
A APPENDIX

A.1 MODEL COMPLEXITY

Table 1: Model complexity. FPS is evaluated on
a single V100 GPU.

Model Backbone FPS F1
PersFormer Efficient-B7 11.67 36.5
PersFormer Res50 9.48 43.2
M2-3DLaneNet Efficient-B7 6.48 48.2
Anchor3DLane Efficient-B3 3.07 34.9
Anchor3DLane Res18 3.45 32.8
LATR Res50 13.34 54.0

DV-3DLane-Tiny Res18, PillarNet18 13.49 60.9
DV-3DLane-Base Res34, PillarNet34 8.82 63.5
DV-3DLane-Large Res50, PillarNet34 6.18 65.2

As stated in our main paper, DV-3DLane
achieves SoTA performance, and its lite version
also surpasses all previous methods in terms of
F1 score and localization errors, while achiev-
ing an impressive FPS of 13.49. In this sec-
tion, we study the model complexity, as shown
in Table 1. Our base model achieves a compet-
itive FPS of 8.82 while maintaining a strong F1
score of 63.5. Notably, our tiny version excels
with an FPS of 13.49, along with a notable F1
score of 60.9.

A.2 SCENARIO STUDIES

Additionally, we comprehensively evaluated DV-3DLane across diverse scenarios within OpenLane.
As depicted in Table 2, our method consistently outperforms all previous approaches across all six
challenging scenarios by a large margin. Visualizations are provided in Figure 1. Overall, these
results reveal the effectiveness of our design.

Table 2: Comparison with other 3D lane detection methods on the OpenLane validation dataset. †
denotes that the results are obtained using their provided models.

Dist. Methods Backbone Modality All Up & Curve Extreme Night Intersection Merge
Down Weather & Split

1.
5

m

3DLaneNet Garnett et al. (2019) VGG-16 C 44.1 40.8 46.5 47.5 41.5 32.1 41.7
GenLaneNet Guo et al. (2020) ERFNet C 32.3 25.4 33.5 28.1 18.7 21.4 31.0
PersFormer Chen et al. (2022) EffNet-B7 C 50.5 42.4 55.6 48.6 46.6 40.0 50.7
Anchor3DLane Huang et al. (2023)† EffNet-B3 C 52.8 48.5 50.7 56.9 43.6 48.5 50.7
M2-3DLaneNet Luo et al. (2022) EffNet-B7 C+L 55.5 53.4 60.7 56.2 51.6 43.8 51.4
PersFormer Chen et al. (2022) ResNet-50 C 52.7 46.4 57.9 52.9 47.2 41.6 51.4
LATR Luo et al. (2023) ResNet-50 C 61.9 55.2 68.2 57.1 55.4 52.3 61.5
Anchor3DLane Huang et al. (2023)† ResNet-18 C 50.7 45.3 53.7 48.5 51.6 45.3 48.5
DV-3DLane-Tiny ResNet-18 C+L 63.4 59.9 69.8 62.2 58.8 53.5 60.6
DV-3DLane-Base ResNet-34 C+L 65.4 60.9 72.1 64.5 61.3 55.5 61.6
DV-3DLane-Large ResNet-50 C+L 66.8 61.1 71.5 64.9 63.2 58.6 62.8

Improvement - - ↑4.9 ↑5.9 ↑3.9 ↑7.8 ↑7.8 ↑6.3 ↑1.3

0.
5

m

PersFormer Chen et al. (2022) EffNet-B7 C 36.5 26.8 36.9 33.9 34.0 28.5 37.4
Anchor3DLane Huang et al. (2023)† EffNet-B3 C 34.9 28.3 31.8 30.7 32.2 29.9 33.9
M2-3DLaneNet Luo et al. (2022) EffNet-B7 C+L 48.2 40.7 48.2 49.8 46.2 38.7 44.2
PersFormer Chen et al. (2022) ResNet-50 C 43.2 36.3 42.4 45.4 39.3 32.9 41.7
LATR Luo et al. (2023) ResNet-50 C 54.0 44.9 56.2 47.6 46.2 45.5 55.6
Anchor3DLane Huang et al. (2023)† ResNet-18 C 32.8 26.5 27.6 31.2 30.0 28.1 31.7
DV-3DLane-Tiny ResNet-18 C+L 60.9 56.9 65.9 60.0 56.8 50.7 57.6
DV-3DLane-Base ResNet-34 C+L 63.5 58.6 69.3 62.4 59.9 53.9 59.3
DV-3DLane-Large ResNet-50 C+L 65.2 59.1 69.2 63.0 62.0 56.9 60.5

Improvement - - ↑11.2 ↑14.2 ↑13.1 ↑13.2 ↑15.8 ↑11.4 ↑4.9

A.3 ROBUSTNESS

To investigate the robustness of our model amid calibration noise, given that perfect calibration is
not always viable in real-world settings, we conduct experiments incorporating diverse levels of
calibration noise to understand the model’s performance under noisy conditions.

Noise settings: Following the methodology of Yu et al. (2023), we introduce two noise settings:
Noise (N) and Stronger Noise (SN). In ‘Noise (N)’, we introduce random rotations within [1◦,
5◦] and translations within [0.5cm, 1.0cm] to the calibration. For ‘Stronger Noise (SN)’, these
parameters are doubled to reflect stronger calibration disturbances.

Results without training noise: We first test our model, which has not been trained with addi-
tional noise, under these noisy conditions. The results, presented in the first row of Table 3, show a
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Figure 1: More Results. Rows (a), (b), (c) show projections of 3D lanes from the ground truth (GT),
DV-3DLane, and LATR Luo et al. (2023), with differences highlighted by colored arrows. Row (d)
compares GT (red) and our prediction (green) in 3D. Best viewed in color and zoom in for details.

notable decline in performance as the intensity of noise increases. Specifically, under a probability
setting of 0.7, the performance deteriorates from 63.5 to 32.4/31.4 in the ’Noise’/’Stronger Noise’
settings.

Enhancing robustness via training: To enhance robustness, we incorporate calibration noise dur-
ing the training phase. This strategy substantially mitigates the performance degradation caused by
noisy calibration, as shown in the second and third rows of Table 3.

Comparative analysis: In comparison to the baseline (first row), we can observe that training with
calibration noise significantly strengthens the robustness of our model. It effectively maintains com-
parable results under noisy calibration conditions. Additionally, the model trained with ’Stronger
Noise’ exhibits greater robustness compared to the one trained with less intense noise, underscoring
the benefits of this training strategy.

Table 3: Impact of noise on calibration parameters. We set two noise levels in the experiments,
“Noise (N)” and “Stronger Noise (SN)”. In the Train column, “-” denotes no noise is added
during the training phase. “Prob” denotes the probability of adding the corresponding noise into
the training/eval phases. Each result group consists of F1-score / Accuracy.

Train Eval

@noise (N/SN) —— + Noise (N) + Stronger Noise (SN)
Prob=0.0 Prob=0.3 Prob=0.5 Prob=0.7 Prob=0.3 Prob=0.5 Prob=0.7

- Prob=0.0 63.5 / 92.4 52.2 / 89.9 40.9 / 85.6 32.4 / 82.5 52.0 / 89.0 40.3 / 83.4 31.4 / 79.2
N Prob=0.3 63.0 / 93.1 62.5 / 92.9 62.0 / 92.9 61.5 / 92.9 62.2 / 92.9 61.5 / 92.9 60.8 / 92.7

SN Prob=0.3 63.4 / 92.5 62.8 / 92.4 62.3 / 92.3 61.8 / 92.2 62.7 / 92.4 62.1 / 92.2 61.7 / 92.2

A.4 EFFECT OF DUAL-VIEW

Apart from studying the impact of multiple modalities, we conducted experiments on OpenLane-
1K dataset to analyze the effect of the dual views, providing a comprehensive understanding of our
approach. As shown in Table 4, we conducted two sets of experiments: 1) Using single modality
and single view. 2) Using single modality but dual views.

In the first set of experiments, rows #1 and #2 present the performance using individual modalities.

In the second set of experiments:
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• For the image branch experiment, we adopt a strategy similar to BEVFormer Li et al.
(2022b), utilizing deformable attention to transform image features into BEV features.
Then, we apply our dual-view decoder upon this, and the outcomes are illustrated in row
#3 of Table 4.

• For the LiDAR branch experiment, we project LiDAR point cloud features onto the 2D im-
age plane to generate perspective-view features. The results of this approach are presented
in row #4 of Table 4.

The results in Table 4 underscore that the dual-view representation significantly enhances the perfor-
mance of baseline models in single-modal scenarios (comparing #1 with #3 and #2 with #4). This
improvement confirms the effectiveness of our dual-view approach in learning 3D lane detection.
Most notably, the combination of image and LiDAR modalities, coupled with our dual-view repre-
sentation, achieves the best results, as shown in row #5. This synergy of modalities underlines the
superiority of our proposed method.

Table 4: Comparison of single and dual-view approaches on OpenLane-1K dataset with 0.5m set-
ting.

# Line Inputs View Backbone F1 Acc.
X error (m) Z error (m)
near | far near | far

#1 Image PV Res34 52.9 90.3 0.173 | 0.212 0.069 | 0.098
#2 LiDAR BEV PillarNet34 54.1 84.4 0.282 | 0.191 0.096 | 0.123
#3 Image Dual Views Res34 54.3 91.5 0.165 | 0.200 0.067 | 0.094
#4 LiDAR Dual Views PillarNet34 55.3 87.9 0.156 | 0.143 0.031 | 0.050
#5 DV-3DLane Dual Views Res34+PillarNet34 63.5 92.4 0.090 | 0.102 0.031 | 0.053

A.5 EFFECT OF BIDIRECTIONAL FEATURE FUSION.

To validate the effectiveness of this strategy, we compare the performance of our method with the
other three fusion design choices, as shown in Table 5, where “Cam” means only image features in
PV branch, and “LiDAR” denotes only point features in BEV branch. “L→C” denotes the LiDAR
to camera fusion for PV branch, and conversely, “C→L” denotes the camera to LiDAR fusion for
BEV branch. It shows that the absence of fusion leads to the poorest performance (#1). Further,
employing one-way fusion, either from camera to LiDAR (#2) or LiDAR to camera (#3), results in
1.2% and 1.1% improvements, respectively w.r.t. non-fusion (#1). Remarkably, our bidirectional
fusion (#4) yields the highest performance, a 2.8% gain in F1. This improvement highlights the
efficacy of our strategy in effectively leveraging multi-modal features in both PV and BEV spaces.

Table 5: Effect of bidirectional feature fusion.

# Line Methods F1
X error (m) Z error (m)
near | far near | far

#1 Cam & LiDAR 67.9 0.133 | 0.157 0.060 | 0.083
#2 Cam & C→L 69.1 0.135 | 0.151 0.060 | 0.081
#3 L→C & LiDAR 69.0 0.130 | 0.156 0.059 | 0.078
#4 L→C & C→L 70.7 0.123 | 0.146 0.058 | 0.078

A.6 IMAGE BRANCH ON APOLLO

Table. 6 illustrates the results of our image branch on the Apollo dataset Guo et al. (2020), compared
with existing methods.
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Table 6: Results on Apollo 3D Synthetic dataset. “Image-Branch” denotes the image branch of
our DV-3DLane.

X error (m) ↓ Z error (m) ↓
Scene Methods F1 ↑ AP ↑ near far near far

Balanced Scene

3DLaneNet Garnett et al. (2019) 86.4 89.3 0.068 0.477 0.015 0.202
Gen-LaneNet Guo et al. (2020) 88.1 90.1 0.061 0.496 0.012 0.214
CLGo Liu et al. (2022) 91.9 94.2 0.061 0.361 0.029 0.250
PersFormer Chen et al. (2022) 92.9 - 0.054 0.356 0.010 0.234
GP Li et al. (2022a) 91.9 93.8 0.049 0.387 0.008 0.213
CurveFormer Bai et al. (2022) 95.8 97.3 0.078 0.326 0.018 0.219
Anchor3DLane Huang et al. (2023) 95.6 97.2 0.052 0.306 0.015 0.223
LATR Luo et al. (2023) 96.8 97.9 0.022 0.253 0.007 0.202
Image-Branch (Ours) 96.4 97.6 0.046 0.299 0.016 0.213

Rare Subset

3DLaneNet Garnett et al. (2019) 74.6 72.0 0.166 0.855 0.039 0.521
Gen-LaneNet Guo et al. (2020) 78.0 79.0 0.139 0.903 0.030 0.539
CLGo Liu et al. (2022) 86.1 88.3 0.147 0.735 0.071 0.609
PersFormer Chen et al. (2022) 87.5 - 0.107 0.782 0.024 0.602
GP Li et al. (2022a) 83.7 85.2 0.126 0.903 0.023 0.625
CurveFormer Bai et al. (2022) 95.6 97.1 0.182 0.737 0.039 0.561
Anchor3DLane Huang et al. (2023) 94.4 96.9 0.094 0.693 0.027 0.579
LATR Luo et al. (2023) 96.1 97.3 0.050 0.600 0.015 0.532
Image-Branch (Ours) 95.6 97.2 0.071 0.664 0.025 0.568

Visual Variations

3DLaneNet Garnett et al. (2019) 74.9 72.5 0.115 0.601 0.032 0.230
Gen-LaneNet Guo et al. (2020) 85.3 87.2 0.074 0.538 0.015 0.232
CLGo Liu et al. (2022) 87.3 89.2 0.084 0.464 0.045 0.312
PersFormer Chen et al. (2022) 89.6 - 0.074 0.430 0.015 0.266
GP Li et al. (2022a) 89.9 92.1 0.060 0.446 0.011 0.235
CurveFormer Bai et al. (2022) 90.8 93.0 0.125 0.410 0.028 0.254
Anchor3DLane Huang et al. (2023) 91.4 93.6 0.068 0.367 0.020 0.232
LATR Luo et al. (2023) 95.1 96.6 0.045 0.315 0.016 0.228
Image-Branch (Ours) 91.3 93.4 0.095 0.417 0.040 0.320
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