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Appendix35

In the supplementary material, we provide additional visualization results, limitations, potential36

negative societal impacts and compute requirements of the MemSPM. In the pursuit of reproducible37

research, we will make the demo and network weights of our code available to the public.38

This supplementary is organized as follows:39

• Section A: Notations40

• Section B: Limitation41

• Section C: Potential societal impact42

• Section D: Implementation details43

◦ Baseline details44

◦ Compute requirements45

• Section E: Visualization Results46

A Notations47

Table 1:

Symbol Description

Model

ffixed
encode(·) Fixed image encoder

funfixed
decode (·) Unfixed reconstruction decoder
fUniDA
class UniDA classifier
M Memory unit
W Weight vector

Space

Ds Labeled source dataset
Dt Unlabeled target dataset
C Common label set
Cs Source label set
Ct Target label set
Ĉs Source private label set
Ĉt Target private label set

Samples

X Input image
X̂ Reconstruction of image
Z Input-oriented embedding
Ẑ Task-oriented embedding
L Label of the image
L̂ Prediction of image

Measures
wi,j Attention weight measurement between Z and sub-prototype
d(·, ·) Cosine similarity measurement
ŵi,j Adaptive threshold operation on wi,j

Hyperparameters
N Number of memory items
S Number of sub-prototypes partitioned in each memory item
D Dimension of each sub-prototype
K Top-K relevant sub-prototypes of Z

B Limitation48

Training memory unit of MemSPM is challenging when adopting the commonly used ResNet-50 as49

the backbone. This is due to the memory unit’s composition of massive randomly initialized tensors.50
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During the early stage of training, there is a lack of discriminability in the input-oriented embedding,51

which leads to addressing only a few sub-prototypes. This decoupling of the memory unit from the52

input data necessitates using a better pre-trained model (ViT-B/16 pre-trained on CLIP) and fixing53

the encoder to reduce computation requirements. Additionally, the number of sub-prototypes in one54

memory item might need to be adjusted for the diversity of the category.55

C Potential Societal Impact56

Our finding of the intra-class concept shift may influence the future work on domain adaption or57

other tasks. They can optimize the construction and refinement of the feature space by considering58

the intra-class distinction. The MemSPM also provides a method can be used to demonstrate the59

interpretability of model for further deployment. However, the utilization of MemSPM method for60

illegal purposes may be facilitated by their increased availability to organizations or individuals.61

And the MemSPM method may be susceptible to adversarial attacks as all contemporary deep62

learning systems. Although we demonstrate increased performance and interpretability compared to63

the state-of-the-art methods, negative transfer is still possible in extreme cases of domain-shift or64

category-shift. Therefore, our technique should not be employed in critical applications or to make65

significant decisions without human supervision.66

D Implementation details67

DCC. We use ViT-B/16 [1] as the backbone. The classifier is made up of two FC layers. We use68

Nesterov momentum SGD to optimize the model, which has a momentum of 0.9 and a weight decay69

of 5e-4. The learning rate decreases by a factor of (1 + α i
N )−β , where i and N represent current70

and global iteration, respectively, and we set α = 10 and β = 0.75. We use a batch size of 36 and the71

initial learning rate is set as 1e-4 for Office-31, and 1e-3 for Office-Home and DomainNet. We use72

the settings detailed in [2]. PyTorch [3] is used for implementation.73

GLC. We use ViT-B/16 [1] as the backbone. The SGD optimizer with a momentum of 0.9 is used74

during the target model adaptation phase of GLC [6]. The initial learning rate is set to 1e-3 for75

Office-Home and 1e-4 for both VisDA and DomainNet. The hyperparameter ρ is fixed at 0.75 and76

|L| at 4 across all datasets, while η is set to 0.3 for VisDA and 1.5 for Office-Home and DomainNet,77

which corresponds to the settings detailed in [6]. PyTorch [3] is used for implementation.78

Existing code used.79

• DCC [2]: https://github.com/Solacex/Domain-Consensus-Clustering80

• GLC [6]: https://github.com/ispc-lab/GLC81

• PyTorch [3]: https://pytorch.org/82

Existing datasets used.83

• Office-31 [7]: https://www.cc.gatech.edu/âĹĳjudy/domainadapt84

• Office-Home [8]: https://www.hemanthdv.org/officeHomeDataset.html85

• DomainNet [4]: http://ai.bu.edu/M3SDA86

• VisDA [5]: http://ai.bu.edu/visda-2017/87

Compute Requirements. For our experiments, we used a local desktop machine with an Intel Core88

i5-12490f, a single Nvidia RTX-3090 GPU and 32GB of RAM. When we adapt the batch-size used89

in DCC [2], our MemSPM only occupies 4GB of GPU memory during training in result of fixing the90

encoder.91

E Visualization92

We provid more results of visualization in Figure 1 and Figure 2 to reveal sub-prototypes stored in the93

memory unit, which demonstrate that our MemSPM approach can learn the intra-class concept shift.94
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Figure 1: The reconstruction visualization shows what have been learned in the memory, which
demonstrates the intra-class diversity have been learned by MemSPM.

Figure 2: The tSNE visualization shows the distribution of the retrieved sub-prototypes and
demonstrates that the sub-classes have been learned by MemSPM.
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