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ABSTRACT

Accurate 3D lane estimation is crucial for ensuring safety in autonomous driving.
However, prevailing monocular techniques suffer from depth loss and lighting
variations, hampering accurate 3D lane detection. In contrast, LIDAR points offer
geometric cues and enable precise localization. In this paper, we present DV-
3DLane, a novel end-to-end Dual-View multi-modal 3D Lane detection frame-
work that synergizes the strengths of both images and LiDAR points. We propose
to learn multi-modal features in dual-view spaces, i.e., perspective view (PV) and
bird’s-eye-view (BEV), effectively leveraging the modal-specific information. To
achieve this, we introduce three designs: 1) A bidirectional feature fusion strat-
egy that integrates multi-modal features into each view space, exploiting their
unique strengths. 2) A unified query generation approach that leverages lane-
aware knowledge from both PV and BEV spaces to generate queries. 3) A 3D
dual-view deformable attention mechanism, which aggregates discriminative fea-
tures from both PV and BEV spaces into queries for accurate 3D lane detection.
Extensive experiments on the public benchmark, OpenLane, demonstrate the effi-
cacy and efficiency of DV-3DLane. It achieves state-of-the-art performance. with
a remarkable 11.2 gain in F1 score and a substantial 53.5% reduction in errors.
The code is available at https://github.com/JMoonr/dv—3dlane.

INTRODUCTION

Autonomous driving (AD) technology in recent
years has made remarkable strides, bringing us
closer to the realization of fully self-driving ve-
hicles. Within this field, one of the key chal-
lenges is the accurate detection of 3D lanes, a
critical component for ensuring safe and reli-
able navigation. 3D lane detection entails iden-
tifying the 3D positions of lane boundaries in
the environment, providing essential data for
tasks like path planning and vehicle control.

3D lane detection is proposed to mitigate the
limitations posed by the absence of depth infor-
mation in 2D prediction. Currently, the major-
ity of 3D lane detection methods rely on vision-
centric approaches, i.e., monocular solutions,
where some designs are naturally borrowed and
benefit from advances in 2D lane methods. Tak-
ing the perspective-view (PV) image as input,
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Figure 1: FPS vs. F1 score. All models are tested
on a single V100 GPU, and F1-score is evalu-
ated with a harsh distance threshold of 0.5m on
the OpenLane-1K dataset. Our model sets a new
state-of-the-art, and our tiny version surpasses all
previous methods with the fastest FPS. More de-
tails can be found in Table|l|and our Appendix.

these monocular methods mainly utilize the inverse perspective mapping (IPM) Mallot et al.|(1991)
technique to warp the PV features into BEV. However, there are misalignment issues in the IPM-
based methods when encountering non-flat roads, due to the rigid flat assumption of IPM Nedevschi
et al. (2004); Yan et al.|(2022). While some recent efforts have been made to address this issue and
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have shown promising results by directly predicting 3D lanes in PV Bai et al.| (2022b)); Huang et al.
(2023)); ILuo et al.[ (2023), these monocular 3D approaches, as vision-centric solutions, inevitably
get stuck in capturing the complexity of real-world driving scenarios, when encountering adverse
weather and lighting conditions. In contrast, as an active sensor, LiDAR excels in spatial localization
and 3D structure perception, complementing the capabilities of passive sensor cameras, and it gets
more widely used thanks to hardware advancements. A bunch of recent works in 3D object detection
have demonstrated the power of LIDARs|Zhou & Tuzel (2018));/Lang et al.[(2019);|Yin et al.|(2021a)
and multiple modalities|Liang et al.[(2019); Wang et al.[(2021); Yang et al.| (2022); [L1 et al.|(2022b);
Chen et al.[(2023) in autonomous driving scenarios. Whereas, fewer endeavors Bai et al.| (2018));
Luo et al.|(2022) have been made to exploit multi-modal strength for 3D lane detection. Albeit using
extra LIDAR data, M2-3DLane [Luo et al|(2022) failed to make full use of features in image space
which is crucial to 3D lane performance. Besides, M2-3DLane employs a naive fusion to aggregate
multi-modal features, resulting in inferior performance to the camera-only methods(e.g.,|Luo et al.
(2023))).

Given the rich semantics inherent in images and the accurate positional information afforded by
the BEV representation Philion & Fidler (2020); [Li et al.| (2022d), we strive to exploit the multi-
modal features to enhance the performance of 3D lane detection. Existing methods tend to fuse two
modalities into a single space [Liang et al.| (2022)); Liu et al.| (2023b)), e.g., BEV, for feature extrac-
tion and subsequent prediction. However, this approach constrains the model’s capacity to harness
modality-specific features. We contend that features represented in both PV space and BEV space
bear significance, facilitating improved representation learning. Motivated by the above observa-
tion, we introduce DV-3DLane, a novel end-to-end multi-modal 3D lane detection framework.

To maintain a dual-view space representation, we adopt a symmetric backbone consisting of a PV
branch and a BEV branch to extract features in PV and BEV spaces, respectively. To leverage the
merits of both images and points for comprehensive feature learning in each view, we design a bidi-
rectional feature fusion (BFF) strategy. Subsequently, to effectively facilitate query-based detection
using the retained dual-view features, we devise a unified query generator (UQG). This generator
initially produces two sets of lane-aware queries: one from the PV space and the other from the
BEV space. These two query sets are compelled to capture lane knowledge regarding semantics
and spatiality, guided by auxiliary 2D segmentation supervision. Further, these two sets are then
combined into a unified set that serves the decoder. To achieve the unification of dual-view queries,
we propose a lane-centric clustering technique. Besides, we employ a Transformer decoder to ag-
gressively integrate discriminative features from both views into the unified queries. For effective
feature aggregation across different view spaces, we introduce a 3D dual-view deformable attention
mechanism that considers the inherent properties of 3D space, resulting in deformed 3D sample
points. These 3D sample points are then projected onto the PV and BEV planes, yielding 2D sample
points in each respective view space. These projected 2D points are utilized for feature sampling
within their respective view spaces.

In summary, our contributions are threefold :

¢ We introduce DV-3DLane, an end-to-end multi-modal 3D lane detection framework that har-
nesses the power of dual-view representation.

* We devise the BFF strategy to mutually fuse features across modalities, and design the UQG to
merge lane-aware queries from dual views, yielding a unified query set. Further, a 3D dual-view
deformation attention mechanism is introduced to aggregate dual-view features effectively.

* We conduct thorough experiments on the OpenLane benchmark to validate the effectiveness of
our method. Experimental results show that DV-3DLane surpasses previous methods signifi-
cantly, achieving an impressive 11.2 gain in F1 score and a remarkable 53.5% reduction in
errors. Moreover, a 3D dual-view deformation attention mechanism is introduced to aggregate
dual-view features effectively.

2 RELATED WORK

2.1 2D LANE DETECTION

Recent works in 2D lane detection can be broadly categorized into four main approaches: 1)
Segmentation-based methods |Lee et al.| (2017); [Pan et al.| (2017); Neven et al.| (2018); [Hou et al.
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(2019); Xu et al, (2020); |[Zheng et al.| (2021) devote to classifying pixels into lanes or the back-
ground, necessitating further post-processing steps (e.g., grouping and curve fitting) to produce
lane instances. 2) Anchor-based methods, inspired by region-based object detectors such as Faster-
RCNN [Ren et al.| (2015), employ line-like anchors to localize lanes Wang et al.| (2018)); [Li et al.
(2019); [Tabelini et al.[ (2021a). To overcome the limitations of straight-line constraints, Jin et al.
(2022) employ eigenlane space to produce diverse lane shape candidates. 3) Point-based methods|Ko
et al.| (2021); |Qu et al.| (2021)); [Wang et al.| (2022); Xu et al|(2022) attempt to flexibly localize key
points along each lane instance and subsequently group the points belonging to the same lane. 4)
Parametric methods|Van Gansbeke et al.[(2019); Tabelini et al.| (2021b)); |[Liu et al.| (2021); |[Feng et al.
(2022) formulate lane detection as a curve fitting problem, leveraging prior knowledge about lane
shapes by representing them using various parametric forms, such as polynomials and splines.

PV Space Feature Qv Query Clustering 3D Dual-view

N T2 Deformable Attention
Init Cluster Centers X
Image TAM [ it Cluster Centers =] =114 ] @pew N — oo
Backbone > E Point Query 3D Reference Points

—COC O ——>eeee

2
H p| 0 S
d Fpy
Bidirectional | M (| - }
Reference Point
Feature Fusion | Aux Instance Supervision el /s
AR
: A Epoints 90 o
, :
L1 BEYV Space Feature ¥ D
Point 1AM ? ,,,,,,,,,,, & ,,,,,,,,,,,,
Backbone g New Point Query New Point Query
dOOO— edOMO
Dual-view i
Feature Process Query Generation Decoder 3D Lane Prediction | x2

Figure 2: Overview of DV-3DLane. First, images and point clouds undergo separate processing by
the image backbone and point backbone. In the middle stage of backbones, we introduce Bidirec-
tional Feature Fusion (BFF) to fuse multi-modal features across views. Subsequently, the instance
activation map (IAM) is utilized to produce lane-aware queries Q,, and Q... These queries are
then subjected to Dual-view Query Clustering, which aggregates dual-view query sets Q,,, and Q..
into a unified query set C, further augmented with learnable point embeddings E,,in¢s to form query
Q. Additionally, we introduce 3D Dual-view Deformable Attention to consistently aggregate point
features from both view features F,,, and Fy.,, into Q. @& denotes broadcast summation. Notably,
the @ Epoints operation is performed only in the first layer, while in the following layer, ® Q is
utilized. Different colored boxes [1[/[] denote queries targeting different lanes; dashed boxes i.}
represent the background, and box texture indicates features.

2.2 3D LANE DETECTION

Existing methods center on vision-centric solutions and draw inspiration from the 2D task. Typically,
monocular approaches|Garnett et al.|(2019); |Efrat et al.|(2020);|Guo et al.|(2020);|Chen et al.[(2022);
Wang et al.| (2023); |Liu et al.| (2022); L1 et al.[(2022a)); |A1 et al.| (2023); [Yao et al.| (2023) construct
surrogate representations using inverse perspective mapping (IPM), and perform predictions in this
surrogate space. Nonetheless, [IPM inherently introduces discrepancies between the perspective and
the surrogate view in non-flat areas due to its planar assumption. To address this limitation, recent
efforts have endeavored to predict 3D lanes from the perspective view |Yan et al.|(2022); Bai et al.
(2022b)); Huang et al.|(2023); Luo et al.|(2023), or employ a depth-aware projection to enhance lane
perception by incorporating LiDAR information [Luo et al.|(2022]).

2.3 MULTI-MODAL DETECTION

Despite advancements in lane detection, multi-modal methods remain relatively underexplored. Pre-
vious works typically utilize either BEV Bai et al.[ (2018); |Yin et al.| (2020); |[Luo et al.| (2022) or
PV [Zhang et al.| (2021b) as representation spaces for performing 2D lane segmentation |[Yin et al.
(2020); [Zhang et al.| (2021b)) or 3D lane detection Bai et al. (2018)); [Luo et al.| (2022)). For BEV-
based methods, Bai et al. (2018)) rasterizes LiDAR points to create a BEV image and transforms
PV images into BEV using the estimated ground height derived from the LiDAR data. Similarly,
MZ2-3DLane Luo et al.| (2022) utilizes the BEV space to fuse multi-modal features. To project PV
features into BEV space, they lift compact 2D features into 3D space guided by the depth map and



Published as a conference paper at ICLR 2024

further employ a pillar-based method|Lang et al.|(2019) to splat them into BEV. While these methods
primarily focus on 3D tasks, |Yin et al.[|(2020) leverages BEV space for fusing camera and LiDAR
features, serving for 2D BEV lane segmentation. Conversely, [Zhang et al.| (2021b) adopts PV to
fuse multi-modal features for 2D lane segmentation. In contrast to lane detection, multi-modal meth-
ods have been extensively studied in 3D object detection, with most previous multi-modal methods
attempting to fuse image features into BEV space due to its compactness and interoperability for
ambient perception Ma et al.| (2022)). These methods either adopt point-level fusion [Sindagi et al.
(2019); 'Wang et al.| (2021); |Yin et al.| (2021b) to paint points, instance-level fusion to project 3D
proposals to image space Yoo et al.| (2020); |Bai et al.| (2022a)), or feature-level fusion to transform
features from PV space into BEV space|Liu et al.|(2023b); [Liang et al.|(2022). However, few works
consider both the perspective view and BEV simultaneously.

3 METHODOLOGY

The overall framework of our DV-3DLane is depicted in Figure Section describes the bidi-
rectional feature fusion module, which merges different modalities bidirectionally and constructs
multi-modal features in both PV and BEV spaces. In Section[3.2] we present the unified query gen-
erator, which generates two lane-aware query sets from dual views and unifies them into a shared
space in a lane-centric manner. Section[3.3]introduces the 3D dual-view deformable attention mod-
ule, which effectively aggregates dual-view features into unified queries, serving for prediction.

3.1 BIDIRECTIONAL FEATURE FUSION

Instead of merging different views into one single space Bai et al|(2018); [Luo et al.|(2022); |Liang
et al.|(2022); L1 et al.[(2022d); |Liu et al.|(2023b), we propose to retain features in both PV and BEV
spaces while incorporating multi-modal features for each view. To achieve this, we employ a dual
branch to extract features for each view, using images and points as input, respectively. Interme-
diately, we conduct bidirectional feature fusion between the symmetric branches to enhance each
view with multiple modalities, as shown in Figure [3|and summarized in Algorithm|[I]

Algorithm 1 Bidirectional Feature Fusion (BFF) /

Input: LiDAR points Pp¢, image I, camera parameters T' o o
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Output: mm-aware PV features ¥, BEV features Fpev, g gy — /
“mm” denotes multi-modal. e ¢ f / f
>
A

F;} = PillarNet-S1(P,), F3,, = ResNet-S1(I) "
> S1: stage one.

Poiopy = {(ui,v;)|i € P} = Project(T, Pp) Pmﬂfdl o o o
D
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Point Feature

Fpu2pt = Grid_Sample(src = Ff,}), coords = Ppiopy) o o P o
> pixels — points.
_ sl . T .
Fpo = Re.SNet(Concat(FPv’fpﬂpv)) Figure 3: Bidirectional Feature Fu-
Fie, = PillarNet(Concat(Fp;, Fpoopt)) sion (BFF). We represent the image fea-

> dual-view multi-modal feature extraction. ture in green and points in blue.

Concretely, we place points and images in their designated branches. After obtaining low-level
features within each branch, we perform bidirectional feature fusion. By projecting 3D points P,,; =
{(xs,yi,2i)|i € P} onto the PV plane, we obtain their corresponding 2D coordinates P2, =
{(ui,v;)|i € P}, where P is the cardinality of the point set. 1) For points-to-pixels fusion, we
utilize a Scatter operation to construct dense point feature grids F;2,,,, (depicted in the upper part
of Figure[3] with blue cells denoting positions hit by the projected 3D points). 2) For pixels-to-points
fusion, we employ bilinear interpolation to sample features at 2D positions hit by the projection
of 3D points, yielding F,2,: (shown in the lower part of Figure . The resulting cross-modal
features in PV and BEV are concatenated with their respective original modal features. The fused
multi-modal features in each view, i.e., PV and BEV, are then fed into subsequent modules in the
corresponding branch, generating F ), and Fy.,, respectively. Notably, F,,, and Fy., encapsulate
multi-modal information represented in distinct spaces.
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3.2 UNIFIED QUERY GENERATOR

We introduce a unified query generator for end-to-end 3D lane detection. To this end, we first
generate two distinct lane-aware query sets, termed dual-view queries, from the previously obtained
multi-modal features, F,, and Fy.,. Then, we present a lane-centric clustering strategy to unify
these dual-view queries into a cohesive set of queries.

Dual-view Query Generation. To effectively capture semantic and spatial features related to lanes,
which are termed as “lane-aware” knowledge, we utilize an instance activation map (IAM) |Cheng
et al.| (2022)-assisted method to generate lane-aware queries in PV and BEV spaces. Taking PV
branch as an example, we produce a set of IAMs, denoted as A, via the following equation:

A, = o(F(Concat(Fp,, Spy))),

where A, € RV*HpoxWoo ‘|~ REXHpoXWio ' N denotes query number, o is the sigmoid
function, Concat represents concatenation operation, and S, comprises two-channel spatial local-
ization features for each pixel [Liu et al.| (2018). The lane-aware query Q,, assisted by IAMs is
generated via:

va = Apv &® FT

pvI

where Q,, € RN*C | @ denotes the matrix product. Similarly, lane-aware BEV query Qpe, €
RN is formed using:

Qbev = U(]:([Fbevv Sbev])) oY F;)re/u-

To force the query sets to learn lane-aware features, during training, we employ an auxiliary instance
segmentation for each branch on top of the query set. Labels for the auxiliary segmentation are
generated in pairs for these two branches, which are further assigned to predictions using mask-
based bipartite matching [Cheng et al.| (2022), as illustrated in Figure 4] (a) and (b).

Dual-view Query Clustering. Given oo T Lanes oo T Lanes
dual-view query sets Qy, and Qpey, o 0 S e
we propose employing a lane-centric
clustering technique to generate a
unified query set for end-to-end lane
detection. While kMax-DeepLab [Yu
et al.| (2022)) previously used k-means
cross-attention to group pixels into
distinct clusters, i.e., instance masks,
our approach focuses on unifying Figure 4: Illustration of one-to-one matching and lane-
queries from different views. Queries centric clustering. (a) and (b) show the assignment for BEV
from Q,, and Q. targeting the and PV predictions, respectively. (c) depicts the pairing of
same lane are merged within the same  the clustering, where queries targeting the same lane are
cluster. Specifically, we initiate lane treated as a positive pair, otherwise negative.

cluster centers C € RY*C with Qpos

and assign each query in Qpe,, to its nearest cluster center among C. Notably, cluster centers can be
chosen from either Q,,, or Q... Empirically, we found that using Q,,, produces better results. To
achieve clustering, we perform attention between C (query) and Qy.,, (key), while applying argmax
along the cluster center (query) dimension Yu et al.|(2022) as follows:

A = argmax(C x Qj.,), C=A"Ques +C,
N
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where C € RV*C refers to updated centers unifying queries from dual views. In practise, we use
gumbel-softmax Jang et al.|(2016); Liang et al.| (2023) to substitute argmax.

Considering the variation and slenderness of lanes, we employ a refined point query scheme |Luo
et al| (2023)) to enhance lane detection. Instead of using a single query for each lane, multiple-
point queries are employed for more precise capture [Luo et al.| (2023); [Liao et al.[ (2022); |[Zhang
et al.| (2021a); |Liu et al.| (2023a). Consequently, in the first layer, we construct point-based queries
Q € RV*M*C yith Q = C ® Epoints» Where @ denotes broadcast sum, Epyinis € RM*C is the

learnable point embedding, and in the subsequent layer, we update Q by Q = CaqQ.

Supervision on Query Clustering. Given the critical importance of deep supervision for the clus-
tering |Yu et al.[ (2022), we leverage the InfoNCE loss |Oord et al.| (2018) to supervise the query
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clustering in a lane-centric manner, as illustrated in Figure 4] (c) and formulated as:

exp(q-k*/7)
exp(q-k7/7) +3 - exp(q-k7/7)’
where 7 is a temperature hyper-parameter [Wu et al.| (2018), g denotes one query, k™ indicates the
positive sample w.r.t. q, and A/ denotes the collection of all negative samples from the different
query set relative to the one containing g. Notably, queries assigned to the background do not incur
penalties in the clustering learning process. With this supervision, queries from different views are
grouped together when matched to the same ground truth lane. Consequently, lane-aware knowledge
residing in two view spaces is synergized into the unified query.

Lnce= —log

3.3 3D DUAL-VIEW DEFORMABLE ATTENTION

Apart from informative query generation, feature aggregation plays a crucial role in DV-3DLane.
Instead of projecting points from densely sampled grids [Chen et al.| (2022) or their lifted pillars [Li
et al[ (2022d) onto the PV plane for feature sampling, as shown in Figure [5] (a), we adopt sparse
queries to sample features from different views. Moreover, our approach distinguishes itself from
several existing sparse query methods, as depicted in Figure[3](b) and (c). For instance, Deeplntera-
tion|Yang et al.| (2022) (Figure[3](b)) employs a sequential method to sample PV and BEV features,
while FUTR3D |Chen et al.| (2023)) (Figure E] (c)) projects 3D points into different spaces, sampling
features individually for each space.

In contrast, as outlined in Algorithm[2] we leverage the inherent properties of 3D space by predicting
both 3D reference points and their 3D offsets using queries, forming 3D deformed points. These
3D deformed points are then projected into each space, establishing a consistent feature sampling
strategy across spaces, as depicted in Figure [5] Consequently, features corresponding to the same
3D points from different views are effectively sampled and integrated into the query.

Algorithm 2 3D DV Deformable Attention 0T -

ol
. e
Input: unified query set Q, PV features F,,,, BEV fea- @ ﬁ @ ®)

tures Fc,, camera parameters T. BEV Grids
Output: updated unified query Q.

Refgd = MLP1 (Q)

layer i layer i + 1

PV Space /7 BEV Space @ Reference points ¥, Projection %\ Offsets

> 3D reference points.

ARefgd = MLPQ(Q) ©
Sgd = {(mi,yi7 Zz)|l € N} = AREf3d + Refgd
> deformed 3D positions. ﬂ
D, = DeformAttn(Projectpv(Ssda, T), Fpv)

> project 3D deformed points to PV. Figure 5: Illustration comparing 3D dual-

Dy = DeformAttn(Projecty,, (Sza), Foev) view deformable attention with other ap-
Q = SE(Dyyv, Dpew) proaches.

3.4 PREDICTION AND LOSS

Auxiliary Tasks. During training, we incorporate two auxiliary tasks: 1) 2D instance segmenta-
tion [Luo et al.| (2023); |Cheng et al.| (2022) loss L., for both PV and BEV branches, aiding in
extracting discriminative lane features in each view; 2) Depth estimation for the PV branch, which
guides effective 3D structure-aware feature extraction of F,,. Depth labels are generated from Li-
DAR points, and the loss Lgepp, is calculated following BEVDepth Li et al.|[(2022c).

3D Lane Prediction and Loss. As we adopt point-based queries Q € R(N*M)xC "each query

naturally corresponds to a 3D point, and every group of M points constructs a complete 3D lane.
Thus, we predict X, z, and visibility for each point query on the predefined y coordinates|Chen et al.
(2022);|Luo et al.| (2023)) and a classification probability for each lane. Overall, the total loss is:

Liane = Wz Ly +w L, +wo Ly +weLe,

£au7; = wseg‘cseg + wdepth£d€pth7

Etotal = Elane + £auw-

where w, denotes different loss weights. We adopt the L1 loss £, and L to learn the x, z positions,
focal loss|Lin et al.| (2017 L. to learn the lane category, and BCELoss £, to learn visibility.



Published as a conference paper at ICLR 2024

4 EXPERIMENTS

4.1 DATASETS

o
2N

We evaluate our method on OpenLane (Chen
et al.| (2022), the sole public 3D lane dataset
featuring multi-modal sources, OpenLane is
a large-scale dataset built on Waymo Open
Dataset Sun et al.| (2020), comprising 200K
frames and 880K lanes across six driving sce- 02 e s
narios and 14 lane categories. The LiDAR data, - N
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4.2 METRICS method consistently achieves superior results un-

. . ) der more stringent criteria.
We adopt the evaluation metrics established by

OpenLane (Chen et al.| (2022), framing 3D lane detection evaluation as a matching problem based
on the edit distance between predictions and ground truth. Successful matching results in computed
metrics, including F-Score, category accuracy, and error in X/Z-axes. A successful match for each
predicted 3D lane is defined when at least 75% of its points have a distance to the ground truth below
the predefined threshold D;.c.

4.3 IMPLEMENTATION DETAILS

Models. In the base version of DV-3DLane, we employ ResNet34 |He et al.| (2016) and Pillar-
Net34 Shi et al.[(2022) as the backbones for our camera and LiDAR branches, respectively. For the
lite version, we utilize ResNet18 and PillarNet18. The base version features two decoder layers,
while the lite version employs a single decoder layer. Following LATR |Luo et al.[(2023), we set the
number of lane queries to 40, and we employ deformable attention with 4 heads, 8 sample points,
and 256 embedding dimensions.

Training. We use the Adam optimizer Kingma & Bal (2014) with a weight decay of 0.01. The
learning rate is set to 2e-4, and our models undergo training for 24 epochs with a batch size of 32.
We employ the cosine annealing scheduler [Loshchilov & Hutter| (2016) with T,,,, = 8. Our input
images are of resolution 720x960, and we adopt a voxel size of (0.2m, 0.4m) for the X and Y axes.

4.4 MAIN RESULTS

It’s important to note that the existing metrics use a rather lenient distance threshold of D;p,,..=1.5m.
However, in the context of ensuring safety in AD, this value, although commonly used for assess-
ment purposes, may be considered overly permissive. Following M2-3DLaneNet Luo et al.[(2022),
we extend our evaluation to include a more stringent threshold, D;p,..=0.5m. Further, we illus-
trate the relationship between the F1 score performance and different distance thresholds for various
models, as shown in Figure [f] Notably, our method consistently achieves superior results, even
when evaluated under a much more stringent criterion of D,j,..=0.1m. In contrast, other approaches
experience a noticeable decline in performance as the distance threshold decreases. These findings
confirm the robustness of our method across varying distance thresholds, particularly highlighting
its advantage in precise localization.

We present the main results in Table |1} obtained from experiments conducted on the OpenLane-1K
dataset. The evaluation uses both D;p,..=1.5m and Dy,..=0.5m criteria, allowing for a compre-
hensive and insightful comparison. It is evident that DV-3DLane consistently outperforms previous
state-of-the-art (SOTA) methods across all metrics. Notably, when applying a more strict 0.5m
threshold, DV-3DLane demonstrates a substantial 11.2% improvement in the F1 score. It is note-
worthy that our method excels in localization accuracy, leading to significant performance improve-
ments. Specifically, our method achieves remarkable reductions in localization errors: 52%/50% for
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Table 1: Comprehensive 3D Lane evaluation comparison on OpenLane with variable metrics.
denotes the results obtained using their provided models. “Image-Branch” and “LiDAR-Branch”
refer to our image and LiDAR branches, respectively. “LATR + LiDAR” denotes the model that
combines the SOTA method LATR with LiDAR input, projecting all points into the image space
and using them as additional features in the network.

Dist. Methods Backbone | Modality | F11 | Acc.t | xoror@md  Zerror(m){
near far near far
3DLaneNet|Garnett et al.|(2019) VGG-16 C 44.1 - 0.593 0.494 0.140 0.195
GenLaneNet/Guo et al.|(2020) ERFNet C 32.3 - 0.591 0.684 0.411 0.521
PersFormer |Chen et al.|(2022) EffNet-B7 C 50.5 89.5 0.319 0.325 0.112 0.141
Anchor3DLane|Huang et al.[(2023)" | EffNet-B3 C 52.8 89.6 0.408 0.349 0.186 0.143
£ M2-3DLaneNet|Luo et al. |(2022] EffNet-B7 C+L 55.5 838.2 0.283 0.256 0.078 0.106
0 Anchor3DLane Huang et al.[(2023)" | ResNet-18 C 50.7 89.3 0.422 0.349 0.188 0.146
- PersFormer|Chen et al.|(2022) ResNet-50 C 52.7 88.4 0.307 0.319 0.083 0.117
LATR |Luo et al.|(2023) ResNet-50 C 61.9 92.0 0.219 0.259 0.075 0.104
DV-3DLane-Tiny (Ours) ResNet-18 C+L 63.4 91.6 0.137 0.159 0.034 0.063
DV-3DLane-Base (Ours) ResNet-34 C+L 65.4 92.4 0.118 0.131 0.032 0.053
DV-3DLane-Large (Ours) ResNet-50 C+L 66.8 93.3 0.115 0.134 0.029 0.049
Improvement - - 14.9 11.3 10.104  |0.122 | 10.046 |0.055
PersFormer|Chen et al.|(2022) EffNet-B7 C 36.5 87.8 0.343 0.263 0.161 0.115
Anchor3DLane Huang et al.[(2023)" | EffNet-B3 C 349 88.5 0.344 0.264 0.181 0.134
MZ2-3DLaneNet|Luo et al.[(2022) EffNet-B7 C+L 48.2 88.1 0.217 0.203 0.076 0.103
Anchor3DLane|Huang et al.[(2023)" | ResNet-18 C 32.8 87.9 0.350 0.266 0.183 0.137
PersFormer|Chen et al.|(2022) ResNet-50 C 43.2 87.8 0.229 0.245 0.078 0.106
£ LATR Luo et al.|(2023) ResNet-50 C 54.0 91.7 0.171 0.201 0.072 0.099
2 LATR + LiDAR ResNet-50 C+L 574 92.1 0.167 0.185 0.071 0.088
Image-Branch (Ours) ResNet-34 C 529 90.3 0.173 0.212 0.069 0.098
LiDAR-Branch (Ours) PillarN-34 L 54.1 84.4 0.282 0.191 0.096 0.124
DV-3DLane-Tiny (Ours) ResNet-18 C+L 60.9 91.8 0.097 0.124 0.033 0.062
DV-3DLane-Base (Ours) ResNet-34 C+L 63.5 92.4 0.090 0.102 0.031 0.053
DV-3DLane-Large (Ours) ResNet-50 C+L 65.2 934 0.082 0.101 0.028 0.048
| Improvement - - 1112 | 11.7 | 10.089 10.100 | 10.044 10.051

X near/far, and 61%/52% for Z near/far. Due to space limitations, results in various scenarios and
studies about robustness concerning calibration noise are included in our Appendix.

Effect of Multiple Modalities. To explore the impact of individual modalities, we conduct experi-
ments using single modalities, as outlined in the “Image-Branch” and “LiDAR-Branch” rows of Ta-
ble[T} The results illustrate that DV-3DLane significantly enhances performance compared to using
images alone or relying solely on LiDAR data. Notably, our method significantly surpasses config-
urations that simply equip LATR with LiDAR input across all metrics, underscoring the substantial
improvements achieved by DV-3DLane in leveraging information from both modalities. Moreover,
to evaluate the effect of dual-view, we conduct experiments using single-modality input but trans-
forming features extracted from the backbone into another view, yielding single-modal dual-view
features. Then, our dual-view decoder is applied, and the results are detailed in our Appendix. Addi-
tionally, we conduct experiments using our “Image-Branch” on the Apollo|Guo et al.|(2020) dataset,
which exclusively contains image data. The results are provided in our Appendix.

Qualitative Results. We present a qualitative comparison between DV-3DLane and LATR|Luo et al.
(2023)) in Figure [/l demonstrating that our method achieves more robust and accurate predictions
across various scenarios. More visualization results are included in our Appendix.

4.5 ABLATION STUDIES

We conduct all ablation studies on OpenLane-300 following established practices/Chen et al.|(2022);
Luo et al.[(2023)); [Huang et al.|(2023), while adopting a 0.5m threshold D;y,.. for evaluation.

Effect of Bidirectional Feature Fusion. The corresponding experiments are included in our Ap-
pendix, due to space limitations. We kindly direct the readers to refer to the Appendix for details.
The results confirm the effectiveness of the proposed bidirectional feature fusion approach.

Effect of Unified Query. We study the effect of our unified queries generation strategy in Table[2]
where “Random” means random initialization using nn . Embedding, “Q,,” denotes using only
PV queries, and “Qje,” refers to using only BEV queries. Replacing our unified queries with
randomly initialized ones|Carion et al.|(2020); Zhu et al.|(2020); Li et al.|(2022d) results in a decrease
of 1.0 in the F1 score compared to our approach. Interestingly, employing a single space instance-
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Figure 7: Qualitative Results. We present the projection of 3D lanes from ground truth, predictions
of DV-3DLane and the SOTA method [Cuo et al.| (2023) in rows (a), (b), (), respectively. Row
(d) depicts the comparison between ground truth (red) and ours (green) in 3D space. We highlight
the differences with colored arrows. Best viewed in color and zoom in for details.

aware query yields even lower F1 scores of 69.6%/69.1% for PV/BEV, respectively, than random
initialization. This underscores the inadequacy of a single-space lane-aware query in capturing
complex 3D lane features comprehensively existing in both PV and BEV spaces. However, our
dual-view strategy, generating lane-aware queries w.r.t. both views, improves overall performance to
70.7, achieving the best result. This demonstrates that our method effectively integrates the strengths
of features from two spaces, forming a cohesive query set.

Effect of 3D Dual-view Deformable Attention. To evaluate the efficacy of our proposed Dual-view
Deformable Attention, we conduct ablation studies in Table[3] where “PV space” and “BEV space”
mean using single space in the decoder. ‘“Deeplnteration” |Yang et al.| (2022) denotes sequential
fusion of features from different spaces, and “FUTR3D” [Chen et al| (2023) refer to a modality-
agnostic approach where sampling locations differ across views. We compare DV-3DLane against
alternative approaches, including single-view fused method, as well as methods proposed in Deep-
Interation and FUTR3D, as described in Section @ The results underscore the significance of
our approach. In detail, sampling only PV space features leads to a notable drop (70.7—63.6) in
performance, showing the importance of BEV space due to its advantages in localization. Besides,
our method outperforms the sequential approach of Deeplnteration with a substantial 2.0 gain in
F1 score. Furthermore, compared to the modality-agnostic approach proposed in FUTR3D, our
method achieves a 0.5 improvement, emphasizing the importance of consistent sampling locations
in deformable attention across different spaces.

Table 2: Effect of unified query. Table 3: Effect of 3D dual-view deformable attention.

) X error (m) Z error (m)
Methods | Fl X error (m) Z error (m) . Fl near | far near | far
near | far | near | far PV 63.6 | 0.150 | 0.202 | 0.060 | 0.081
Random | 69.7 | 0.123]0.151 | 0.059 | 0.081 space 6 | 0.15010. 060 | 0.
BEV space 68.5 | 0.127]0.151 | 0.064 | 0.087
Q,, | 696 | 0.124]0.155 | 0.059|0.079 )
Deeplnteration | 68.7 | 0.126 | 0.157 | 0.059 | 0.081
Qbey | 69.1 | 0.122]0.145 | 0.058 | 0.077
Gue 1707 | 0123|0146 | 0,038 | 0,078 FUTR3D 70.2 | 0.118]0.145 | 0.057 | 0.077
L : : : Ours 70.7 | 0.123]0.146 | 0.058 | 0.078

5 CONCLUSION

In this work, we introduce DV-3DLane, a novel end-to-end multi-modal 3D lane detection frame-
work that leverages the strengths of both PV and BEV spaces. To this end, we propose three novel
modules that effectively utilize dual-view representation on different levels, consistently enhancing
performance. Extensive experiments substantiate the outstanding advancements achieved by DV-
3DLane, establishing a new state of the art on OpenLane.
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