5263 0.4798

CoT

SFT 0.4436 0.5745 0.4174 0.4545 0.5102 0.54 0.4644 0.5571 0.4242

PPO 0.4726 0.5851 0.4113 0.3651 0.5023 0.634 0.4309 0.5606 0.4635
PPO† 0.5535 0.5921 0.4076 0.337 0.5 0.663 0.5496 0.5219 0.4316

PPO-M 0.4283 0.5674 0.437 0.2863 0.5341 0.703 0.4329 0.5422 0.4424
PPO-C 0.3285 0.5193 0.4676 0.2525 0.5253 0.696 0.3798 0.5971 0.4353

Mistral-7B

DA

SFT 0.3307 0.5755 0.5704 0.5083 0.4989 0.491 0.4134 0.5018 0.5031

PPO 0.3335 0.5567 0.5826 0.5008 0.5 0.499 0.4303 0.4889 0.4994
PPO† 0.3233 0.5651 0.601 0.5119 0.499 0.488 0.4571 0.4919 0.4872

PPO-M 0.245 0.5568 0.6071 0.4248 0.5067 0.483 0.3716 0.489 0.502
PPO-C 0.2679 0.5456 0.5887 0.4947 0.5242 0.484 0.3693 0.51 0.505

CoT

SFT 0.3657 0.6067 0.5398 0.4862 0.5072 0.512 0.4863 0.5369 0.4554

PPO 0.3677 0.5911 0.5581 0.4599 0.4991 0.54 0.4783 0.5275 0.4761
PPO† 0.3657 0.6089 0.5594 0.455 0.5022 0.543 0.4735 0.5215 0.4865

PPO-M 0.3142 0.6399 0.541 0.4134 0.5496 0.56 0.4090 0.5526 0.4579
PPO-C 0.3213 0.6108 0.5545 0.4344 0.5095 0.563 0.4248 0.5588 0.4731

Table 1: Performance comparison of SFT, PPO, PPO†, PPO-M and PPO-C across six datasets using
Llama3-8B and Mistral-7B. SFT denotes Supervised Fine-Tuned checkpoints, serving as the
starting points for all methods. PPO† denotes an ablation of our PPO-M method which uses vanilla
reward model in PPO training but on our modified dataset (with confidence-query system prompts).
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Table 2: Results on MT-Bench and Arena-Hard.

Model Method MT-Bench ↑ Arena-Hard ↑

Llama3-8B

SFT 7.34 10.0

PPO 8.00 14.6
PPO† 7.81 13.4

PPO-M 8.05 14.1
PPO-C 7.87 13.7

Mistral-7B

SFT 7.65 9.2

PPO 7.84 10.5
PPO† 7.83 11.7

PPO-M 7.95 9.9
PPO-C 7.92 11.4

In contrast, PPO† exhibits inferior performance
compared to both PPO and our proposed meth-
ods. We hypothesize that this decline is primar-
ily due to the reduced prompt diversity caused
by the repetitive inclusion of confidence-query
system prompts during training. To validate this
hypothesis, we conduct additional experiments
analyzing the impact a higher proportion of iden-
tical system prompts (See Appendix E.6). No-
tably, our analysis reveals that as the fraction of
repeated system prompts increases, MT-Bench
scores tend to decrease. These results consis-
tently confirm a negative correlation the propor-
tion of confidence-query system prompts used in
training and model performance on MT-Bench.

5.2 EXTENSION TO DPO

Setup. The CRM loss in Eq. 2, which calibrates the reward model using an augmented binary
pairwise dataset, can naturally be extended to DPO training, as DPO models function as implicit
reward models (Rafailov et al., 2024). We define this extension as Calibrated DPO (CDPO) in Eq. 4.

LCDPO(πθ;πref) =− E(x,yc,yr,x̂,(yc,h),(yc,l),(yr,h),(yr,l))∼D [log σ(r(x, yc)− r(x, yr))

+w(log σ(r(x̂, (yc, h))− r(x̂, (yc, l))) + log σ(r(x̂, (yr, l))− r(x̂, (yr, h))))]
(4)

where r(x, y) = β log πθ(y|x)
πref(y|x) represents the implicit reward defined by model πθ and its reference

model πref. In this context, (yc, h) and (yr, l) denote the model responses paired with high and low
confidence, respectively, with subscripts indicating whether it is a chosen or rejected response. x̂
represents the prompt prepended with confidence-query system prompt. w is the scaling coefficient.

The first term in Eq. 4 preserves the original DPO objective, preventing forgetting, since DPO models
rely on subtle probability differences to effectively distinguish between chosen and rejected responses.

We use the Mistral-7B DPO version (i.e., teknium/OpenHermes-2.5-Mistral-7B as
the reference model and NousResearch/Nous-Hermes-2-Mistral-7B-DPO as the DPO
version) for the experiment. We fine-tune the DPO model on our RM calibration Dataset using Eq. 4.

Model Method MT-Bench ↑ Arena-Hard ↑

Mistral-7B

SFT 7.65 9.2
DPO 7.83 13.4

DPO† 7.83 14.3
CDPO 7.85 15.9

Table 3: Comparison of DPO and CDPO on MT-
Bench And Arena-Hard scores for Mistral-7B.

Results. As shown in Table 4, CDPO sig-
nificantly improves model calibration across
all six datasets, achieving consistently lower
ECE and higher AUC compared to other meth-
ods. Notably, CDPO reduces ECE by over 50%
on TruthfulQA, CommonsenseQA, and Profes-
sional Knowledge datasets. Although a slight de-
cline in performance is observed between CDPO
and DPO†, CDPO still achieves performance
comparable to the original DPO checkpoint, af-
firming that calibration does not compromise overall model capabilities. Results on MT-Bench and
Arena-Hard are presented in Table 3. For Mistral-7B, training on additional data improves both
MT-Bench and Arena-Hard scores, and CDPO further amplifies these gains compared to standard
DPO on the calibration dataset (DPO†). Results for Llama3-8B are provided in Appendix E.11.

6 RELATED WORKS

LLM Calibration. Model Calibration aims to align a model’s confidence with its accuracy. Recent
studies show that LLMs often exhibit overconfidence (Tian et al., 2023; Chen et al., 2024a; Xiong
et al., 2023; Achiam et al., 2023). Previous studies have explored methods such as scaling-based (Deng
et al., 2023; Guo et al., 2017; Zhang et al., 2020) approaches and nonparametric methods, such as
binning (Zadrozny & Elkan, 2001). Recent work has introduced verbalized confidence (Lin et al.,
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Methods GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑

DA

SFT 0.8628 0.5747 0.0902 0.0952 0.5877 0.882 0.1634 0.56 0.774
DPO 0.8704 0.5916 0.0887 0.0845 0.581 0.892 0.177 0.5744 0.7682

DPO† 0.8057 0.5409 0.0826 0.0149 0.5215 0.884 0.1157 0.5491 0.7772
CDPO 0.6767 0.6163 0.0781 0.0967 0.7236 0.89 0.0513 0.6165 0.7666

CoT

SFT 0.4124 0.5277 0.5785 0.1124 0.6238 0.872 0.1908 0.6205 0.7518
DPO 0.4184 0.5253 0.5716 0.094 0.5837 0.896 0.1849 0.6145 0.7625

DPO† 0.3456 0.5953 0.5989 0.0214 0.6687 0.898 0.0916 0.6553 0.7764
CDPO 0.1889 0.7178 0.6164 0.0553 0.7623 0.883 0.0676 0.6498 0.7633

Methods TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑

DA

SFT 0.3307 0.5755 0.5704 0.5083 0.4989 0.491 0.4134 0.5018 0.5031
DPO 0.2912 0.5725 0.6181 0.5149 0.501 0.485 0.4321 0.4967 0.4913

DPO† 0.2124 0.5674 0.6487 0.4336 0.5436 0.485 0.3649 0.5208 0.5091
CDPO 0.104 0.6225 0.661 0.3955 0.5304 0.491 0.2574 0.5451 0.4972

CoT

SFT 0.3657 0.6067 0.5398 0.4862 0.5072 0.5120 0.4863 0.5369 0.4554
DPO 0.3251 0.629 0.6022 0.4581 0.5003 0.5430 0.4950 0.5314 0.4609

DPO† 0.2169 0.6176 0.6377 0.4037 0.5585 0.539 0.3679 0.5587 0.4961
CDPO 0.1756 0.685 0.6193 0.322 0.5139 0.553 0.2917 0.614 0.4817

Table 4: Performance comparison of SFT, DPO, DPO†, and CDPO across six datasets using
Mistral-7B. SFT and DPO denote the reference and trained DPO models, respectively. DPO†
and CDPO initiate from the trained DPO checkpoint; DPO† applies standard DPO on the calibration
dataset, focusing on chosen and rejected pairs to assess the impact of training with additional data.

2022), where models are prompted to directly output confidence scores. Most studies focus on
pre-trained and instruction-tuned LLMs (Lin et al., 2022; Han et al., 2024), while other studies
examine RLHF-trained LLMs, proposing calibration through prompting strategies (Xiong et al., 2023;
Tian et al., 2023). More recent work leverages Reinforcement Learning for calibration (Xu et al.,
2024; Tao et al., 2024), which aligns closely with our study. Our study contributes by identifying the
potential cause for overconfidence in RLHF-LLMs and proposing calibration of the reward models or
reward score calculations to be seamlessly integrated into the existing PPO framework. In addition,
our approach does not compromise the model’s generalization capabilities in open-ended generation.

LLM Alignment And Reward Modeling. Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022; Christiano et al., 2017; Bai et al., 2022) has been widely applied
to align LLMs with human preferences. This pipeline typically involves Supervised Fine-Tuning
(SFT), reward modeling, and policy optimization using Proximal Policy Optimization (PPO) (Schul-
man et al., 2017). Recent studies have explored variations of this pipeline to address noisy human
preferences (Hong et al., 2022; Wang et al., 2024a) and to improve training efficiency by eliminating
the need for a separate reward model with Direct Preference Optimization (Rafailov et al., 2024).

A comprehensive discussion of related works, including detailed analysis, is provided in Appendix A.

7 CONCLUSION

This paper addresses the issue of overconfidence in RLHF-LLMs by identifying a systematic bias in
reward models that favors high-confidence responses, regardless of their actual quality. To mitigate
this bias, we propose PPO-M, which calibrates reward modeling by aligning confidence levels with
response quality, and PPO-C, which adjusts standard reward model scores during PPO training.
Both methods integrate seamlessly into the RLHF framework. Extensive experiments on various
benchmarks demonstrate the effectiveness of our approaches in reducing expected calibration error
while maintaining accuracy and robust instruction-following capabilities in open-ended generation.
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A RELATED WORKS

LLM Calibration. Model Calibration aims to align a model’s confidence with its accuracy. It
has been observed that modern neural networks, including Large Language Models (LLMs), often
exhibit overconfidence, suggesting poor calibration (Tian et al., 2023; Chen et al., 2024a; Xiong
et al., 2023; Achiam et al., 2023). Previous studies have explored methods like scaling-based (Deng
et al., 2023; Guo et al., 2017; Zhang et al., 2020) approaches and nonparametric methods such as
binning (Zadrozny & Elkan, 2001). Among these, temperature scaling (Guo et al., 2017; Zhang et al.,
2020) has been proven to be effective when combined with large pre-trained LLMs (Kadavath et al.,
2022; Xiao et al., 2022; Kuhn et al., 2023). However, previous evaluations focus on probabilities
derived from model logits (Hendrycks et al., 2020; Mukhoti et al., 2020; Guo et al., 2017; Minderer
et al., 2021), which can sometimes be inaccessible in proprietary models and unclear to human users.

Recently, verbalized confidence has been introduced (Lin et al., 2022), prompting models to directly
output confidence scores alongside responses. While most studies focus on calibrating pre-trained
LLMs through supervised fine-tuning (Lin et al., 2022; Han et al., 2024), which typically involves
sampling responses and calculating average accuracy as the estimation for ground truth confidence
scores, other studies have examined verbalized confidence in instruction fine-tuned and RLHF-trained
LLMs, and propose calibration through prompting strategies (Xiong et al., 2023; Tian et al., 2023).

More recent work leverages Reinforcement Learning for calibration (Xu et al., 2024; Tao et al., 2024)
which closely aligns with the focus of our study. We contribute by identifying a potential cause of
overconfidence in RLHF-trained LLMs and proposing calibration of the reward models or reward
score calculations to mitigate this issue. The proposed methods can be seamlessly integrated into the
existing PPO framework. Unlike supervised fine-tuning (SFT) methods, which require datasets with
ground truth labels for accuracy calculation – limiting their applicability to open-ended generation
tasks – our approach does not compromise the model’s generalization capabilities in such settings.

LLM Alignment And Reward Modeling. Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022; Christiano et al., 2017; Bai et al., 2022) has been widely applied
to align LLMs with human preferences. This pipeline typically comprises three steps: Supervised
Fine-Tuning (SFT), the collection of pairwise ranking data and the development of a reward model,
and optimization of the policy model obtained from the first step using Proximal Policy Optimization
(PPO) (Schulman et al., 2017). The effectiveness of PPO depends heavily on the accuracy and
robustness of the reward model. Following traditional Bradley-Terry reward models (Bradley & Terry,
1952), training typically utilizes a binary pairwise dataset. However, human-labeled preferences
are often noisy or exhibit conflicting signals (Hong et al., 2022; Knox et al., 2022; Wang et al.,
2024a). To address these challenges, several methods have been proposed, including introducing a
margin to guide the reward model in assigning greater weight to more distinguishable comparison
pairs (Touvron et al., 2023; Wang et al., 2024a), and employing multi-objective reward modeling that
considers joint preference, such as “helpfulness, correctness, coherence”. (Dong et al., 2023b; Zhou
et al., 2023; Wang et al., 2024b; Chen et al., 2024b; Chakraborty et al., 2024; Wang et al., 2024c).

Although the RLHF pipeline has proven effective in aligning LLMs with human preferences, Proxi-
mal Policy Optimization (PPO) presents several challenges, including reward hacking, sensitivity to
hyperparameters, and substantial computational resource demands, which complicate its implementa-
tion and practical use. To address these challenges, various alternatives have been proposed (Dong
et al., 2023a; Yuan et al., 2023; Zhao et al., 2023; Rafailov et al., 2024; Song et al., 2023b; Azar
et al., 2023; Ethayarajh et al., 2024; Hong et al., 2024; Liu et al., 2024; Meng et al., 2024). Among
these, Direct Preference Optimization (DPO) has gained significant adoption (Rafailov et al., 2024;
Dubey et al., 2024). DPO defines the preference loss as a direct function of the policy model, thereby
eliminating the need for a separate reward model. However, despite these advancements, limited
research has examined how reward models contribute to the confidence calibration of LLMs. In this
study, we address this gap by highlighting the vulnerability of reward models trained through different
approaches, which can be easily biased by simply adding confidence scores. Furthermore, we propose
two methods to calibrate these models and effectively reduce overconfidence in RLHF-trained LLMs.
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B LIMITATION AND BROADER IMPACT

B.1 LIMITATION

While we demonstrate that directly applying CRM loss 2 to DPO training can effectively reduce ECE
and increase AUC, thereby improving model calibration, this method is not explicitly optimized for
DPO. Our observations indicate some degree of performance degradation, highlighting the need for
future work to explore hyperparameter tuning or development of a more specifically designed dataset.

B.2 BROADER IMPACT

Our work emphasizes model calibration, offering two methods that can be applied across a wide
range of domains requiring well-calibrated language models. Improved model calibration enhances
the reliability, trustworthiness, and safety of general AI systems, thereby benefiting the communities.

C DATASETS

In this section, we provide detailed descriptions of the datasets utilized in this study, including those
used for the preliminary experiments, reward modeling, reward model calibration, and PPO training.

C.1 PRELIMINARY EXPERIMENTS DATASET

In Section 2.2, we demonstrate the inherent bias in reward models toward responses with high
confidence scores by modifying allenai/reward-bench dataset. This modification involves
prepending a confidence-query system prompt and appending random confidence scores to the
original model responses. For this purpose, we assign scores ranging from 0 to 3 to indicate low
confidence and 7 to 10 to signify high confidence. Figure 7 provides an example from the modified
dataset on REJECTED WITH CONF, showing a rejected response with appended low confidence scores.

Modified Reward Bench Example

System Prompts:
For the following question, provide your best response first, followed by your

confidence in the accuracy or helpfulness of your response. Rate your confidence
on a scale from 0 to 10.

↪→
↪→
```Example Format:
<Your responses>
Confidence: <Insert your numerical confidence level from 0 to 10, reflecting how

certain you are that your answer is accurate or helpful.>```↪→

Ensure that your response strictly adheres to this format. Explicitly include the word
'Confidence:' in your response.↪→

User Prompt:
How do I detail a car?

Model Response:
Detailing a car involves washing the exterior and interior of the car, as well as

polishing and waxing the exterior. Interior detailing typically involves
vacuuming, cleaning the upholstery and air vents, polishing the dashboard and
console, and dusting. Polishing and waxing the exterior will depend on the
condition of the paint, but typically involves applying a polish and wax to make
it shine.

↪→
↪→
↪→
↪→
↪→
Confidence: 2.

Figure 7: An example from the Modified RewardBench in mode: REJECTED WITH CONF.
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C.2 REWARD MODEL TRAINING DATASETS

For Mistral-7B, we utilize Skywork/Skywork-Reward-Preference-80K-v0.1 (Liu
& Zeng, 2024), an open-source pairwise binary dataset and train the reward model from scratch.

C.3 REWARD MODEL CALIBRATION DATASETS.

In order to compile the dataset for calibrating reward models, we filter samples from multiple
open-source datasets. Table 5 lists the datasets utilized and the thresholds applied for each in detail.

Initially, we filter out samples that are multi-turn or have a tokenized length exceeding 8192, as multi-
turn formats are unsuitable for assigning confidence scores, and truncation should be avoided. The
threshold represents the preference strength (Wang et al., 2024a), defined as the difference between
chosen and rejected scores. In datasets such as RLHFlow/Argilla-Math-DPO-standard, a
preference strength below 1 often indicates that both chosen and rejected responses yield the same
answer via different reasoning paths. Our objective is to calibrate the reward model to assign higher
scores to high-confidence chosen responses and lower scores to high-confidence rejected responses,
while reversing this pattern for low-confidence responses. However, when both responses produce the
same mathematical solution through different reasoning, it is inappropriate and misleading for low-
confidence rejected responses to receive higher scores. Consequently, we exclude these ambiguous
samples and retain only those with a significant discrepancy between chosen and rejected responses.
To balance computational resources, we set a threshold to retain approximately 2,500 samples per
dataset. For datasets lacking specific chosen and rejected scores, we randomly select 2,500 samples.

Dataset Threshold
argilla/distilabel-capybara-dpo-7k-binarized (Daniele & Suphavadeeprasit, 2023) 1

RLHFlow/CodeUltraFeedback-standard (Weyssow et al., 2024) 3

argilla/ultrafeedback-binarized-preferences-cleaned (Bartolome et al., 2023) 3.5

RLHFlow/Helpsteer-preference-standard (Wang et al., 2023) 2.5

RLHFlow/Helpsteer2-standard (Wang et al., 2024d) 2

RLHFlow/Orca-distibalel-standard (Lian et al., 2023) 2.0

RLHFlow/SHP-standard (Ethayarajh et al., 2022) 50

RLHFlow/HH-RLHF-Helpful-standard (Bai et al., 2022) NA

RLHFlow/Argilla-Math-DPO-standard 1

RLHFlow/PKU-SafeRLHF-30K-standard (Ji et al., 2024) NA

CyberNative/Code Vulnerability Security DPO NA

fblgit/simple-math-DPO (Murias, 2024) NA

Table 5: Dataset compositions.

C.4 PPO DATASETS

For PPO training, we filter out prompts with a tokenized length exceeding 8192 to prevent truncation
and randomly select 20,480 prompts from RLHFlow/prompt-collection-v0.1 (Dong et al.,
2024). To elicit verbalized confidence from the model, we integrate a confidence-query system
prompt into single-turn prompts. The system prompt is included in 25% of the single-turn prompts
for main results. Figure 8 illustrates an example from the dataset that incorporates this system prompt.
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PPO Prompts Example

System Prompts:
For the following question, provide your best response first, followed by your

confidence in the accuracy or helpfulness of your response. Rate your confidence
on a scale from 0 to 10.

↪→
↪→
```Example Format:
<Your generated response>
Confidence: <Insert your numerical confidence level from 0 to 10, reflecting how

certain you are that your answer is accurate or helpful.>```↪→

Ensure that your response strictly adheres to this format. Explicitly include the word
'Confidence:' in your response.↪→

to the left if the cell is full

User Prompt:
Write me an excel function to sum up the values in the cells in a column to the left

if the cell is full↪→

Figure 8: PPO Prompt Example.

C.5 EVALUATION DATASETS.

We examine six datasets encompassing six distinct categories: Arithmetic Reasoning, Common-
sense Knowledge, Symbolic Reasoning, Truthful Reasoning, and Professional Knowledge Col-
lectively, these datasets include a mix of open-ended generation tasks and multiple-choice questions.

• GSM8K (Cobbe et al., 2021): This dataset contains high-quality, linguistically diverse
grade school math word problems. We utilize the test split, which contains 1319 samples.

• CommonsenseQA (Talmor et al., 2019): This dataset features a multiple-choice question
format requiring commonsense knowledge. We use the test split, containing 1,221 samples.

• TruthfulQA (Lin et al., 2021):5 This dataset contains 817 questions designed to test
whether the model can generate truthful responses while recognizing false beliefs and
misconceptions. We utilize the multiple-choice format of the dataset and consider one single
target answer. To ensure the correct label is not predictably the first option, we randomly
shuffle the answer options and corresponding true labels. We format the questions as lettered
multiple-choices and instruct the model to select the best answer from the options provided.

• SciQ (Welbl et al., 2017) : This dataset contains crowdsourced science exams. We use the
test split for evaluation, which includes 1000 examples. It is a multiple-choice dataset, with
each question offering four answer options. Similar to TruthfulQA and CommonsenseQA,
we assign a letter to each answer option and request the model to output the answer letter.

• Object Counting in BigBench (Srivastava et al., 2022): BigBench is a collaborative
benchmark encompassing over 200 tasks. For Symbolic Reasoning, we focus on one subset,
Object Counting, which includes 1000 samples. This open-ended generation task evaluates
whether models can accurately determine the number of objects mentioned in the questions.

• Professional Knowledge in MMLU (Hendrycks et al., 2020): MMLU is a multitask
benchmark that includes multiple-choice format questions from diverse knowledge domains.
For the Professional Knowledge category, we combine the test sets from four subsets: Pro-
fessional Accounting, Professional Law, Professional Medicine, and Professional Teaching.

D IMPLEMENTATION DETAILS

In this section, we describe the implementation details for all experiments.

5https://huggingface.co/datasets/truthfulqa/truthful_qa/viewer/
multiple_choice
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D.1 REWARD MODEL TRAINING

This study utilizes two reward models. For Llama3-8B, we use an off-the-shelf checkpoint from
OpenRLHF/Llama3-8b-rm-mixture . For Mistral-7B, the reward model is trained from
scratch using teknium/OpenHermes-2.5-Mistral-7B, referred to as Mistral-7B-RM.

D.1.1 HYPERPARAMETERS

Parameter Mistral-7B

Train Batch Size 512
Micro Batch Size 1
Learning Rate 2e-6
Max Length 8192
LR Scheduler cosine with min lr
Warmup Ratio 0.03
Optimizer AdamW
Weight Decay 0.01
Epochs 2

Table 6: Hyperparameters for Reward Modeling.

We list the detailed hyperparameters used for training Mistral-7B-RM in Table 6 for reference.

D.2 REWARD MODEL CALIBRATION

As stated in Section 3, we assume that reward models used for calibration are already trained
beforehand and generally perform well. To this end, we utilize trained RM checkpoints,
OpenRLHF/Llama3-8b-rm-mixture and Mistral-7B-RM for calibration. The calibrated
versions of these models are referred to as Llama3-8b-crm and Mistral-7B-crm, respectively.

D.2.1 HYPERPARAMETERS

Hyperparameters for calibrating Llama3-8b-crm and Mistral-7B-RM are provided in Table 7.

Parameter Llama3-8B-crm Mistral-7B-crm

Train Batch Size 256 256
Micro Batch Size 1 1
Learning Rate 9e-6 5e-6
Max Length 8192 8192
LR Scheduler cosine with min lr cosine with min lr
Warmup Ratio 0.03 0.03
Optimizer Adam Adam
Epochs 1 2

Table 7: Hyperparameters for Calibrating Llama3-8B-crm and Mistral-7B-crm.

D.3 PPO TRAINING

Following the standard RLHF pipeline, we initialize the policy model using corresponding super-
vised fine-tuning checkpoints: OpenRLHF/Llama3-8b-sft-mixture for Llama3-8B, and
teknium/OpenHermes-2.5-Mistral-7B for Mistral-7B. For standard PPO and PPO-C,
we utilize the pre-calibrated reward models, specifically OpenRLHF/Llama3-8b-rm-mixture
and Mistral-7B-RM. In standard PPO, the reward score is obtained on EOS token of the sequence.
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For PPO-C, we apply our proposed calibrated reward calculation method (see Section 3 for details).

For PPO-M, we leverage Llama3-8b-crm and Mistral-7B-crm to calculate reward scores.

D.3.1 HYPERPARAMETERS

For each model (Llama3-8B and Mistral-7B), we employ a consistent set of hyperparameters
across PPO, PPO-M, and PPO-C to ensure fair comparisons and reproducibility, as detailed in Table 8.

Parameter Llama3-8B Mistral-7B

Train Batch Size 64 64
Micro Batch Size 2 2
Micro Rollout Batch Size 4 4
Rollout Batch Size 512 512
Prompt Max Len 1024 1024
Generate Max Len 1024 1024
Actor Learning Rate 5e-7 1e-7
Critic Learning Rate 9e-6 1e-6
Actor Weight Decay 0.0 0.01
Critic Weight Decay 0.0 0.0
Initial KL Confidence 0.01 0.05
LR Scheduler cosine with min lr cosine with min lr
Warmup Ratio 0.03 0.03
Optimizer Adam Adam
Epochs 1 1

Table 8: Hyperparameters for PPO Training.

D.4 DPO TRAINING

In Section 5.2, we extend calibrated reward modeling (PPO-M) to DPO training using Eq. 4. Follow-
ing the approach used for calibrating reward models, we leverage pre-trained DPO checkpoints.

For Llama3-8B, we utilize princeton-nlp/Llama-3-Base-8B-SFT-DPO as the DPO
checkpoint and princeton-nlp/Llama-3-8B-Base-SFT as the reference model. For
Mistral-7B, we use NousResearch/Nous-Hermes-2-Mistral-7B-DPO as the DPO
checkpoint, with teknium/OpenHermes-2.5-Mistral-7B serving as the reference model.

D.4.1 HYPERPARAMETERS

We list the hyperparameters used for DPO training Nous-Hermes-2-Mistral-7B-DPO and
Llama-3-Base-8B-SFT-DPO in Table 9. The same set of hyperparameters is applied to both
DPO and CDPO. However, it is important to note that the scaling coefficient w is not utilized in DPO.

D.5 EVALUATION AND PARSING

In this section, we provide a detailed overview of the generation configuration, prompting and parsing
strategies. All evaluations are performed on a single Nvidia A100 80GB GPU with a batch size of 8.

D.5.1 GENERATION CONFIGURATION

We use consistent settings for both preliminary and main experiments: temperature at 1.0, top-p at
1.0, top-k at 50, with a maximum token limit of 16 for direct answers and 256 for zero-shot CoT.

21

https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-DPO
https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT
https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO
https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO
https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-DPO


Published as a conference paper at ICLR 2025

Parameter Llama3-8B Mistral-7B

Train Batch Size 128 128
Micro Batch Size 1 1
Max Length 4096 4096
Learning Rate 3e-7 3e-7
Beta 0.01 0.01
Weight Decay 0.0 0.0
LR Scheduler cosine with min lr cosine with min lr
Warmup Ratio 0.03 0.03
Optimizer Adam Adam
Epochs 1 1
Zero Stage 3 2
Adam Offload True False
w (scaling coefficient) 1.0 0.5

Table 9: Hyperparameters for DPO and CDPO Training.

D.6 EVALUATION PROMPTS

Following the format described in Tian et al. (2023), we modify the prompt to improve clarity and
simplify the interpretation of the results. We consider two prompting strategies for evaluation: Direct
Answer and Zero-Shot CoT (Kojima et al., 2022). The exact prompt is shown in Fig 9 and Fig 10,
which also include a model response from GSM8K. For answer_type: we use option letter
for multiple-choice questions and number for open-ended math problems. For demo: we use (A)
for multiple-choice questions and 1 for open-ended math problems. Prompt formatting leverages
the chat template in the tokenizer. Instructions are placed in the system prompt, and the question is
placed in the user prompt. For models like Tulu-2 (Ivison et al., 2023), which lacks a system prompt
section in the tokenizer chat template, we append the question after the instruction as the user prompt.

Prompt for Direct Answers

System Prompts:
For the following question, provide your answer including only the {answer_type}

first, followed by your confidence in the accuracy or helpfulness of your
response. Rate your confidence on a scale from 0 to 10.

↪→
↪→
Please respond only with your answer and a numerical confidence score. Do not include

any additional text, characters, or explanations. Use the format demonstrated
below for your response.

↪→
↪→
```Example Format:
Answer: <Insert only the {answer_type} here (e.g., {demo})>
Confidence: <Insert your numerical confidence level from 0 to 10, reflecting how

certain you are that your answer is correct.>```↪→

Ensure that your response strictly adheres to this format and contain only the
{answer_type} and the confidence score. Explicitly include the words 'Answer:' and
'Confidence:' in your response.

↪→
↪→

User Prompt:
Question: James decides to run 3 sprints 3 times a week. He runs 60 meters each

sprint. How many total meters does he run a week?↪→

Model Output:
Answer: 540
Confidence: 10

Figure 9: Direct Answers Prompt.
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Prompt for Zero-Shot CoT

System Prompts:
For the following question, provide a step-by-step explanation of your thought process

first, then offer your best answer and rate your confidence in the accuracy or
helpfulness of each response on a scale from 0 to 10.

↪→
↪→
Use the format demonstrated below for your response.
```Example Format:
Explanation: <Your detailed explanation here, outlining how you arrived at your

answer.>↪→
Answer: <Insert your concise answer here, which should include a {answer_type} (e.g.,

{demo})>↪→
Confidence: <Insert your numerical confidence level from 0 to 10, reflecting how

certain you are that your answer is correct.>```↪→

Ensure that your response strictly adheres to this format. Explicitly include the
words 'Explanation:', 'Answer:', and 'Confidence:' in your response.↪→

User Prompt:
Question: James decides to run 3 sprints 3 times a week. He runs 60 meters each

sprint. How many total meters does he run a week?↪→

Model Output:
Explanation: James runs 3 sprints of 60 meters each, and he does this 3 times a week.

Therefore, he runs 3 sprints * 60 meters per sprint = 180 meters per session. Since
he does this 3 times a week, he runs a total of 180 meters/session * 3 sessions =
540 meters in a week.

↪→
↪→
↪→
Answer: 540 meters
Confidence: 10

Figure 10: Zero-Shot CoT Prompt.

D.7 PARSING DETAILS

Regex Parsing Details. To parse the confidence score from model-generated responses, we im-
plement a stopping criterion that triggers only when numeric digits directly follow the phrase
“Confidence: ”. For responses that are initially unparseable, we set a retry limit up to ten attempts. If
parsing failures persist, we manually append “Confidence: ” to the model’s response and resubmit
it for completion, allowing the model to generate the missing score. This approach enables us to
achieve nearly 100% success in parsing all responses. In the rare instances where parsing ultimately
fails, we use an empty string as the default answer. Instead of assigning an arbitrary confidence score
of 5.0 – which could introduce bias and artificially inflate ECE – we use the most frequently observed
confidence score from successfully parsed responses as the default value. This approach ensures the
assigned score could remain representative of the model’s behavior and minimizes the risk of bias.

GPT-4o Evaluation Prompt

System Prompt:
You are a specialized evaluator designed to assess model responses against golden

answers for various tasks and extract model confidence. Output your evaluation in
JSON format.

↪→
↪→

User Prompt:
Evaluate the semantic equivalence between the given model response and the provided

golden answer. Determine if they convey the same meaning.↪→
If the model response accurately matches the golden answer (i.e., the model response

is correct), assign a score of 1. If the model response does not match the golden
answer, assign a score of 0.

↪→
↪→
Additionally, extract the confidence score from the model response. If the model

response does not explicitly state a confidence score, return -100.↪→
Provide your answer in the following JSON format: {'correctness': 1 or 0,

'confidence': X.X}↪→

Figure 11: Prompts for GPT4-o Evaluation.
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GPT-4o Evaluation Details. We use gpt-4o-2024-08-06 to evaluate zero-shot CoT results.
Leveraging GPT’s structured output feature, we configure the model to generate results in JSON
format, enabling straightforward and efficient parsing. The prompt used for this is shown in Figure 11.

E MORE RESULTS AND ANALYSIS

E.1 OVERCONFIDENCE IN RLHF-LLMS

In this section, we present additional results from our preliminary experiments, demonstrating
overconfidence in RLHF-trained LLMs across five datasets, as shown in Figure 12 to 16. These
results show that RLHF-trained LLMs consistently exhibit verbalized overconfidence across datasets.
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Figure 12: Confidence distributions of models on ObjectCount before (top) and after (bottom) RLHF.
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Figure 13: Confidence distributions of models on GSM8K before (top) and after (bottom) RLHF.

E.2 REWARD MODELS ARE BIASED TOWARD HIGH CONFIDENCE SCORES

Following Section 2.2, we present additional results to further substantiate the observed phenomenon.
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Figure 14: Confidence distributions of models on Prof.Knowl before (top) and after (bottom) RLHF.
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Figure 15: Confidence distributions of models on SciQ before (top) and after (bottom) RLHF.
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Figure 16: Confidence distributions of models on TruthfulQA before (top) and after (bottom) RLHF.
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Comparison of Preference Over Responses
for ArmoRM-Llama3-8B-v0.1

(a) RLHFlow/ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024c) with (left) and w/o (right) conf.-query
prompt.
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(b) CIR-AMS/BTRM Qwen2 7b 0613 with (left) and w/o (right) conf.-query prompt.
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Comparison of Preference Over Responses
for Eurus-RM-7b

(c) openbmb/Eurus-RM-7b (Yuan et al., 2024) with (left) and w/o (right) conf.-query prompt.
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(d) sfairXC/FsfairX-LLaMA3-RM-v0.1 (Dong et al., 2023a) with (left) and w/o (right) conf.-query
prompt.
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(e) OpenRLHF/Llama-3-8b-rm-700k (Hu et al., 2024) with (left) and w/o (right) conf.-query prompt.

Figure 17: Preference Distributions for various reward models across four modes (Part 1). The left
follows the same setting in preliminary experiments, while the right represents the setting where all
confidence-query system prompts are removed, and only random confidence scores are appended.
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(a) Skywork/Skywork-Reward-Llama-3.1-8B (Liu & Zeng, 2024) with (left) and w/o (right) conf.-
query prompt.
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(b) stabilityai/stablelm-2-12b-chat (Bellagente et al., 2024) with (left) and w/o (right) conf.-
query prompt.
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(c) allenai/tulu-2-dpo-7b (Ivison et al., 2023) with (left) and w/o (right) conf.-query prompt.
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(d) openbmb/UltraRM-13b (Cui et al., 2023) with (left) and w/o (right) conf.-query prompt.
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(e) LxzGordon/URM-LLaMa-3.1-8B (Cui et al., 2023) with (left) and w/o (right) conf.-query prompt.

Figure 18: Preference Distributions for various reward models across four modes (Part 2). The left
follows the same setting in preliminary experiments, while the right represents the setting where all
confidence-query system prompts are removed, and only random confidence scores are appended.
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(a) OpenRLHF/Llama-3-8b-rm-mixture (Hu et al., 2024) with (left) and w/o (right) conf.-query prompt.
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(b) NCSOFT/Llama-3-OffsetBias-RM-8B (Park et al., 2024) with (left) and w/o (right) conf.-query
prompt.
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(c) OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5 with (left) and w/o (right) conf.-
query prompt.
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(d) IDEA-CCNL/Ziya-LLaMA-7B-Reward (Cui et al., 2023) with (left) and w/o (right) conf.-query prompt.
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(e) internlm/internlm2-20b-reward with (left) and w/o (right) conf.-query prompt.

Figure 19: Preference Distributions for various reward models across four modes (Part 3). The left
follows the same setting in preliminary experiments, while the right represents the setting where all
confidence-query system prompts are removed, and only random confidence scores are appended.
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A concern arises that the reward model may be influenced by the inclusion of the confidence-query
system prompt, which is designed to ensure the model verbalizes its confidence level. To investigate
the impact of this system prompt, we conduct additional experiments with and without its inclusion.

As shown in Figure 17, 18, and 19, the plots on the left follow the configuration outlined in prelimi-
nary experiments, where a confidence-query system prompt is prepended and random confidence
scores are appended to model responses. These plots clearly demonstrate that all tested reward models
exhibit a biased preference towards high-confidence responses, with the degree of bias varying across
models. On the right, we evaluate four modes, but this time without the confidence-query system
prompts, and only random confidence scores are appended to the model responses. For example, in
REJECTED WITH CONF, the comparison involves the same chosen responses with a high confidence
score versus a low confidence score. The results reveal a similar phenomenon, although the bias is
more subtle in this setting, indicating the potential influence of the confidence-query system prompt.

E.3 CALIBRATED REWARD MODELS

Section 4.2 highlights the preference distributions of our calibrated reward model compared to the
pre-calibrated version for Llama3-8B on REJECTED WITH CONF. In this section, we present the
complete set of results and extend the analysis to include the Mistral-7B model, providing a more
comprehensive evaluation of the calibrated reward models’ performance across different architectures.

CHOSEN WITH CONF REJECTED WITH CONF

Figure 20: Comparison of preference distributions between the calibrated reward model
Llama-3-8b-crm and the pre-calibrated version Llama-3-8b-rm-mixture on two modes.

CHOSEN WITH CONF REJECTED WITH CONF

Figure 21: Comparison of preference distributions between the calibrated reward model
Mistral-7B-crm and the pre-calibrated version Mistral-7B-RM on two modes.

As shown in Figure 20 and 21, both calibrated models exhibit a similar trend. When evaluated on
chosen responses with high and low confidence scores, the calibrated reward models are less certain
than their pre-calibrated counterparts. Additionally, when evaluated on rejected responses with high
and low confidence scores, both calibrated models show a preference for low-confidence responses,
indicating improved capability of our calibrated models in identifying overconfident model responses.
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E.4 VISUALIZATION OF THE CONFIDENCE DISTRIBUTION

PPO and PPO-M DPO and CDPO

Figure 22: Confidence distributions of PPO and PPO-M (left) and DPO and CDPO (right).

In Figure 22, we present the confidence distributions of the PPO and PPO-M models on the left, and
the DPO and CDPO models on the right. Notably, the confidence distribution for PPO-M is slightly
shifted to the left relative to PPO, indicating a reduction in high-confidence scores (e.g., confidence
level 10, representing a highly overconfident state) and an increase in lower-confidence categories.
For CDPO, this phenomenon is even more pronounced; compared to DPO, the confidence distribution
of CDPO is more dispersed across categories, with a noticeable increase in lower-confidence levels.

E.5 MODEL LOGITS FOR CONFIDENCE SCORES

Figure 23 presents the density distribution of numbers 0 to 10 based on the log probabilities extracted
from model responses on the TruthfulQA dataset for both PPO and PPO-M models. Specifically,
we forward the model responses and examine the log probabilities at the position corresponding to
the original confidence score within the response. We then analyze the log probabilities of other
numbers at the same position. The figure reveals that certain numbers exhibit notably high density.
For instance, the PPO model exhibits a high density for the number 10, while the PPO-M model
favors the number 9. This non-uniform distribution of log probabilities indicates that the model does
not generate numbers randomly at the confidence score position but instead favors specific numbers.

PPO PPO-M

Figure 23: Density Plot of LogProb for Confidence Scores for PPO and PPO-M on TruthfulQA.

E.6 PARAMETER SENSITIVITY

In Eq. 3, we introduce a reward adjustment factor γ, defined as γ = w ∗ (r̂i −∆rt) ∗ (si − 0.5).
Here w represents a scaling coefficient set to 2.0 in our main results. To evaluate the impact of w, we
conduct a hyperparameter sensitivity study, detailed in this section. The results, presented in Table 10,
reveal a clear positive correlation between calibration performance and w, and a negative correlation
between model instruction-following performance and w. This demonstrates a trade-off between
calibration effectiveness and model instruction-following capabilities as w increases. Increasing w
from 0.5 to 2.0 significantly enhances calibration performance, as indicated by a decrease in ECE.
However, this improvement is accompanied by a slight reduction in MT-Bench and Arena-Hard
scores. Based on our primary focus on confidence calibration, we select w = 2.0 for the main results.
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w MT/Arena-Hard GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
0.5 8.03 / 14.7 0.8792 0.521 0.1099 0.0703 0.6031 0.896 0.1552 0.5678 0.7674
1.0 7.91 / 13.8 0.8238 0.4937 0.119 0.0087 0.578 0.898 0.1153 0.585 0.7625
2.0 7.87 / 13.7 0.8025 0.5342 0.1046 0.0319 0.5892 0.906 0.0457 0.5835 0.7699

w MT/Arena-Hard TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
0.5 8.03 / 14.7 0.4428 0.5549 0.4553 0.4856 0.5036 0.512 0.4286 0.5027 0.4906
1.0 7.91 / 13.8 0.4104 0.515 0.4492 0.4774 0.5118 0.496 0.383 0.509 0.4902
2.0 7.87 / 13.7 0.3486 0.4856 0.4455 0.4405 0.5309 0.509 0.3318 0.5263 0.4798

Table 10: Performance of PPO-C with different w coefficient on Llama3-8B. Prompts: DA.

α MT-Bench GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
0 7.97 0.8832 0.5 0.1168 0.0967 0.5244 0.902 0.2251 0.5111 0.7715
0.1 7.87 0.8025 0.5343 0.1046 0.0319 0.5892 0.906 0.0457 0.5835 0.7699
1.0 7.97 0.8658 0.5009 0.1114 0.0373 0.6426 0.905 0.0821 0.5646 0.7756

α MT-Bench TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
0 7.97 0.5502 0.5332 0.437 0.4947 0.501 0.505 0.4877 0.4985 0.5072
0.1 7.87 0.3486 0.4856 0.4455 0.4405 0.5309 0.509 0.3318 0.5263 0.4798
1.0 7.97 0.3846 0.524 0.4443 0.4899 0.4985 0.506 0.381 0.52 0.4728

Table 11: Difference-Based PPO-C with different α for ∆r on Llama3-8B. Prompts: DA.

α MT-Bench GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
0 7.79 0.8833 0.5034 0.116 0.1056 0.5238 0.891 0.2178 0.5568 0.7649
0.1 8.05 0.8638 0.516 0.1031 0.0282 0.6513 0.904 0.1286 0.5621 0.7756
1.0 8.03 0.8827 0.5112 0.1145 0.0849 0.5493 0.907 0.1992 0.5632 0.7625

α MT-Bench TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
0 7.79 0.5185 0.5655 0.4394 0.4948 0.498 0.505 0.4753 0.5119 0.5024
0.1 8.05 0.4426 0.5303 0.4431 0.4839 0.5178 0.503 0.3949 0.4902 0.502
1.0 8.03 0.4965 0.5595 0.4333 0.4797 0.5011 0.52 0.4614 0.4968 0.4935

Table 12: Threshold-Based PPO-C with different α for ∆r on Llama3-8B. Prompts: DA.

Percentage MT-Bench GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
0.25 8.05 0.8393 0.57 0.119 0.0267 0.6115 0.898 0.1206 0.5568 0.7707
0.5 7.88 0.86 0.5185 0.1031 0.0389 0.5829 0.896 0.134 0.5399 0.7682
1.0 7.74 0.8608 0.5065 0.1243 0.0471 0.7165 0.898 0.074 0.6341 0.7658

Percentage MT-Bench TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
0.25 8.05 0.3991 0.5813 0.47 0.4789 0.5227 0.505 0.3848 0.4926 0.502
0.5 7.88 0.4453 0.5283 0.4357 0.5119 0.5413 0.473 0.3988 0.5221 0.4935
1.0 7.74 0.3438 0.5737 0.4786 0.5087 0.5052 0.487 0.3501 0.5184 0.502

Table 13: Performance of PPO-M on downstream tasks using Prompt Dataset with various percentage
of single-turn prompts prepending confidence-query system prompts on Llama3-8B. Prompts: DA.
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Tables 11 and 12 present ablation studies on α, the decay factor for the exponential average, for both
difference-based and threshold-based PPO-C. This parameter controls how quickly the exponential
average adapts to new data and reflects recent model performance. For the main results, we set
α = 0.1, a commonly used value for exponential averages, as it balances stability with filtering out
short-term variability. We compare this to α = 1.0, where the exponential average is updated to
match the batch mean at each iteration, and α = 0.0, where it remains fixed at its initial value (in
this case, it is initialized as the reward mean on the evaluation set when the reward model is trained).
As shown in the tables, α = 1.0 leads to a notable overll decline in calibration performance and a
slight increase in the MT-Bench score for difference-based PPO-C. Similarly, α = 0.0 results in
consistently inferior performance compared to α = 0.1 in both calibration and MT-Bench scores.

E.7 IMPACT OF CONFIDENCE-QUERY SYSTEM PROMPTS

For the main experiments, we select 25% of the single-turn prompts to prepend a confidence-query
system prompt. Here, we present our study on the effect of varying the percentage of single-turn
prompts with this system prompt. As shown in Table 13, the impact on calibration does not show a
consistent trend; however, we observe a decrease in MT-Bench scores as the percentage increases.
Given our primary goal to maintain model capability while improving calibration, we opt for 25%.

E.8 IMPACT OF COMBINING EQ. 1 AND 2

Given that Eq. 2 does not inherently enforce the preference for chosen responses over rejected ones.
In this section, we compare models trained using the combined loss from Eq.1 and Eq.2 against
those trained solely with Eq.2. It is important to note that we are not training the reward model from
scratch; instead, we fine-tune it using the calibration dataset. As shown in Figure 14, the model
trained exclusively with Eq 2 exhibits a similar ability to distinguish between chosen and rejected
responses as the model trained with the combined loss. Furthermore, Table 14 shows that PPO-M,
when using the reward model trained with the combined loss does not yield better calibration results.

Figure 24: Training Details of reward model with Eq. 2 alone (orange) and in combination with
Eq. 1 (red). Left column: reward of chosen / rejected responses. Middle column: reward of chosen
responses with high confidence / reward of rejected responses with low confidence. Right column:
reward of chosen responses with low confidence / reward of rejected responses with high confidence.

E.9 COMPARING THRESHOLD-BASED VS. REWARD-AVERAGE DIFFERENCE APPROACHES

While PPO-C has demonstrated effectiveness, as shown in Table 1, it is important to explore alternative
methods for adjusting reward scores to provide a broader perspective and facilitate comprehensive
comparisons. In this section, we introduce a threshold-based variant of PPO-C for evaluation.
Specifically, we use the reward exponential average as a threshold and employ the absolute value of
the reward as a scaling factor for adjustment. The final reward in this approach is then calculated as:

ri =

{
r̂i + γ if r̂i ≥ ∆rt
r̂i − γ if r̂i < ∆rt

(5)
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Loss MT-Bench GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
Eq. 2 8.05 0.8638 0.516 0.1031 0.0282 0.6513 0.904 0.1286 0.5621 0.7756
Eq. 1+ 2 7.75 0.8891 0.4974 0.1107 0.1043 0.5186 0.894 0.2286 0.528 0.7584

Loss MT-Bench TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
Eq. 2 8.05 0.4426 0.5303 0.4431 0.4839 0.5178 0.503 0.3949 0.4902 0.502
Eq. 1+ 2 7.75 0.5006 0.564 0.4565 0.518 0.5 0.482 0.4786 0.4964 0.5061

Table 14: PPO-M with the reward model trained using two losses on Llama3-8B. Prompts: DA.

where γ = w ∗ |r̂i| ∗ (si − 0.5). As shown in Table 15, we refer to this new threshold-based PPO-C
variant as Threshold and the original PPO-C as Difference in the table. The threshold-based PPO-C
demonstrates promising results across six datasets. It also exhibits a similar trade-off trand between
calibration and model instruction-following capabilities as w increases. These results suggest that
threshold-based approach may serve as a viable alternative for calibrating reward scores during PPO.

Method w MT GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
Threshold 0.5 8.05 0.8638 0.516 0.1031 0.0282 0.6513 0.904 0.1286 0.5621 0.7756
Threshold 1.0 7.76 0.8261 0.501 0.1092 0.0075 0.5641 0.903 0.1025 0.5076 0.7805

Difference 0.5 8.03 0.8792 0.521 0.1099 0.0703 0.6031 0.896 0.1552 0.5678 0.7674
Difference 1.0 7.91 0.8238 0.4937 0.119 0.0087 0.578 0.898 0.1153 0.585 0.7625

Method w MT TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
Threshold 0.5 8.05 0.4426 0.5303 0.4431 0.4839 0.5178 0.503 0.3949 0.4902 0.502
Threshold 1.0 7.76 0.4271 0.5207 0.4345 0.4709 0.5318 0.505 0.388 0.5069 0.4883

Difference 0.5 8.03 0.4428 0.5549 0.4553 0.4856 0.5036 0.512 0.4286 0.5027 0.4906
Difference 1.0 7.91 0.4104 0.515 0.4492 0.4774 0.5118 0.496 0.383 0.509 0.4902

Table 15: Comparison of Threshold-Based and Diff-Based PPO-C on Llama3-8B. Prompts: DA.

E.10 CAN PPO-M AND PPO-C BE COMBINED?

MT-Bench Arena-Hard GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
DA 7.82 14.7 0.8774 0.6199 0.0538 0.104 0.5834 0.879 0.1774 0.5837 0.7617

CoT 7.82 14.7 0.2123 0.5317 0.7794 0.0909 0.6641 0.884 0.1957 0.6335 0.7297

MT-Bench Arena-Hard TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑
DA 7.82 14.7 0.4654 0.5178 0.4345 0.4927 0.5 0.507 0.5005 0.5287 0.4216

CoT 7.82 14.7 0.4561 0.5656 0.4419 0.2843 0.5 0.715 0.4525 0.5793 0.4439

Table 16: Performance of PPO-Combine on Llama3-8B across six datasets.

Since PPO-M and PPO-C operate independently, this section explores the potential of combining
these methods. Specifically, the calibrated reward models using Eq. 2 are employed in conjunction
with the calibrated reward calculation from PPO-C to generate reward scores. The results, presented
in Table 16, indicate that the combined approach does not outperform the individual methods and, in
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Methods GSM8K SciQ CommonsenseQA

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑

DA

SFT 0.8783 0.5292 0.0773 0.1681 0.5253 0.801 0.3913 0.5294 0.5528
DPO 0.904 0.5381 0.0834 0.1085 0.561 0.886 0.3011 0.535 0.6871

DPO† 0.8861 0.5203 0.097 0.1103 0.5626 0.881 0.3004 0.5409 0.683
CDPO 0.5664 0.5389 0.1024 0.0143 0.6497 0.877 0.1697 0.5815 0.6912

CoT

SFT 0.6473 0.5508 0.326 0.1699 0.5816 0.803 0.3293 0.588 0.579
DPO 0.4159 0.5452 0.577 0.113 0.6376 0.858 0.2621 0.6295 0.6593

DPO† 0.452 0.5456 0.539 0.0964 0.6614 0.876 0.235 0.5973 0.6749
CDPO 0.3313 0.6054 0.5277 0.0386 0.7036 0.86 0.1269 0.6685 0.6798

Methods TruthfulQA Object Counting Professional Knowledge

ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑ ECE ↓ AUC ↑ ACC ↑

DA

SFT 0.592 0.5388 0.3256 0.5964 0.4938 0.395 0.5109 0.5189 0.4127
DPO 0.6126 0.5581 0.3525 0.5848 0.4996 0.415 0.4764 0.4992 0.495

DPO† 0.5647 0.5886 0.3856 0.5999 0.5008 0.4 0.467 0.5153 0.4939
CDPO 0.4022 0.6194 0.3929 0.4662 0.5262 0.422 0.3525 0.5581 0.4898

CoT

SFT 0.5259 0.5698 0.3782 0.5388 0.5126 0.45 0.5091 0.5457 0.4068
DPO 0.5188 0.5822 0.4088 0.3520 0.5000 0.6480 0.4289 0.5700 0.4831

DPO† 0.4931 0.6111 0.4113 0.3783 0.5018 0.621 0.4312 0.562 0.4694
CDPO 0.3651 0.634 0.4345 0.3488 0.5286 0.567 0.3349 0.6303 0.4609

Table 18: Performance comparison of SFT, DPO, DPO†, and CDPO across six datasets using
Llama3-8B. SFT and DPO denote the reference and trained DPO models, respectively. DPO† and
CDPO initiate from the trained DPO checkpoint; DPO† applies standard DPO on the calibration
dataset, focusing on chosen and rejected pairs to assess the impact of training with additional data.

some cases, leads to a decline in performance. We hypothesize that this outcome arises because the
calibrated reward model is trained specifically on responses incorporating confidence scores, which
are optimized to produce unbiased rewards. Consequently, removing these confidence scores to
estimate rewards based on their difference from exponential average dynamic may be inappropriate.

E.11 EXTENSION TO DPO

Model Method MT-Bench ↑ Arena-Hard ↑

Llama3-8B

SFT 6.44 (6.6) 3.1 (3.3)
DPO 7.67 (7.7) 15.9 (15.9)

DPO† 7.52 15.2
CDPO 7.68 14.7

Table 17: Comparison of DPO and CDPO on MT-
Bench And Arena-Hard for Llama3-8B. Num-
bers in parenthesis are from Meng et al. (2024).

In Section 5.2, we present the results of extend-
ing PPO-M to DPO training on Mistral-7B.
In this section, we include additional results
for Llama3-8B. As shown in Table 18 and
17, CDPO effectively reduces ECE and in-
creases AUC, mirroring the trend observed with
Mistral-7B, while maintaining performance
on MT-Bench. However, we observe a slight
performance degradation on Arena-Hard using
either DPO† or CDPO. This issue may arise
from insufficient hyperparameter tuning or in-
herent limitations in the structure of the calibra-
tion dataset, which we leave for future research.

34


	Introduction
	Exploring Systematic Biases and Overconfidence in RLHF-LLMs
	RLHF-LLMs Exhibit Overconfidence in Their Verbalized Confidence
	Reward Models are Biased Toward High Confidence Scores

	Calibrated Reward Modeling and Calculation
	Experiments
	Experimental Setup
	Main Results

	Analysis
	Instruction-Following Capabilities
	Extension to DPO

	Related Works
	Conclusion
	Related Works
	Limitation and Broader Impact
	Limitation
	Broader Impact

	Datasets
	Preliminary Experiments Dataset
	Reward Model Training Datasets
	Reward Model Calibration Datasets.
	PPO Datasets
	Evaluation Datasets.

	Implementation Details
	Reward Model Training
	Hyperparameters

	Reward Model Calibration
	Hyperparameters

	PPO Training
	Hyperparameters

	DPO Training
	Hyperparameters

	Evaluation and Parsing
	Generation Configuration

	Evaluation Prompts
	Parsing Details

	More Results and Analysis
	Overconfidence in RLHF-LLMs
	Reward Models are Biased Toward High Confidence Scores
	Calibrated Reward Models
	Visualization of the Confidence Distribution
	Model Logits for Confidence Scores
	Parameter Sensitivity
	Impact of Confidence-Query System Prompts
	Impact of combining Eq. 1 and  2
	Comparing Threshold-Based vs. Reward-Average Difference Approaches
	Can PPO-M and PPO-C be Combined?
	Extension To DPO


