
Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 ADDITIONAL INFORMATION ON THE EXPERIMENTAL PROCEDURES.

Datasets. The number of samples in the clean sets (i.e., the test sets) of the datasets we investigated
are as follows:

• MNIST, FMNIST and CIFAR-10: 10′000,
• SVHN: 26′032.
• Imagenette: 3′925.

A sample from each dataset can be seen in Figure 4.

Figure 4: Sample images from all datasets used in the paper. From left to right: MNIST, FashionMNIST,
CIFAR-10, SVHN and Imagenette.

Shifts. In order to illustrate the effect of the shift types described in Section 5.1 of the main article,
we show the effects of the shifts and their intensities on the MNIST dataset in Figure 5. For the
detailed parameters of each shift intensity (per dataset) we refer to the associated code.

Figure 5: Illustration of intensities of the shift types — Gaussian noise (top row), Gaussian blur (middle row)
and Image shift (bottom row) — on a sample from the MNIST dataset.
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MNIST

Shift Int. Feat. Sample size
10 20 50 100 200 500 1000

GN

II MD 2.7± 0.8 7.7± 1.3 11.2± 1.6 29.3± 2.3 55.9± 2.5 94.7± 1.1 99.9± 0.1
CV 0.0 + 0.2 0.1± 0.1 0.0 + 0.2 0.1± 0.1 0.3± 0.3 1.5± 0.6 6.1± 1.2

IV MD 8.6± 1.4 26.1± 2.2 60.9± 2.5 93.3± 1.3 100.0− 0.0 100.0− 0.0 100.0− 0.0
CV 0.1± 0.2 1.0± 0.5 3.8± 1.0 17.6± 1.9 58.4± 2.5 99.3± 0.4 100.0− 0.0

VI MD 16.5± 1.9 54.2± 2.5 93.5± 1.3 100.0− 0.0 100.0− 0.0 100.0− 0.0 100.0− 0.0
CV 3.7± 1.0 20.4± 2.0 65.6± 2.4 98.9± 0.5 100.0− 0.0 100.0− 0.0 100.0− 0.0

GB

II MD 1.9± 0.7 2.7± 0.8 3.3± 0.9 4.3± 1.0 9.9± 1.5 22.2± 2.1 40.7± 2.5
CV 0.0 + 0.2 0.1± 0.1 0.0 + 0.2 0.0 + 0.2 0.0 + 0.2 0.1± 0.1 0.1± 0.1

IV MD 4.8± 1.1 13.1± 1.7 30.3± 2.3 63.1± 2.4 93.9± 1.2 100.0− 0.0 100.0− 0.0
CV 0.0 + 0.2 0.0 + 0.2 0.1± 0.2 0.3± 0.3 1.5± 0.6 11.3± 1.6 44.9± 2.5

VI MD 9.2± 1.5 25.1± 2.2 57.5± 2.5 92.4± 1.3 100.0− 0.0 100.0− 0.0 100.0− 0.0
CV 0.1± 0.1 0.5± 0.4 1.4± 0.6 5.1± 1.1 22.1± 2.1 88.5± 1.6 100.0− 0.0

IS

II MD 3.5± 0.9 8.6± 1.4 15.1± 1.8 32.7± 2.4 66.3± 2.4 98.0± 0.7 100.0− 0.0
CV 0.0 + 0.2 0.0 + 0.2 0.0 + 0.2 0.1± 0.2 0.7± 0.4 6.9± 1.3 28.4± 2.3

IV MD 5.6± 1.2 18.5± 2.0 42.1± 2.5 78.5± 2.1 98.0± 0.7 100.0− 0.0 100.0− 0.0
CV 0.1± 0.2 0.9± 0.5 2.4± 0.8 15.5± 1.8 50.0± 2.5 99.5± 0.3 100.0− 0.0

VI MD 10.4± 1.5 34.0± 2.4 72.6± 2.3 98.9± 0.5 100.0− 0.0 100.0− 0.0 100.0− 0.0
CV 1.3± 0.6 7.3± 1.3 31.7± 2.4 83.3± 1.9 100.0− 0.0 100.0− 0.0 100.0− 0.0

Table 4: Power of the statistical test with MAGDiff (abbreviated as MD) and CV representations for the shift
types Gaussian noise (GN), Gaussian blur (GB) and Image shift (IS), three different shift intensities (II, IV, VI)
and fixed δ = 0.5 for the MNIST dataset. The estimated 95%-confidence intervals are indicated.

A.2 ADDITIONAL EXPERIMENTAL RESULTS

Sample size. To further support our claims, we include comprehensive results of the power with
respect to the sample size for the MNIST, Imagenette and CIFAR-10 datasets in Tables 4, 5 and 6.
We provide all results for the shift intensities II, IV and VI, for all shift types, and fixed δ = 0.5
for MNIST, CIFAR-10, respectively δ = 1.0 for Imagenette (the δ were chosen so that the task is
comparatively easy at high shift intensity and hard at low shift intensity for both methods).

Shift intensity. In Figures 6, 7 and 8, we collect the plots of the estimated powers of the test for
multiple cases, in addition to the one presented in the main article. Note that the only situation in
which MAGDiff is very slightly outperformed by the baseline CV, is the case of FMNIST, when we
consider MAGDiff representations of layer l−1. In all other cases, shift detection using MAGDiff
representations clearly outperforms the baseline of CV by a large margin.

Model accuracy. In Figure 9 we show the impact of the shift type and intensity on the model
accuracy. It is interesting to note that, even in cases where the model accuracy is only minimally
impacted (e.g., for Gaussian blur on the MNIST and FMNIST datasets), our method can still reliably
detect the presence of the shift.

Norm variations. As mentioned in the main paper, many variations of MAGDiff are conceiv-
able. Here, we present some experimental results for variations on the type of norm that is used
to construct the MAGDiff representations. In Figure 10 we show the results where, instead of the
Frobenius-norm, we consider the spectral norm as well as the operator norm ∥ · ∥∞ induced by the
sup-norm on vectors. The spectral norm is equal to the largest singular value and ∥ · ∥∞ is defined
by:

∥M∥∞ := sup
x ̸=0

∥Mx∥∞
∥x∥∞

= max
1≤i≤m

n∑
j=1

|mij |

for M ∈ Rm×n. Comparing to Figure 6, we observe that the results for the Frobenius-norm and
the spectral norm are almost identical. However, while the results for the ∥ · ∥∞ are still better (in
almost all cases) than those of the baseline CV, they are less powerful than those of the Frobenius
norm.
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Imagenette

Shift Int. Feat. Sample size
10 20 50 100 200 500 1000

GN

II MD 0.7± 0.4 2.2± 0.7 6.3± 1.2 16.7± 1.9 46.2± 2.5 93.3± 1.3 99.9± 0.1
CV 2.4± 0.8 4.5± 1.1 2.7± 0.8 4.1± 1.0 4.2± 1.0 7.3± 1.3 10.3± 1.5

IV MD 0.9± 0.5 3.6± 0.9 7.3± 1.3 22.1± 2.1 60.7± 2.5 98.5± 0.6 100.0− 0.0
CV 1.6± 0.6 4.1± 1.0 3.2± 0.9 3.9± 1.0 4.7± 1.1 7.5± 1.3 10.1± 1.5

VI MD 0.9± 0.5 3.6± 0.9 7.3± 1.3 22.1± 2.1 60.7± 2.5 98.5± 0.6 100.0− 0.0
CV 2.2± 0.7 4.9± 1.1 3.5± 0.9 5.3± 1.1 6.8± 1.3 15.5± 1.8 33.5± 2.4

GB

II MD 0.5± 0.3 2.5± 0.8 4.1± 1.0 15.3± 1.8 40.6± 2.5 91.7± 1.4 99.9± 0.2
CV 2.1± 0.7 3.7± 1.0 3.2± 0.9 3.7± 1.0 7.0± 1.3 11.3± 1.6 18.2± 2.0

IV MD 1.0± 0.5 3.5± 0.9 9.1± 1.5 29.3± 2.3 67.9± 2.4 99.1± 0.5 100.0− 0.0
CV 2.3± 0.8 4.5± 1.0 3.7± 1.0 4.5± 1.1 6.3± 1.2 13.1± 1.7 26.9± 2.2

VI MD 1.3± 0.6 5.0± 1.1 17.2± 1.9 50.5± 2.5 89.9± 1.5 100.0− 0.0 100.0− 0.0
CV 2.1± 0.7 3.5± 0.9 3.1± 0.9 5.0± 1.1 6.9± 1.3 18.5± 2.0 46.8± 2.5

IS

II MD 0.5± 0.4 1.1± 0.5 1.9± 0.7 4.7± 1.1 13.6± 1.7 44.5± 2.5 83.1± 1.9
CV 2.5± 0.8 3.7± 1.0 3.9± 1.0 3.1± 0.9 4.3± 1.0 6.3± 1.2 9.9± 1.5

IV MD 0.3± 0.3 1.9± 0.7 2.9± 0.9 9.1± 1.5 28.1± 2.3 75.1± 2.2 98.3± 0.7
CV 1.7± 0.7 3.0± 0.9 3.6± 0.9 3.9± 1.0 4.8± 1.1 8.3± 1.4 12.8± 1.7

VI MD 0.6± 0.4 2.5± 0.8 5.0± 1.1 14.9± 1.8 44.3± 2.5 93.5± 1.2 99.9± 0.1
CV 2.0± 0.7 3.9± 1.0 1.9± 0.7 4.6± 1.1 6.1± 1.2 8.3± 1.4 15.5± 1.8

Table 5: Power of the statistical test with MAGDiff (abbreviated as MD) and CV representations for the shift
types Gaussian noise (GN), Gaussian blur (GB) and Image shift (IS), three different shift intensities (II, IV, VI)
and fixed δ = 1 for the Imagenette dataset. The estimated 95%-confidence intervals are indicated.

CIFAR-10

Shift Int. Feat. Sample size
10 20 50 100 200 500 1000

GN

II MD 1.8± 0.7 5.3± 1.1 16.7± 1.9 47.0± 2.5 86.9± 1.7 100.0− 0.0 100.0− 0.0
CV 2.3± 0.8 4.5± 1.1 6.9± 1.3 19.1± 2.0 38.3± 2.5 88.3± 1.6 99.9± 0.1

IV MD 2.5± 0.8 11.1± 1.6 36.7± 2.4 81.1± 2.0 99.3± 0.4 100.0− 0.0 100.0− 0.0
CV 2.5± 0.8 6.7± 1.3 11.7± 1.6 29.9± 2.3 63.4± 2.4 99.3± 0.4 100.0− 0.0

VI MD 2.7± 0.8 14.7± 1.8 49.2± 2.5 91.2± 1.4 99.9± 0.1 100.0− 0.0 100.0− 0.0
CV 2.7± 0.8 7.3± 1.3 14.2± 1.8 37.5± 2.5 77.3± 2.1 99.9± 0.2 100.0− 0.0

GB

II MD 0.8± 0.5 2.8± 0.8 6.6± 1.3 18.9± 2.0 49.5± 2.5 93.2± 1.3 100.0− 0.0
CV 2.6± 0.8 4.0± 1.0 3.4± 0.9 6.8± 1.3 11.1± 1.6 30.4± 2.3 58.9± 2.5

IV MD 1.8± 0.7 5.7± 1.2 19.5± 2.0 49.7± 2.5 89.6± 1.5 99.9± 0.1 100.0− 0.0
CV 2.5± 0.8 6.4± 1.2 7.3± 1.3 13.9± 1.7 35.9± 2.4 84.0± 1.9 99.8± 0.2

VI MD 2.1± 0.7 6.3± 1.2 23.4± 2.1 62.5± 2.4 96.1± 1.0 100.0− 0.0 100.0− 0.0
CV 3.0± 0.9 8.9± 1.4 14.7± 1.8 44.2± 2.5 85.5± 1.8 100.0− 0.0 100.0− 0.0

IS

II MD 0.3± 0.3 1.3± 0.6 3.6± 0.9 6.7± 1.3 19.6± 2.0 60.1± 2.5 92.6± 1.3
CV 2.5± 0.8 3.3± 0.9 2.5± 0.8 4.4± 1.0 7.9± 1.4 16.5± 1.9 31.5± 2.4

IV MD 0.6± 0.4 2.4± 0.8 3.9± 1.0 16.1± 1.9 39.9± 2.5 88.2± 1.6 99.9± 0.1
CV 2.0± 0.7 3.9± 1.0 2.9± 0.9 6.7± 1.3 10.8± 1.6 25.4± 2.2 53.1± 2.5

VI MD 1.3± 0.6 3.9± 1.0 8.9± 1.4 22.8± 2.1 57.4± 2.5 97.7± 0.8 100.0− 0.0
CV 2.0± 0.7 4.6± 1.1 4.4± 1.0 9.5± 1.5 15.5± 1.8 44.5± 2.5 83.2± 1.9

Table 6: Power of the statistical test with MAGDiff (abbreviated as MD) and CV representations for the shift
types Gaussian noise (GN), Gaussian blur (GB) and Image shift (IS), three different shift intensities (II, IV, VI)
and fixed δ = 0.5 for the CIFAR-10 dataset. The estimated 95%-confidence intervals are indicated.
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Figure 6: Power and type I error of the test with MAGDiff (red) and CV (green) representations w.r.t. the shift
intensity for various shift types on the MNIST dataset with δ = 0.5, sample size 100, for layers ℓ−1 (top row)
and ℓ−3 (bottom row).

Figure 7: Power and type I error of the test with MAGDiff (red) and CV (green) representations w.r.t. the shift
intensity for various shift types on the FMNIST dataset with δ = 0.5, sample size 100, for layers ℓ−1 (top row)
and ℓ−3 (bottom row).

A.3 THEORETICAL OBSERVATIONS REGARDING THE PRESERVATION OF SHIFT
DISTRIBUTIONS BY CONTINUOUS FUNCTIONS

In the main article, we mentioned the fact that under generic conditions, two distinct distributions
remain distinct under the application of a non-constant continuous function (though this does not
necessarily translate to good quantitative guarantees). In this section, we make this assertion more
formal and provide an elementary proof.

Let X be a separable metric space, and denote by P(X) the set of probability measures on X
equipped with its Borel σ-algebra. Let Cb(X) be the real bounded continuous functions on X . We
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Figure 8: Power and type I error of the test with MAGDiff (red) and CV (green) representations w.r.t. the shift
intensity for various shift types on the CIFAR-10, SVHN (with δ = 0.5) and Imagenette (with δ = 1) datasets.
Sample sizes and values of δ were chosen to make the plots as expressive as possible (low power for low shift
intensity, high power for high shift intensity), as the difficulty of the task varies depending on the shift type and
dataset.

consider the weak convergence topology on P(X); remember that a subbase for this topology is
given by the sets

Uf,a,b :=

{
µ ∈ P(X)|

∫
X

fdµ ∈]a, b[
}
,

for f ∈ Cb(X) and a < b ∈ R (see for example Kallianpur (1961)).

Now let X,Y be two such separable metric spaces with their Borel σ-algebra. Any measurable map
F : X → Y induces a map

F∗ :P(X) → P(Y )

µ 7→ F∗(µ),

where F∗(µ) is the pushforward of µ by F , that is the measure on P(Y ) characterized by
F∗(µ)(A) = µ(F−1(A)) for any Borel set A ⊂ Y .

Fact 1. If F : X → Y is continuous, then F∗ : P(X) → P(Y ) is continuous for the weak
convergence topology.

Proof. Given f ∈ Cb(X) and a < b ∈ R, we see that F−1
∗ (Uf,a,b) = Uf◦F,a,b, which is enough to

conclude by the definition of subbases.

The following result follows from standard arguments; we give an elementary proof for the conve-
nience of the reader.
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Figure 9: The impact of the shift type and intensity on the model accuracy for δ = 1.0 (blue), δ = 0.5 (green)
and δ = 0.25 (red).

Proposition 1. Let F : X → R be continuous and non-constant for X a separable metric space,
and let ν ∈ F∗(P(X)) ⊂ P(R). Then the complement F−1

∗ ({ν})c = P(X)\F−1
∗ ({ν}) of the set

F−1
∗ ({ν}) is a dense open set of P(X) for the weak topology.
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Proof. As R is separable and metric, it is easy to show that the singleton {ν} ∈ P(R) is closed
(see for example (Kallianpur, 1961, Thm 4.1)). As we know from Fact 1 that F∗ is continuous, we
conclude that F−1

∗ ({ν}) is closed and F−1
∗ ({ν})c is open.

It remains to show that it is dense in P(X). Let µ belong to F−1
∗ ({ν}), and let V ⊂ P(X) be an

open set containing µ. We have to show that F−1
∗ ({ν})c ∩ V is non-empty. Thanks to the definition

of the weak topology, we can assume (by potentially taking a subset of V ) that

V =

n⋂
i=1

{
µ̃ ∈ P(X) s.t.

∫
X

fidµ̃ ∈]ai, bi[
}

for some f1, . . . , fn ∈ Cb(X) and a1, b1, . . . , an, bn ∈ R with ai < bi for all i. Let x1 be any
point in the support of µ. Then µ(B(x1, δ)) > 0 for all δ > 0 by definition of the support. As
F is non-constant, there exists x2 ∈ X such that F (x2) is not equal to F (x1). Let us assume that
F (x1) > F (x2) (the proof is similar if F (x2) > F (x1)). By continuity, there exists ϵ > 0 such that
F (x) > F (x2) for any x ∈ B(x1, ϵ). Define m := µ(B(x1, ϵ)) > 0. For t ∈]0, 1[, we define a new
measure µt as follows : for any measurable set A, we let

µt (A) = µ (A\B(x1, ϵ)) + (1− t)µ(B(x1, ϵ) ∩A) + tm1x2∈A.

For any such t ∈]0, 1[, observe that

F∗(µt)(]F (x2),+∞[) = µt(F
−1(]F (x2),+∞[)

= F∗(µ)(]F (x2),+∞[)− tµ(B(x1, ϵ))

< F∗(µ)(]F (x2),+∞[),

which shows that F∗(µ) ̸= F∗(µt), hence that µt ∈ F−1
∗ ({ν})c.

On the other hand, we see that |
∫
X
fidµt −

∫
X
fidµ| < 2tm||fi||∞ for i = 1, . . . , n. Since

µ ∈ V =
⋂n

i=1

{
µ̃ ∈ P(X) s.t.

∫
X
fidµ̃ ∈]ai, bi[

}
, thus µt ∈ V for t ∈]0, 1[ small enough. This

shows that V ∩ F−1
∗ ({ν})c is non-empty, and thus we conclude that F−1

∗ ({ν})c is dense in P(X).

As a direct corollary, we get the following statement, where generic, as above, means that the prop-
erty is true for any random variable x′ whose distribution belongs to a fixed dense open set of the
space of distributions on Rn :
Corollary 1. Let F : Rn → Rk be a non-constant continuous function represented by a neural
network, and let x be a random variable on Rn. For a generic random variable x′ on Rn, the
distribution of F (x′) will be different from that of F (x).

Proof. Rn is a separable metric space, and if F is non-constant, so is at least one of its coordinate
functions Fi : Rn → R, to which Proposition 1 then applies. If the distribution of Fi(x

′) is different
from that of Fi(x), then the distribution of F (x′) is different from that of F (x).
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Figure 10: Power and type I error of the test with MAGDiff (red) w.r.t. the Frobenius norm, used in all other
experiments, (top row), the spectral-norm (middle row) and ∥·∥∞ (bottom row) and CV (green) representations
w.r.t. the shift intensity for various shift types on the MNIST dataset with δ = 0.5, sample size 100, for layer
ℓ−1.
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