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Abstract

We study the excess capacity of deep networks in the context of supervised classifi-
cation. That is, given a capacity measure of the underlying hypothesis class — in our
case, empirical Rademacher complexity — to what extent can we (a priori) constrain
this class while retaining an empirical error on a par with the unconstrained regime?
To assess excess capacity in modern architectures (such as residual networks), we
extend and unify prior Rademacher complexity bounds to accommodate function
composition and addition, as well as the structure of convolutions. The capacity-
driving terms in our bounds are the Lipschitz constants of the layers and an (2, 1)
group norm distance to the initializations of the convolution weights. Experiments
on benchmark datasets of varying task difficulty indicate that (1) there is a substan-
tial amount of excess capacity per task, and (2) capacity can be kept at a surprisingly
similar level across tasks. Overall, this suggests a notion of compressibility with
respect to weight norms, complementary to classic compression via weight pruning.
Source code is available at https: //github. com/rkwitt/excess_capacity.

1 Introduction

Understanding the generalization behavior of deep networks in supervised classification is still a
largely open problem, despite a long history of theoretical advances. The observation that (over-
parametrized) models can easily fit—i.e., reach zero training error—to randomly permuted training
labels [45, 46] but, when trained on unpermuted labels, yield good generalization performance, has
fueled much of the progress in this area. Recent works range from relating generalization to weight
norms [3, 14, 26, 37, 38], measures of the distance to initializations [34], implicit regularization
induced by the optimization algorithm [8, 41], or model compression [2, 6, 42]. Other works study
connections to optimal transport [9], or generalization in the neural tangent kernel setting [1, 23].

When seeking to establish generalization guarantees within the classic uniform convergence regime,
bounding a capacity measure, such as the Rademacher complexity [4], of the hypothesis class is
the crucial step. While the resultant generalization bounds are typically vacuous and can exhibit
concerning behavior [36], the capacity bounds themselves offer invaluable insights through the
behavior of the bound-driving quantities, such as various types of weight norms or Lipschitz constants.

Particularly relevant to our work is the observation that the bound-driving quantities tend to increase
with task difficulty. Fig. 1 illustrates this behavior in terms of Lipschitz constants per layer and the dis-
tance of each layer’s weight to its initialization (measured via a group norm we develop in Section 3.1).
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questions aim at the amount of “u.nn.eeded” capacity, Figure 1: Layerwise Lipschitz constants and dis-
Wthh we refer to as excess capacity in the remainder  tance to initialization of a ResNet18 model (see
of this work. Section 4), trained on different datasets.

We will address questions (Q1) and (Q2) by means

of controlling the empirical Rademacher complexity of a neural network. To this end, we consolidate
and extend prior results from the literature on Rademacher complexity bounds to accommodate a
broad range of network components in a unified way, including convolutions and skip connections,
two ubiquitous elements in state-of-the-art models.

Our contributions can be summarized as follows:

1. We establish two bounds (in Theorem 3.5) for the empirical Rademacher complexity of neural
networks that use convolutions and implement functions built from composition and addition.
Specifically, we introduce two novel, convolution-specific, single-layer covering number bounds
in Section 3.2 and contrast them to prior art, then modularize the single-layer to multi-layer
covering approach of Bartlett et al. [3] in Section 3.3, and eventually present one incarnation of
our framework for convolutional residual networks in Sections 3.4 and 3.5.

2. We present an extensive set of experiments (in Section 4) with a ResNet18 model across benchmark
datasets of varying task difficulty, demonstrating that model capacity, when measured via our
weight norm based bound, (1) can be kept surprisingly small per task, and (2) can be kept at
roughly the same level regardless of task difficulty. Both observations suggest compressibility of
neural networks with respect to weight norms, complementary to the well-known compressibility
property of neural networks with respect to the number of parameters [2, 42].

2 Related Work

Many prior works establish uniform-convergence type generalization bounds for neural networks
through Rademacher complexity analysis. We review such approaches, highlighting challenges that
arise with modern network architectures and the peculiarities of convolutional layers.

One direct approach to bound the empirical Rademacher complexity is via a layer-peeling strategy [14,
38, 44] where the Rademacher complexity of L-layer networks is expressed by a factor times the
Rademacher complexity of (L — 1)-layer networks; in other words, the last layer is peeled off. This
factor is typically a matrix (p, ¢) group norm, and thus the bounds usually scale with the product of the
latter. Notably, the nonlinearities need to be element-wise operations, and some approaches only work
for specific nonlinearities, such as ReLUs or asymmetric activations. A second strategy is to bound
the empirical Rademacher complexity via a covering numbers approach [3, 26, 29, 47], typically
achieved via Dudley’s entropy integral [11]. This strategy is particularly flexible as it allows for
arbitrary (but fixed) nonlinearities and various paths to bounding covering numbers of network parts,
e.g., via Maurey’s sparsification lemma or via parameter counting. The corresponding whole-network
bounds typically scale with the product of each layer’s Lipschitz constant or local empirical estimates
thereof [43]. Irrespective of the particular proof strategy, most formal arguments only hold for neural
networks constructed from function composition, i.e., maps of the form

.’L'O—>O’L(ALO'Lfl(ALfl...O'l(Alu’C)...)) s (1)

where o; : R%-1 — R% are nonlinearities and A; are weight matrices specifying the i-th linear
map. However, modern architectures often rely on operations specifically tailored to the data, such
as convolutions, and typically incorporate skip connections as in residual networks [20], rendering
many results inapplicable or suboptimal for such models. In this work, we handle convolutions and
skip connections, thus increasing the applicability and utility of such bounds.

For example, while residual networks have been studied extensively, theory mostly focuses on
expressivity or optimization aspects [3, 18, 28, 44]. Yun et al. [44] provide a Rademacher complexity
bound via layer-peeling for fully-connected layers and element-wise activations. He et al. [19]
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Figure 2: Empirical Rademacher complexity bounds (grouped by proof strategy; lower is better), for a 6-
(MMW) and an 11-layer (™) convolutional network, trained on CIFAR10. Bounds are listed in Section A.2 and
quantities that typically appear in these bounds are highlighted in green (top part of figure) for reference.

establish a generalization bound for residual networks via covering number arguments, resting upon
earlier work by Bartlett et al. [3] for linear maps. However, when directly applied to convolutions,
both bounds scale unfavorably w.r.t. the spatial input size (see Section 3.2). Other works provide
generalization guarantees specifically tailored to convolutional networks, cf. [16, 26, 29, 31], and,
although such bounds scale benignly with input size, they only apply for models as in Eq. (1).

An initial numerical comparison. Bounds on the empirical Rademacher complexity differ in their
dependence on various quantities, such as matrix (p, ¢) group norms, Lipschitz constants, or the
number of parameters. Thus, a precise formal comparison is challenging and, depending on the
setting, different bounds may be preferable. To provide some intuition about magnitude differences,
we evaluated several existing bounds (including ours from Section 3.5) on two convolutional (ReL.U)
networks with 6 and 11 layers, see Fig. 2 and Section A.2 for details.

3 Rademacher Complexity Analysis

To derive bounds on the empirical Rademacher complexity, we follow the margin-based multiclass
learning formalism and the flexible proof strategy of Bartlett et al. [3]. Section 3.2 introduces novel
single-layer covering number bounds for convolutions. Section 3.3 modularizes and extends the
single- to multi-layer covering step to account for architectures such as residual networks (Section 3.4).
Last, Section 3.5 presents and discusses our Rademacher complexity bounds.

3.1 Preliminaries

In a k-class classification task, we are given n instance/label pairs S = ((z1,91), -, (Tn,Yn)),
drawn iid from a probability measure D on R?x {1, ..., x}. For a neural network f in a hypothesis
class F C {f: R? — R"}, a class label for input = is obtained by taking the argmax over the
components of f(x) € R*. The margin operator M: R*x{1, ..., k} =R, (v,y) — vy—max;-, v;
leads, with margin v > 0, to the ramp loss {., and the empirical ramp risk RA,, defined as

. 1 &
by iR = RY 70 (147/7)Lig[—n0) + Lo and Ry (f) = o > L (=M(f(xi),9:)) - ()
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To derive generalization bounds via classical Rademacher complexity analysis [33], without having
to resort to vector-contraction inequalities [32], we consider the hypothesis class

Fy = {(z,y) — fv(*./\/l(f(x),y)) cfeF}r . 3)

Then, defining the empirical Rademacher complexity of any class H of real-valued functions as

1 n
sup —
her T~

Rs(H) =E

aih(xiayi)] ) (4)
1

with iid Rademacher variables o = (071, . .., 0,) from a uniform distribution on {£1}, facilitates to
study F via Eq. (4). The following lemma [3, Lemma 3.1] establishes the link to a margin-based
multiclass generalization bound for any f € F.



Lemma 3.1. Given a hypothesis class F of functions f: R* — R* and a margin parameter ~ > 0,
then, with probability of at least 1 — & over the choice of S ~ D", for any f € F, it holds that
. log (2
; og (5)
P[ar{gmaﬁ f(@)i #yl <Ry (f)+2Rs(Fy)+3 o Q)
ie{l,....k

To obtain a computable expression for the right-hand side of Lemma 3.1, we seek a bound on E)A%S(]—'A,)
tied to some measurable quantities of the network realizing . For our purposes, the relationship
of E)A%S(}'W) and the covering number of F, turns out to be a flexible approach. In general, given
a normed space (G, ||-||). the covering number N'(G,¢,|-||g) is the cardinality of the smallest
e-cover of G, i.e., of the smallest subset &/ C G such that, for any g € G, there exists u € U with
lg — ullg < e Inour setting, G is a class of functions g : (&, ||| ) = (Y, |||l,)) between normed
spaces X’ and ). Given data X = (x1,...,x,) € X™, we define a data-dependent norm on G| x as

lgllx = /> lla@a)l3 - ©6)
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In other words, Eq. (6) is the [ norm on the restriction of G to X. Specifically, we seek to bound
log N (F, ¢, |||l g), as this facilitates to control the empirical Rademacher complexity of F., by
means of Dudley’s entropy integral. Typically, such covering number bounds depend on the norm of

the data itself, i.e., [| X| = /z1]% + - [0 ]%-

3.2 Covering number bounds for convolutions

We consider 2D convolutions, acting on images with ¢;, channels of width w and height h, i.e.,
x € Re*h*w_ For readability only, we discuss convolutions of stride 1 and input-size preserving
padding; this is not an assumption required for Theorem 3.2. Formally, a convolutional layer is a
linear map ¢ : Ron>*hxw _ Reuxhxw (35 we omit bias parameters), where c;, and c,,, denote the
number of input and output channels. The map is parametrized by a tensor K € RCuX¢inxknXkw of
spatial extension/kernel size (ky, k). Since convolutions are linear maps, they can be specified by
matrices which act on the (reshaped) inputs and one could invoke existing covering number bounds.
However, this is suboptimal, as any structure specific to convolutions is ignored. In particular, norm-
based generalization bounds agnostic to this structure incur unfavorable scaling behavior w.r.t. the
dimensionality of the input. To be more specific, the weight tensor K of a convolutional layer does
not directly specify the corresponding matrix; instead, it parametrizes c,,, filters, i.e., local linear
maps, which are applied to the (c;, X kp, X ky, )-sized pixel neighborhoods of the input. Hence, the
matrix M corresponding to the global linear map consists of many copies of the elements of this
tensor, one for each of the hw patches the filters are applied to. Thus, the I, norm of the matrix M
is [|[Mkll, = (hw)*/P | K|, (see Section A.1). We mitigate this scaling issue by tying the covering
number of a convolutional layer to a variant of the (2,1) group norm on the fensor K itself. We define
this norm as the sum over the /> norms taken along the input channels of K, i.e.,

HKHQ,l = Z Hszle = Z ZKZQJM : N
ikl ikl \| j
For the special case of inputs of size (h,w) = (1,1) and kernel size (kp, k) = (1, 1), convolution

is just matrix multiplication along the channels. In this case, Mx = K..;; and our norm from
Eq. (7) agrees with the standard (2, 1) group norm on My, i.e., [| K|, ; = ||[Mg||, ,. Theorem 3.2

establishes two covering number bounds for convolutions.

Theorem 3.2. Letb > 0 and F = {¢x| K € Rewxcuxknxku || K|, | < b} denote the class of 2D
convolutions with c;, input channels, c,,; output channels and kernel size ky, X k.,, parametrized by
tensors K with W = cyCinknky, parameters. Then, for any X € R Xcnxhxw g covering radius

€ >0,
X v
’7”62-‘ log(2W) (8a)

2,9
2W log <1 + ’V|X6||2b-‘> . (8b)

4

1OgN(]:7€? ||||X) S



Eq. (8a) is analogous to the single-layer bound of Bartlett et al. [3, Lemma 3.2] for fully-connected
layers, but replaces the (2, 1) group norm constraint on matrices M ' with a constraint on tensors
K. This is tighter than invoking [3, Lemma 3.2] directly on M, € Rénhw x coauhw ag K has only
CoutCinkn k. parameters and HM ~ H2,1 > hw/ ks | K H2’1, see Section A.1. A thorough comparison
between the two bounds in Theorem 3.2 is nuanced, though, as preferring one over the other depends

on the ratio between the number of parameters W and || X ||2 b%/€2. The latter, in turn, requires
to consider all covering radii e. Hence, we defer this discussion to Section 3.5, where differences
manifest more clearly in the overall empirical Rademacher complexity bounds.

Proof sketch. The statement of Theorem 3.2 follows from an application of Maurey’s sparsification
lemma, which guarantees the existence of an e-cover of F (of known cardinality) if there is a finite
subset {V1,...,V4} C F s.t.every f € F is a convex combination of the V;. We show that one can
find such a finite subset of cardinality d = 2¢;,Couknky, = 2W. The cardinality of the cover is then
determined by a combinatorial quantity which additionally depends on || X|| and the norm constraint
b. Bounding this quantity, i.e., a binomial coefficient, in two different ways, establishes the bounds.

Relation to prior work. Closely related is recent work by Ledent et al. [26] who derive [, covering
number bounds for convolutional layers based on a classic result by Zhang [47]. Similar to Eq. (8a),
their bound depends on the square of a weight norm directly on the tensor K, the square of a data norm,
as well as a logarithmic term. The data norm is the maximal /> norm of a single patch. Compared to
our result, this implicitly removes a factor of the spatial dimension hw. However, when transitioning
to multi-layer bounds, this factor reenters in the form of the spatial dimension of the output (after
subsequent pooling) via the Lipschitz constant. Overall, the quadratic terms across both results scale
similarly (with our data norm being less sensitive to outliers), but we improve on Ledent et al. [26] in
the logarithmic term. By contrast, the use of [, covers in [26] yields whole-network bounds with
improved dependency on the number of classes; see Section A.6 for an in-depth comparison. In other
related work, Lin et al. [29] derive an [5 covering number bound for convolutional layers similar
to Eq. (8b), which depends linearly on the number of parameters and logarithmically on norms. In
their proof, Lin et al. [29] show that every cover of a convolutional layer’s weight space (a subset
of a Euclidean space) induces a cover of the corresponding function space w.r.t. the data dependent
norm defined in Eq. (6). However, their approach incurs an additional factor inside the logarithm
that corresponds to the number of how often each filter is applied, i.e., the spatial dimension of the
output. Importantly, non-convolution specific approaches can equally mitigate undesirable scaling
issues, e.g., by utilizing (1, o) group norms on the matrices representing the linear map [14, 16, 38];
as differences primarily manifest in the resulting bounds on the Rademacher complexity, we refer to
our discussion in Section 3.5.

3.3 Covering number bounds for composition & addition

As many neural networks are built from composition and summation of layers, we study covering
numbers under these operations. The key building blocks are the following, easy to verify, inequalities.

Lemma 3.3. Let F1,F, be classes of functions on normed spaces (X, ||| ) — (Y, ||||y,) and
let G be a class of c-Lipschitz functions (Y, ||-ly))—=(Z, |||l z). Then, for any X € X" and €z,
€r,,€g > 0, it holds that

N{fi+ ol fi € Fi fa € Fobier +em Il x) S N(Frer, [ x)N(Fo e IHllx) O
and

N({go.ﬂ geg, fe fg},eg + cexy, ”HX) SN(‘F27€]'—2’ ””X)fsél]f:) N(g7697 ”Hf(X)) - (10)

To establish these inequalities, one chooses minimal covers of the original function spaces and links
their elements via the considered operation, i.e., addition or composition. The resulting functions
correspond to tuples of elements of the original covers. Hence, the right-hand side of the inequalities
is a product of covering numbers. The crucial step is to determine a preferably small radius e such
that these functions form an e-cover. In Lemma 3.3, this is achieved via standard properties of norms.
Notably, iterative application of Lemma 3.3 allows bounding the covering numbers of any function
class built from compositions and additions of simpler classes.



In Section C.3, we apply Lemma 3.3 on two examples, i.e., (1) f € F = {fpo---0 f1} and (2)
he€H ={g+hgo--ohy}. Instantiating the first example for f; = o; o ¢;, with ¢; fixed and
¢; from a family of linear maps, yields covering number bounds for networks as in Eq. (1). As the
second example corresponds to residual blocks (with g possibly the identity map), the combination
of (1) and (2) yields covering number bounds for residual networks; see Example C.3.

Overall, this strategy not only allows to derive covering number bounds for a broad range of
architectures, but also facilitates integrating linkings between function spaces in a modular way. For
instance, Lemma C.14 provides a variant of Lemma 3.3 for concatenation, used in DenseNets [22].

Relation to prior work. He et al. [19] investigate covering number bounds for function spaces
as considered above. They present covering number bounds for residual networks and show that
the covering number N (F, ¢, ||-|| i) of such models with layers F, is bounded by the product
I1. supgeg, N (Fa €., ||l 5 x)) for appropriately defined function spaces Go. Yet, the dependency
of the whole-network covering radius € on the single-layer covering radii € r, is only derived for a
very specific residual network. Our addition to the theory is a more modular and structured way of
approaching the problem, which we believe to be valuable on its own.

3.4 Covering number bounds for residual networks

We next state our whole-network covering number bounds for residual networks and then present
the corresponding bounds on the empirical Rademacher complexity in Section 3.5. Accompanying
generalization guarantees (obtained via Lemma 3.1) are given in Section C.5. The results of this
section hold for a hypothesis class F of networks implementing functions of the form

f=orofro---ooi0fi with fi(z)=gi(x)+ (oir, ohir, 0---00s0hu)(z) , (11)

i.e., a composition of L residual blocks. Here, the nonlinearities o; and o;; are fixed and p;-, resp.,
pi;-Lipschitz continuous with ¢;(0) = 0 and o;;(0) = 0. We further fix the shortcuts to maps with
9:(0) = 0. The map h;; identifies the j-th layer in the i-th residual block with Lipschitz constraints
s;; and distance constraints b;; (w.r.t. reference weights M;;). Specifically, if h;; is fully-connected,
then

and, in case h;; is convolutional, then

hij € {(ZSKH Lip(¢xk,;) < sijs [ Ksj — Mijlly, < bij} : (13)

In terms of notation, s; = Lip(g;) + HJL:1 pi;si; further denotes the upper bound on the Lipschitz
constant of the i-th residual block f;. The Lipschitz constants are w.r.t. Euclidean norms; for a
fully-connected layer this coincides with the spectral norm of the weight matrix.

The covering number bounds in Theorem 3.4 below depend on three types of quantities: (1) the total
number of layers L = ). L;, (2) the numbers W;; of parameters of the j-th layer in the i-th residual
block, their maximum W = max;; Wj;, and (3) terms C};; that quantify the part of a layer’s capacity
attributed to weight and data norms. With respect to the latter, we define

L L;
Xl 1.2, sikpik b
050 =2 ([ om ) = (14)

and write C;; = C;;(X) for brevity. Importantly, || X| < y/nmax; |z;|| and so the C;; can be
bounded independently of the sample size. Overall, this yields the following covering number bounds
for residual networks.

Theorem 3.4. The covering number of the class of residual networks F as specified above, satisfies

(-3 [e]) [4] 52

i=1j=1

S [2) o

1OgN(]:76, HHX) <



3.5 Rademacher complexity bounds

In combination with Dudley’s entropy integral, Theorem 3.4 implies the empirical Rademacher
complexity bounds in Theorem 3.5. These bounds equally hold for non-residual networks as in
Eq. (1), i.e., the special case of setting the shortcuts g; to the zero map (with L = 1 block).

Theorem 3.5. Let v > 0 and define Cy; = 2C;; /. Further, let H, | = S U = O(log(n))

m=1

denote the (n — 1)-th harmonic number. Then, the empirical Rademacher complexity of F., satisfies
3/2
. 4 12H, L L, "
R < "1 fog(2W [eA
S(]:’Y) - n + \/ﬁ Og( ) Lzzl p 17 (&)

and

L

)< o oS (s (1 [pe]) co () w

i=1 i=j

where 1) is a monotonically increasing function, satisfying 1(0) = 0 and Vx : ¥(x) < 2.7.

The theorem considers the function class F., as defined in Eq. (3). As a consequence, the bounds
depend on the quotients C;; = 2C;; /-, which measure a layer’s capacity (with respect to weight
and data norms) relative to a classification margin parameter . As we will see in the experiments,
constraining the layers’ Lipschitz constants and weight norms, allows to substantially reduce the
quantities C;; while the margin parameter -y decreases only moderately.

Theorem 3.5 also immediately implies generalization bounds for ., via Lemma 3.1. In a subsequent
step one can gradually decrease the constraint strengths and invoke a union bound argument over
the corresponding generalization bounds, as for example done in [3, Lemma A.9]. This yields a
generalization bound which does not depend on a priori defined constraint strengths, but on the actual
Lipschitz constants and group norms computed from a neural network’s weights.

Interpretation. To facilitate a clean comparison between the bounds in Theorem 3.5, we disregard
the ceiling function and apply Jensen’s inequality to the first bound (é), yielding

4 n 12H,,_1
NG

Denoting C' = max;; C;;, Eq. (16) reveals that the bounds essentially differ only in that (%) depends
on (log(2W)L2C?)"/? and (#) depends on (2W log(1 + L>C?))"/2. Thus, the question of which one
is tighter, hinges on the ratio of 21/ and L? C?, i.e., a tradeoff between the number of parameters and
the weight norms. As we see in Fig. 2, for simple, unconstrained networks, our second bound (#) is
much tighter. However, due to the logarithmic dependency on C), it is less affected by constraining
the distances b to initialization and the Lipschitz constants s. In Section 4, we show that this effect
causes (éb) to be a more faithful measure of excess capacity. As C' depends exponentially on the
network depth via the product of Lipschitz constants, another perspective on the bounds is that
Eq. (&) favors shallow architectures whereas Eq. (#) favors narrow architectures. Notably, replacing
the function class ., with a class of networks composed with a Lipschitz augmented loss function
[43] facilitates deriving Rademacher complexity- and generalization bounds, which do not suffer
from the exponential depth dependency via the product of Lipschitz constants. Instead, such bounds
depend on data dependent empirical estimates thereof, which are typically much smaller.

Re(F,) < log(2W) Zij L2C? . (16)

n

Relation to prior work. Prior works [14, 16, 38] that tie generalization to (1, c0) group norms
of matrices of fully-connected layers are equally applicable to convolutional networks without
unfavorable scaling w.r.t. input size. In particular, for (1,00) group norms of Mj-, we have
HM; Hl _ = max, || K,..||;, i.e., the maximum /; norm over each (input channel, width, height)

slice of K. Yet, due to the layer-peeling strategy common to these works, the bounds scale with the
product of matrix group norms vs. the product of Lipschitz constants (as in the C;; in Theorem 3.5) for
covering number based strategies. While one can construct settings where the product of (1, o) group
norms is smaller than the product of Lipschitz constants, this is typically not observed empirically, cf.
Fig. 2. Alternatively, Long & Sedghi [31] derive a generalization bound which does not depend on ,,



norms or group norms, but only on the distance to initialization with respect to the spectral norm.
Notably, an intermediate result in this reference yields a generalization bound of similar form as
(), scaling with the logarithm of the product of Lipschitz constants and with the square root of the
number of parameters, see Section A.5. The distance to initialization then enters the main result [31,
Theorem 3.1] at the cost of a Lipschitz constraint on the initialization. We argue that (#) incorporates
the distance to initialization more naturally, as it comes without constraints on the initialization itself.
Further, it holds for any sample size n and the numerical constants are explicit. Last, in the special
case of fully-connected layers and no skip connections, (&) reduces to the Rademacher complexity
bound from [3]. Yet, there are three differences to this result: (i) a different numerical constant, (ii)
the logarithm is replaced with a harmonic number, and (iii) there are no ceiling functions. From
our understanding, these modifications are equally necessary when proving the special case directly.
Nevertheless, these differences are only of minor importance, as they do not affect the asymptotic
behavior of the bound. For more details, see Section A.4.

4 Empirical Evaluation

To assess the excess capacity of a neural network trained via a standard protocol on some dataset, we
seek a hypothesis class that contains a network of the same architecture with comparable testing error
but smaller capacity. Controlling capacity via the bounds in Theorem 3.5 requires simultaneously
constraining the Lipschitz constants per layer and the (2, 1) group norm distance of each layer’s weight
to its initialization. We first discuss how to enforce the constraints. Then, we fix a residual network
architecture and train on datasets of increasing difficulty while varying the constraint strengths.

Capacity reduction. Controlling hypothesis class capacity necessitates ensuring that optimization
yields a network parametrization that satisfies the desired constraints. To this end, we implement a
variant of projected stochastic gradient descent (SGD) where, after a certain number of update steps,
we project onto the intersection of the corresponding constraint sets C; and Cs. For convolutional
layers, parametrized by tensors K, these are the convex sets C; = {K : ||[K — K21 < b} and
Co = {K : Lip(¢x) < s}. Hence, jointly satisfying the constraints is a convex feasibility problem
of finding a point in C = C; N C,. To ensure C # (), we initially (prior to optimization) scale each
layer’s weight K so that Lip(¢xo) = s. This starting point (per layer) resides in C by construction.

To project onto C, we rely on alternating orthogonal projections which map K to a tensor in Cy, resp.
C, with minimal distance to K. Repeated application of these projections converges to a point in the
intersection C [5]. To implement the orthogonal projections onto C; and Ca, we rely on work by Liu et
al. [30] and Sedghi et al. [40], respectively. The latter requires certain architectural prerequisites, and
in consequence, we need to use convolutions of stride 1 (though our bounds equally hold for strides
>1) and to reduce spatial dimensionality only via max-pooling. Further, we use circular padding and
kernel sizes not larger than the input dimensionalities. For details on the projection algorithm and a
comparison to alternating radial projections, see Section B.2.

Architecture. We use a slightly modified (pre-activation) ResNet18 [21]. Modifications include:
(1) the removal of batch normalization and biases; (2) skip connections for residual blocks where
the number of channels doubles and spatial dimensionality is halved are implemented via a fixed
map. Each half of the resulting channels is obtained via 2 x 2 spatial max-pooling (shifted by one
pixel). This map has Lipschitz constant /2 and is similar to the shortcut variant (A) of [20]; finally,
(3) we fix the weight vectors of the last (classification) layer at the vertices of a k — 1 unit simplex.
Fixing the classifier is motivated by [18] and the simplex configuration is inspired by [17, 48] who
show that this configuration corresponds to the geometric weight arrangement one would obtain at
minimal cross-entropy loss. By construction, this classifier has Lipschitz constant 4/#%/x—1. Notably,
modifications (2) and (3) do not harm performance, with empirical testing errors on a par with a
standard ResNet18 without batch normalization. Modification (1), i.e., the omission of normalization
layers, was done to ensure that the experiments are in the setting of Eq. (11) and therefore that
(&, #) are faithful capacity measures. However, it is accompanied by a noticeable increase in
testing error. In principle, our theory could handle batch normalization, as, during evaluation, the
latter is just an affine map parametrized by the running mean and variance learned during training.
However, including normalization in our empirical evaluation is problematic, as normalizing batches
of small variance requires the normalization layers to have a large Lipschitz constant. Consequently,
considering normalization layers as affine maps and enforcing Lipschitz constraints on them could



prevent proper normalization of the data. Another strategy would be to consider normalization
layers as fixed nonlinearities which normalize each batch to zero mean and unit variance. However,
this map is not Lipschitz continuous, and again, modifications could hinder normalization (which
defeats the very purpose of these layers). Hence, we decided to remove normalization layers in our
empirical evaluation. Presumably, however, there is a middle ground where capacity is reduced, and
normalization is still possible. If so, excess capacity could be assessed for very deep architectures,
which are difficult to train without normalization layers.

Datasets & Training. We test on three benchmark datasets: CIFAR10/100 [25], and Tiny-ImageNet-
200 [24], listed in order of increasing task difficulty. We minimize the cross-entropy loss using SGD
with momentum (0.9) and small weight decay (1e-4) for 200 epochs with batch size 256 and follow
a CIFAR-typical stepwise learning rate schedule, decaying the initial learning rate (of 3e-3) by a
factor of 5x at epochs 60, 120 & 160 [10]. No data augmentation is used. When projecting onto
the constraint sets, we found one alternating projection step every 15th SGD update to be sufficient
to remain close to C. To ensure that a trained model is within the capacity-constrained class, we
perform 15 additional alternating projection steps after the final SGD update. For consistency, all
experiments are run with the same hyperparameters. Consequently, hyperparameters are chosen so
that training converges for the strongest constraints we assess. In particular, we train for 200 epochs
even though unconstrained and weakly constrained models can be trained much faster. Importantly,
this affects the assessment of excess capacity only marginally, as we observe that the testing error
does not deteriorate in case of more update steps. Similarly, the Lipschitz constant and the distance
to initialization stay almost constant once the close-to-zero training error regime is reached, which
may happen way before 200 epochs are completed.

4.1 Results

First, we assess the capacity-driving quantities in our bounds for models trained without constraints'.
Table 1 (top) lists a comparison across datasets, along with the capacity measures (d, #), the
training/testing error, and the empirical generalization gap (i.e., the difference between testing and
training error). In accordance with our motivating figure from Section 1 (Fig. 1), we observe an
overall increase in both capacity-driving quantities as a function of task difficulty.

To assess excess capacity in the context of questions (Q1) and (Q2), we first identify, per dataset,
the most restrictive constraint combination where the testing error® is as close as possible to the
unconstrained regime. We refer to this setting as the operating point for the constraints, characterizing
the function class F that serves as a reference to measure excess capacity. The operating points per
dataset, as well as the corresponding results are listed in Table 1 (bottom).

With respect to (Q1) we find that networks can indeed maintain, or even improve, testing error at
substantially lowered capacity (see performance comparison in Fig. 3 relative to 4). Furthermore,
the observation that the capacity of the constrained models (surprisingly) remains in the same order
of magnitude across tasks of varying difficulty, suggests a negative answer to question (Q2). A
reduced-capacity model from an easy task can perform well on a difficult task. In consequence, when
comparing the top vs. bottom part of Table 1 with respect to column (&), we do see that task difficulty
primarily manifests as excess capacity. Another manifestation of task difficulty is evident from the
more detailed analysis in Fig. 3 (bottom), where we see that tightening both constraints beyond the
identified operating point leads to a more rapid deterioration of the testing error as the task difficulty
increases. Interestingly, at the operating point, the constrained models do not only share similar
capacity across datasets, but also similar empirical generalization gaps, primarily due to leaving the
ubiquitous zero-training-error regime. The latter is particularly noteworthy, as strong regularization
(e.g., via weight decay) can equally enforce this behavior, but typically at the cost of a large increase
in testing error (which we do not observe). Finally, the parameter-counting variant of our bound (see
Table 1, column &) is, by construction, much less affected by the constraints and apparently fails to
capture the observations above. This highlights the relevance of tying capacity to weight norms and
underscores their utility in our context.

'At evaluation time, Lipschitz constants are computed via a power iteration for convolutional layers [15, 27].
*We are primarily interested in what is feasible in terms of tolerable capacity reduction. Hence, leveraging
the testing split of each dataset for this purpose is legitimate from this exploratory perspective.
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Figure 3: Fine-grained analysis of training/testing accuracy in relation to the Lipschitz constraint and the (2, 1)
group norm distance to initialization constraint. We see that testing accuracy can be retained (relative to 4) for
arange of fairly restrictive constraints (fop row), compared to the unconstrained regime (cf. Lip./Dist. columns
in the top part of Table 1). However, this range noticeably narrows with increasing task difficulty (bottom row) .

Table 1: Assessment of the capacity-driving quantities. We list the median over the Lipschitz constants (Lip.)
and the (2, 1) group norm distances (Dist.) across all layers. Err. denotes the training/testing error, Capacity
denotes the measures (¢, ) from Theorem 3.5 and Gap the empirical generalization gap. The top part lists
results in the unconstrained regime (see 4 in Fig. 3), the bottom part lists results at the operating point of the
most restrictive constraint combination where the testing error is not worse than in the unconstrained case. Mar.
denotes the margin parameter y used for computing the capacity measures. As the constrained models do not fit
the training data anymore, they do not have a positive classification margin. Thus, we choose  such that the
unconstrained and constrained models have the same ramp loss value.

Lip. Dist. Mar. Err. (Tst) Err. (Trn) Capacity (b, ®) Gap

CIFARI0  1.63 60.3 11.2 0.24 0.00 1.0-101°/8.8-10>  0.24
CIFARI00 2.17 129.1 234 0.54 0.00 1.7-10'1 /9.3.10>  0.54
Tiny ImageNet ~ 3.05  287.3  24.7 0.62 0.00 45101 71.1-10°  0.62
CIFARI0O 0.80  50.0 1.00 0.21 0.06 1.8-108 /7.8-10? 0.15
CIFARIO0 0.80  70.0 1.00 0.52 0.36 2.6:10% /7.9-10 0.16
Tiny ImageNet ~ 0.80  130.0  1.00 0.62 0.41 8.9-108/8.9-10>  0.21

5 Discussion

Studying the capacity of neural networks hinges crucially on the measure that is used to quantify it.
In our case, capacity rests upon two bounds on the empirical Rademacher complexity, both depending
on weight norms and the number of parameters, but to different extents. Hence, exerting control over
the weight norms manifests in different ways: in case of the more weight norm dependent capacity
measure, our results show substantial task-dependent excess capacity, while, when relying more on
parameter counting, this effect is less pronounced. Although the latter measure yields tighter bounds,
its utility in terms of explaining the observed empirical behavior is limited: in fact, capacity tied to
weight norms not only better correlates with observed generalization gaps (both with and without
constraints), but the amount of tolerable capacity reduction also reflects the smaller generalization
gaps in the constrained regime. Note that our results rest upon carefully implementing constraint
enforcement during optimization. Hence, numerical schemes to better account for this setting might
potentially reveal an even more pronounced excess capacity effect.

In summary, our experiments, guided by the theoretical bounds, strongly suggest a notion of com-
pressibility of networks with respect to weight norms. This compressibility only moderately reduces
with task difficulty. We believe these observations to be particularly relevant and we foresee them
sparking future work along this direction.
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In the appendix, we present (1) a more detailed comparison to prior work (Section A), (2) addi-
tional experiments (Section B) and (3) list all proofs which are left-out in the main manuscript
(Section C). In particular, in Section C.2, we derive our single-layer covering number bounds from
Theorem 3.2; Section C.3 presents the modularized strategy from Section 3.3 to obtain whole-network
covering number bounds. This includes several examples (e.g., residual networks) and an extension
to accommodate concatenation. Section C.4 then tailors our empirical Rademacher complexity
bounds to networks with fully-connected and convolutional layers, and Section C.5 finally lists the
accompanying generalization bounds.
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A Comparison with prior work on Rademacher complexity bounds

A.1 Analysis of matrices corresponding to convolutions

We compare the norms of the matrices M corresponding to the linear map realized by a convolutional
layer with the norm of the corresponding weight tensor K. This facilitates studying the Rademacher
complexity of convolutional layers via norm-based bounds for fully-connected layers.

In accordance with the definition of the (2, 1) group norm in Eq. (7), we define the (p, ¢) group norm
of a weight tensor K as
1/q

1K1, = Z > I Koall : (17)

a,b=1o0=1

For simplicity, we (i) consider only circular, input-size preserving paddings, (ii) assume that the
spatial input dimension h = w = d is a multiple of the convolution stride ¢, and (iii) assume that
the kernel size k, = k,, = k < d. In this setting, convolution corresponds to the application of a
local map Ré*#*F _ Reu  specified by the weight tensor K € RCu*cnxkXk o all (d/t)? patches.

Each row [M],. of My € Réu(d/ £ xend® hag as non-zero elements only the entries of the tensor
K,,... forsome o, = 1,. .., coy. Thus, the (p, g) group norm of M} is
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In particular,
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Note the benefit of the (1, co) group norm, which does not scale with the input dimension d.

We point out that for p > ¢ (Holder inequality for p/q)
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d 2/q 2/
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This inequality quantifies the disadvantage of applying generalization bounds for fully-connected
layers directly on the matrices that parametrize the linear maps corresponding to convolutions.

A.2 Comparison of bounds for convolutional networks

Table 3 lists various upper bounds on the empirical Rademacher complexity of convolutional networks
as specified in the paragraph below, in a common notation (see Table 2). As in Section A.1, we
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Table 2: Notation

n Number of samples K Number of classes

L Number of layers Ci Number of input channels to layer ¢
ki Kernel size at layer ¢ t; Stride at layer ¢

K;  Weight of layer 4, I; € Rei+1xcixkixk; Kfo) Initialization of layer 4

d;  Input spatial width at layer ¢ Si Lipschitz constant of layer ¢

ol Margin at output W Number of parameters of layer ¢

Table 3: Comparison of empirical Rademacher complexity bounds (in our notation). When referring to sections
or theorems from references, we underline the corresponding results.

-, \ T
Ours 4, 12H,_, L 4 IXI (770 KKl
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ai =Y, K — K@, j . aL= HKL - K}"’H
2
pit = dip1 maxy<y, %)};“ ; prLy ==
B;_1(X) = maximal > norm of a convolutional patch of the inputs to the i-th layer
2 1 768R 10g2(32/Fn2 + TWn) 12
3/2 -
Ledent et al. [26] R= <Ef:1 rf/S) , I' = max; (T‘q‘,d?+1ci+l) , W = max; d2c;
(simpler result, see Sec. E) ) ()
\X\o K L=1¢.\d. E°||[Ki7Kl ]""'HQ
Ti = maxo [|[KL]o- I Hj:l S5 ) Qit1 Py
[X]o = BO(X) maximal /2 norm of a convolutional patch on X
ot o s 1+ 7] o ([1262]) )
(see Thm. 3.5 (#)) ‘ _ (0 , ,
L K 1/3 , s 2/3
= 2B (M) =2 @) = () P31+ 1) <27

Lin et al. [29]
(see Lem. 18)

16(2050 12 (T2, s0) (T2, Wi nmu))l“%

Neyshabur et al. [38]
(see Cor. 2, with [ )

oLy (an1 max, H[Ki]o...Hl) log(2¢1d}) maxy |||, =

Golowich et al. [14]
(see Thm. 2, 1 ~)

max, 1Y z]?
2y/L+ 1+ log(erd) (T, maxs [[Kilo- |, ) o 22ee Ehaalonline 4

Gouk et al. [16]
(see Thm. 1, with 1 )

25y /log(2e1dd) (TTEy maxo [|[Kilo-- ;)

(0)
L maxXe [Ki—Ki ](,H 1
<Zi:1 maxo[[Kilo 11 L) maxy ||zl v

Neyshabur et al. [38]
(see Cor. 2, with [2)

— X
2l (TTE, & I1Kall,) 2

Golowich et al. [14]
(see Thm. 1, with l2)

A5k (T, 8 1K4l,) (V2Tog@)E + 1)

Gouk et al. [16]
(see Thm. 2, with [5)

(0)
L /5, X1 | )
2VaRl T (T, ver 1Kl <Zl TR T 4,05 | V7

consider input-size preserving circular padding, convolutions with stride of ¢, and assume that (i) the

spatial dimensions h = w = d are a multiple of ¢ and (ii) the kernel size is k, = k,, = k < d.

3The numerical constant (48) differs from the one (36) in [3] as discussed in Section A .4.
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The empirical Rademacher complexity bounds in Table 3 are formulated in dependence of norms of
the weights K. This is not entirely accurate, as the bounds typically refer to neural networks whose
weights satisfy a priori defined norm constraints. We choose this abuse of notation so that we do not
need to introduce additional variables for each norm constraint.

The listed bounds are used in the numerical comparison for unconstrained networks in Fig. 2.
More specifically, we consider a hypothesis class F represented by a neural network of the form
f=opofro---00y0 fi, where o; : x — max(z,0) denotes the ReLU activation function and f;
identifies a convolutional layer. Note that fully-connected layers, e.g., a linear classifier at the last
layer, can be handled by setting the spatial input dimension d;, the kernel size k; and the stride ¢; all
equal to 1.

Bounds designed for fully-connected networks are applied to the matrices M that correspond to the
weight tensor K which parametrizes the convolution. To handle the multiclass regime, the covering
number based bounds will be applied to F.,, see Eq. (3). Layer-peeling based bounds, originally
presented for binary classification, are multiplied by the number of classes « (according to [32]) as
done in [16].

A.3 Details for the numerical comparison in Fig. 2

In Fig. 2, we evaluated several existing upper bounds (see Table 3) on the empirical Rademacher
complexity of convolutional networks for two specific architectures.

The first architecture (a 6-layer network) consists of 5 convolutional layers with stride 2, kernel
size 3, padding of 1 and 256 filters / output channels, so that a (3 x 32 x 32)-dimensional input
image is mapped to a (256 x 1 x 1)-dimensional representation. The subsequent linear classifier
is a convolutional layer with kernel size 1 and no padding. Its number of filters equals the number
of classes of the classification problem. This classification layer is equivalent to applying a fully-
connected layer to the flattened representations. The second architecture (an 11-layer network) only
differs in that each convolutional layer with stride 2 is followed by an additional convolutional layer
with stride 1 (kernel size 3, padding of 1 and 256 filters). All activation functions are ReL.Us.

We trained both networks on the CIFAR10 dataset, minimizing the cross-entropy loss using stochastic
gradient descent (SGD) with batch size 256, weight decay (1e-4), and momentum (0.9). During the
100 training epochs, the learning rate is gradually reduced following a cosine annealing schedule,
starting with an initial learning rate of le-4. Notably, we do not use any data augmentation. Both
networks fit the training data, achieving an accuracy of 72.5% (6-layer), resp. 77.9% (11-layer), on
the test data.

To assess the different empirical Rademacher complexity bounds, we measured weight norms of
the networks’ layers and inserted them into the bounds from Table 3. Fig. 4 illustrates the results.
Note that, following our discussion in Section A.2, Rademacher complexity bounds are typically
formulated for networks with a priori specified weight norm constraints, whereas here, we train
unconstrained networks and merely measure the weight norms at the end of training.

Fig. 4 highlights several aspects of the studied bounds. First of all, all bounds are vacuous, as they
are larger than 1. Somewhat surprisingly, the bounds mainly driven by the number of parameters
are clearly the smallest, i.e., the ones from Lin et al. [29] and Theorem 3.5 (). As expected, our
bound from Theorem 3.5 (&) is smaller than [3], as it accounts for the structure of convolutions.
Furthermore, we see the benign scaling of the product of Lipschitz constants with the network depth
compared to the product of I3 norms, resp., l1 o norms. This is mirrored in the benign scaling of the
covering number based bounds compared to the layer-peeling based ones.

A.4 Comparison with Bartlett et al. [3]

Our Rademacher complexity bounds are based on the proof strategy of Bartlett et al. [3]. That
is, we first derive single layer covering number bounds for convolutional layers. In a second step,
we derive covering numbers for entire residual networks. Last, a combination of Dudley’s entropy
integral and [3, Lemma 3.1] implies the Rademacher complexity bounds (&) and (). As already
discussed in Section 3.2, our single-layer covering number bound for convolutional layers includes the
single-layer covering number bound for fully-connected layers from [3, Lemma 3.2]. Consequently,
in the special case of fully-connected layers and no skip connections, our main result (&) reduces to
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Figure 4: Empirical Rademacher complexity bounds (grouped by proof strategy), for a 6- (M) and an 11-layer
(F177) convolutional network, trained on CIFAR10. Quantities that typically appear in these bounds are shown in
green (top part of figure) for reference.

the Rademacher complexity bound from [3]. To be more specific, we show that

3/2
9?{‘9(]:7) < % + %\/log(QW) ( [C’?ﬂ) 24
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L

i=1

and Bartlett et al. [3] prove

3/2
) 4 9l L\ s
msmgnwfﬁ(mm(;o/) . os)

Here, L denotes the depth of the network and C; is the part of the capacity of the ¢-th layer due to
weight and data norms, i.e.,

N 41X (& b;
Ci(X) = ”ﬁ” <H Szpz> . (26)

=1 ¢

with s; the layers’ Lipschitz constraints, b; the layers’ (2,1) norm constraints and p; the Lipschitz
constants of the nonlinearities.

A closer look reveals that there are three differences between the results: (i) a different numerical
constant, (i) the logarithm is replaced with a harmonic number, and (iii) Eq. (26) contains no ceiling
functions. Of course, the differences do not affect the asymptotic behavior of the bound and are
thus only of minor importance. From our understanding, the differences are rooted in a lapse in the
inequality chains of [3, Eq. (A.3)].

» The difference in the numerical constant appears, because proving the entire network
covering number bound requires transitioning to external covering numbers, which manifests
as an additional factor of 2 in the final result. This is because the single layer covering
number bounds from Theorem 3.2, resp. [3, Lemma 3.2], hold for layers with only a
(2, 1) group norm constraint, which form a superset of the layers with a (2, 1) group norm
constraint and a Lipschitz constraint as considered in Theorem 3.5, resp [3, Theorem 3.3].
On the other hand, the parameter « in the proof of [3, Lemma A.8] can be chosen as
a = 1/4/n, which improves the bound by a factor of 3/2 (see proof of Theorem C.19).
Overall, both effects lead to a factor of 4/3, which is precisely the quotient of the numerical
constants in Eq. (25) and Eq. (26).

* Our result in Eq. (25) contains ceiling functions and a harmonic number, which is a direct
consequence of the ceiling function appearing in the single layer covering number bound of
Theorem 3.2, resp. [3, Lemma 3.2]. In the chain of inequalities [3, Eq. (A.3)] in the proof
of [3, Theorem 3.3], the single layer bound is inserted without the ceiling function.
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A.5 Comparison with Long & Sedghi [31]
Long & Sedghi [31] study generalization bounds for the class F of convolutional networks that
realize functions of the form
f=o0r0¢K,0--r00100¢K, 1 X =R
with Lipschitz/spectral-norm constraints, i.e., they assume that the initializations ¢ K(© Per layer are
(1 4 v)-Lipschitz and that the distances
Bi = Lip(éx; — ¢ )

to initialization satisfy » ; Bi < B for some given constant 5 > 0. They show [31, Theorem 3.1] that
for A-Lipschitz loss functions ¢, the generalization gap is (with probability 1 — §) uniformly bounded
over the class 7y = {(z,y) — ¢(f(x),y) | f € F} by

g W+ VL +10g (ABy)) + log (5)

n

; 27

assuming that A3x (1 + v+ /L)L > 5 and n large enough. Here, C' denotes an unspecified constant
and M the maximum of the loss function £. Further, W = ). W is the total number of network
parameters and ||z||, < x is an upper bound on the Euclidean norm of the data. As can be seen, this
bound depends on the square root of parameters and the distance [ to initialization. In contrast to
other results (e.g., [3, 26, (&), ()]), it also depends on a Lipschitz constraint (1 + v) directly on the
initialization.

Eq. (27) is based on [31, Lemma 2.3], which requires the class F; to be (B, d)-Lipschitz parametrized,
i.e., that there exists d € N and a norm ||-|| on RY, together with a B-Lipschitz continuous and
surjective map ¢ : B(1, ||-||) — F, from the ||-||-unit ball in R onto JF,, which is B-Lipschitz. The
latter means that for every 6,6" € B(1, ||-||), it holds that ||¢(8) — #(0")||cc < B |0 — '||. In this
situation, the generalization gap is bounded by

1
CM\/dlogB+log(6) | o8)

n

In a series of lemmas [31, Lemma 3.2-3.4], the authors show that F; is indeed (B, d)-Lipschitz
parametrized with d = W and B = Ax3(1 + v + 3/L)*. We will repeat the argument and show
that it implies an intermediate result which scales similarly to our result (&) from Theorem 3.5, i.e.,
with the square root of

W log H s; |,
J
where s; denote Lipschitz constraints on the layers ¢k, .

Let K = (Ky,...,K) and K= (f(l, . ,KL) be tuples of weight tensors and denote the corre-

sponding networks by fk, resp. fi. If K and K differ in only one layer, say K; # K ;> then for all
x € X (see proof of [31, Lemma 3.2]),

L
| fic(@) = fig (@)| < |l2lly [ [[Tip(ox,) | Lip(éx, —dz,) < x (H 81) Lip(¢x,—¢g,) - (29)

i#j i=1

Consequently, if K and K differ in all layers, it holds that
L L
[fx (@) — fr(2)] < x (H s) > Lip(¢x, — 6z,) - (30)
i=1 j=1

As 2521 Lip(¢k,) defines a norm ||-|| on RW (in [31] this norm is denoted ||| ), the inequality
above implies that the surjective map

K
DS

B(L ) = F , = fx
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is (X (Hle si) > si)—LipschitZ, ie., the class F;y = {(z,y)— l(f(x),y)| feF} is
(Ax (Hle si> > Sis W) -Lipschitz parametrized. Thus, Eq. (28) implies a generalization bound
of the form

W log (Ax (Hle Sz‘) > Si> +1log (3)

n

CM

€1V

Similarly to our result (#) from Theorem 3.5, this bound scales with the square root of the number
of parameters and with the logarithm of the product of Lipschitz constants. However, as Eq. (31)
and Eq. (27) are proven via an asymptotic bound from Giné and Guillou [13], the constant C' and
the minimal sample size n required for Eq. (31) and Eq. (27) to hold are not readily available. This
makes further comparisons difficult.

Eq. (31) differs from the main result in [31], i.e., Eq. (27), as, instead of constraints on the layers’
Lipschitz constants Lip(¢k,) < s;, Long & Sedghi consider constraints on the Lipschitz constants
of the initialization Lip(¢,.0)) < 1+ v and on the distance to initialization Lip(¢r, — ¢.0)) < B

with ). 3; = f3. Starting from Eq. (29), these constraints enter via the triangle inequality, i.e.,
Llp(¢K1) < Llp(¢K(0)) + Llp(¢K1 - ¢K(O>) <l+v+ Bi .
Maximizing [],(1 + v + f3;) subject to ) . #; = 3, yields

|fi (@) = fge(@)| < x (1+ v+ B/L)" Lip(dk, — d.) (32)
< xexp (vL + B) Lip(¢k, — ¢,) - (33)

[31, Lemma 3.3 & 3.4] then imply that F; is (B, d)-Lipschitz parametrized with d = W and
B = M\xBexp (vL + $), which in turn implies Eq. (27).

Obviously, every bound that depends on weight norms can be transferred to a bound that depends on
the norm of the initialization and the distance to it, simply by application of the triangle inequality.
We argue, that utilizing the translation invariance of covering numbers, as done in, e.g., (), (#), as
well as in [3, 26], is a more natural way of incorporating the distance to initialization, as it allows for
bounds which do not depend on norm constraints on the initialization.

A.6 Comparison with Ledent et al. [26]

In [26], Ledent et al. derive generalization/Rademacher complexity bounds via ., coverings of
convolutional networks. These bounds incorporate weight sharing and thus directly depend on the
norms of the weight tensors, instead of depending on the norms of the matrix that parametrizes the
linear (convolutional) map. This results in an improved scaling with respect to the spatial input width.

In general, the bounds in [26] scale similarly to our bound (&) from Theorem 3.5 in that they depend
on the square root of the product of Lipschitz constants (or empirical estimates thereof). In particular,
just as our result (&), [26, Theorem 16] is based on Rademacher complexity bounds for function
classes F,, i.e., the composition of Lipschitz- and distance-constrained convolutional networks with
the ramp loss at margin v > 0. The main result [26, Theorem 3], as well as [26, Theorem 20], adapts
techniques from [43] and [35] to replace the product of Lipschitz constants with empirical equivalents,
which are typically much smaller. To this end, they study the composition of convolutional networks
with an augmented loss function, see for example [26, Eq. (26)].

In this part of the appendix, we compare our norm-driven bound (&) with the main results in [26]. As
mentioned in Section 3.2, we find that both results exhibit similar scaling behavior, but we improve in
the logarithmic term and in that our dependency on data norms is less sensitive to outliers. On the
other hand, the main bounds in [26] exhibit an improved dependency on the number of classes. The
latter pays off, e.g., for shallow networks or in extreme multiclass problems with a large number of
classes. All three effects are due to the use of [ vs. [, covering numbers.

Central to all Rademacher complexity bounds [26] is the single-layer [, covering number bound
restated in the proposition below.

Proposition A.1 ([26, Proposition 6]). Let positive reals (a,b, €) and positive integer m be given.
Let the tensor X € R™U*? pe given with Vi € {1,...,n}, Yu € {1,...,U}, | Xiw|ly < b. For
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any fixed M:

€

s 64a2b? 8ab
log ({XA: AeR" ™ A= M|y, < a}7e, H||*) < ZQ logg[(a +7) an] (34)

with the norm ||-||, over the space R™*V>™ defined by ||Y||, = max;<, max;<v (Yo, Y;2,)'/2
Some remarks regarding the notation. Here, X does not denote the input data (1, .. ., x,), but the

nU-tuple of all d’-sized convolutional patches of the input data. Thus, d’ = k2c;,, is the square
of the kernel size times the number of input channels and U = [d/t]? is the number of patches
per image, which is computed as the square of the spatial width divided by the stride. The matrix
A € RF*emxcout then is the local linear map acting on the convolutional patches, i.e., A is a reshaping
of the weight tensor K and X A is the output of the convolutional layer, i.e., n images with ¢,
channels with U pixels each. Further, A||271 is the standard matrix (2, 1) group norm which differs
from || K[|, , defined in Eq. (7).

As the single-layer bound in Eq. (34) and our single-layer bound in Eq. (54) are the fundamental
building blocks of all inferred results (and we did not study augmented loss functions), we will focus
on them for the comparison. For ease of reference, we restate the relevant part of Theorem 3.2.

Theorem A.2. Letb > 0 and F = {¢x| K € Reéouxcuxkxk | Kly,, < b} denote the class of 2D

convolutions with c;, input channels, c,, output channels and kernel size kxk, parametrized by
tensors K with W parameters. Then,

2192
log N (F,e, |-) < {”X”ﬂ log(2) . (35)

€

There is a clear similarity between Eq. (34) and Eq. (35). Both depend quadratically on weight
and data norms divided by the covering radius ¢, as well as on a logarithmic term. Consequently,
differences between both bounds are nuanced and, ignoring the constant in Eq. (34), it is a priori not
clear which bound is preferable. We will discuss these nuances theoretically and provide a empirical
comparison in Fig. 5.

(Diff-1) Data norms. Our work assumes a bound on the I norm of the whole input x (a c;,d>-tuple),
whereas [26] only assumes a bound on the /5 norm of every single patch p (cinkz-tuples).
This potentially improves Eq. (34) over Eq. (35) by a factor of (k/d)?, as

<zl < d/k . 36
perpggéesllp\\_\lwllw / peggggqesllpH (36)

The left inequality is obvious. The right inequality follows from considering the sum of all
patch norms. As every pixel x;;;, appears in at least [k/s] 2 patches and there are at most
[d/s]? patches in total, it holds that

c d
k/s) Nall® =D > Jwigl® [k/s]

i=1 j,l=1
c d

< Z Z |zi;1)? card({p € patches | z;j; € p})

i=17,1=1

2 2 2
= S qplP < [dfs]? max [l
pEpatches
pEpatches

and Lk/sl/[d/s] ~ k/d. Notably, the maximum in Eq. (34) is over the patches on all of the
input data, which is quite sensitive to outliers. Hence, the improvement over Eq. (35) is
typically smaller than d/k, especially at hidden layers, see top row of Fig. 5.

(Diff-2) Weight norms. The (2, 1) group norms on the weights are applied differently, i.e., we
compute a (2, 1) norm via Eq. (7), whereas [26] computes the (2, 1) group norm of the matrix
corresponding to the local linear map, which is applied to each patch, i.e., >, || Kj...||5. As

Sy < 1Ky < 5D I1Ki 5 G7
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this potentially improves Eq. (34) over Eq. (35) by a factor of 1/k2. Empirically, we observe
that | K|, ; = k), || K;...||5, see bottom row of Fig. 5.

Thus, considering norm constraints only, i.e., (Diff-1) and (Diff-2), we find that Eq. (34) is potentially
better by a factor (k/d)? - (1/k)? = 1/d?, i.e., the reciprocal of the squared height/width of the input
images. However, the comparison is more intricate, as the coverings are with respect to different (/5
vs. ) norms and, more importantly, the considered function classes differ. As, ultimately, we want
to get Rademacher complexity bounds for whole networks, we need to consider effects that appear
when transitioning to whole-network bounds.

(Diff-3)

(Diff-4)

Lipschitz constants. In whole-network bounds, contributions of all layers are summed.
These contributions are the (logarithmic) single-layer bounds, scaled by a factor correspond-
ing to the Lipschitz constant of the remainder of a network after the layer. Typically, the
Lipschitz constant of the part before a layer additionally enters as an estimate of the norm of
the layer’s input. Notably, in [26], the Lipschitz constant of the network’s remaining layers
incurs an additional factor [d/t] % ie., the spatial dimensionality of the output (denoted by
w; in the reference). This counterbalances the improvements by (Diff-1) and (Diff-2).
Specifically, in [26], the Lipschitz constants are with respect to the norms ||-|| . .. on the
domain and | - |; on the codomain, see, e.g., the definition of pfl‘ Sl in the statement of [26,
Proposition 10]. There,

is the maximum /5 norm of a slice of the image = along the channels, i.e., at fixed spatial
position. The norm |y|; = maxpepaches ||P|| is the maximal norm of a convolutional patch
on y. Transitioning to Lipschitz constants with respect to I norms, i.e., spectral norms,
as done for the main result in [26, Theorem 3], incurs an additional factor d (the spatial
dimension of x), since

f@)ls _ f@)s 1f@l el I @)y
12l or @ Nzl N2lo, = [l
<1 <d

In this inequality, = denotes the output of the considered layer and so d is its spatial width.
Notably, in [26], d can actually be reduced to the output’s spatial width after a subsequent
max-pooling operation. In our whole-network bound, the Lipschitz constant is already with
respect to [ norms and thus no additional factors appear.

Dependency on number of classes. The use of [, covering numbers in [26] improves
the dependency on the number of classes for whole-network bounds. This is because the
weights of the classification layer do not enter via a (2, 1) group norm constraint, but a
Frobenius norm constraint. This implicitly improves the log covering number of this layer
by a factor of the number of classes. Since, for whole-network bounds, the contribution
of all layers are summed, we expect this effect to be significant if the contribution of the
classification is a substantial fraction of the whole-network bound. This would be the case,
e.g., for shallow networks or in extreme multiclass settings.

Finally, we discuss the logarithmic terms and constants.

(Diff-5)

Logarithmic terms. Our bound in Eq. (35) depends logarithmically on the number of
parameters, denoted by 1. By contrast, Eq. (34) depends on log, [(S%b + 7) an]. When
transitioning to Rademacher complexity bounds via Dudley’s entropy integral (cf. [26,
Eq. (29)]), the covering radius € in the log, term is replaced by % So, considering the
definitions of U and m, we need to compare 8abmUn? = 8abc,,,d*n?/t? (Ledent et al.)
with 2W = 2¢;,¢ok? (Ours). As, typically, k < d/t and ¢;, < n?, we improve over [26]
in the logarithmic term (recall that a and b denote the weight and data norm constraints,
respectively).
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Figure 5: Comparison of factors (w.r.t. data norms and weight norms) in the single-layer covering number
bound of Ledent et al. [26, Proposition 6] and our result from Eq. (35). Shown are detailed results for four
exemplary layers (from the 11-layer convolutional network described in Section A.3), as well as a summary
plot across all layers (rightmost). The first row presents histograms of patch norms; the second row presents
histograms of norms of k x k slices of tensors AK, i.e. the difference AK between a weight tensor and its
initialization.

(Diff-6) Multiplicative constants. The single-layer bound by Ledent et al. Eq. (34) has a rather
large multiplicative constant 64 (compared to 1 in Eq. (35)). This constant enters mainly via
a previous theorem by Zhang [47, Theorem 4]. Notably, a remark in [47] highlights that
the constants in this theorem are not optimized. Thus, improving Eq. (34) in this regard
might be possible, and the difference in numerical constants might be less pronounced than
it appears at first sight. Yet, from our understanding, some constants are unavoidable, e.g.,
the factor 2 which enters the proof sketch of [26, Proposition 6].

Overall, (Diff-1) — (Diff-3) lead to several effects, which can potentially compensate each other,
especially if, for each layer, the coordinates of its input and of the weights have roughly equal
norm. Notably, in this situation, our single-layer bound can be improved by a factor of 1/t2, with ¢
denoting the stride of the convolution, see Remark C.9. Thus, in the absence of pooling (e.g., when
downsampling is handled directly by the stride of the convolutional layer), the scaling is precisely
the same. As Eq. (34) depends on the maximum norm of a patch over all of the input data (i.e., a
quantity which is sensitive to outliers), we do not expect (Diff-1) — (Diff-3) to fully compensate each
other, but rather expect an advantage of our bound from Theorem A.2. A detailed investigation is
shown in Fig. 5, which highlights weight and data norms for layers of a trained network (an 11-layer
convolutional network as used for Fig. 4). To incorporate the effects (Diff-1) — (Diff-3) and to allow
for a cleaner comparison, we multiply the /5 norms of the patches by the square root of spatial
dimensionality of the output and shift a factor of the kernel size from our weight norms to our data
norms. We see that the (rescaled) weight norms across all layers are essentially the same, whereas,
due to the maximum being sensitive to outliers, our data norms are substantially smaller at the hidden
layers.

As a last comparison, we illustrate the magnitudes MW Daanomis EEE Weight norms Constants
" . mmm Spatial dimensions Bl Log terms Z~Z~ Kernel size

of all factors appearing in the bounds of Eqs. (34) ..

and (35) and of the spatial dimensionality of the

output, see (Diff-3) in the enumeration above. In

in the quadratic terms is due to data norms. To be " | I | I | | | ‘ ‘

specific, one needs to compare the data norms in our T T S T e B B (R 1

. . . Layers (for the 11-layer non-residual network)

case, to the combination of data norms and spatial

both bounds, we discard the denominator €2 and, in 10
dimensions in the bound of Ledent et al. [26]. We also improve in the logarithmic terms and constants.

1012

Eq. (34), we replace the factor 1/¢ in the logarithm
by n, just as it enters the Rademacher complexity
bounds. 101

As can be seen from the figure to the right (with our ']
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Comparison for two-layer networks

As discussed in (Diff-4), the [, covering approach in [26] allows for a favorable treatment of the last
(classification) layer. If the contribution of this last layer to the respective Rademacher complexity
bounds is substantial, then the bound in [26] is superior. We evaluate this effect on two-layer networks,
where it is most pronounced.

The comparison considers networks of the following architecture. The first layer is convolutional
and parametrized by a tensor K € R*3X#*¥ Here ¢ denotes the number of filters (channels of the
output) and k the kernel size, which is chosen equal to the stride and the spatial dimensionality of the
input, e.g., 32 for images from CIFAR100. Consequently, the spatial dimensionality of the output
is 1. This convolutional layer is followed by an activation function with Lipschitz constant 1 (e.g.,
ReLU) and a linear map W € R**¢, with x denoting the number of classes.

Since the quantities and norms appearing in the respective bounds differ, we make the following
simplifications, which are motivated by corresponding inequalities and verified empirically.

(1) ||K||2,1 ~ k‘Zle ||KZ||2 ’

@ [Ty, ~ velwl,

(3) max;<, [|[Wj. ||, = Lip(W)

€)) % A max;<n ||zi||, = maximal norm of convolutional patches from the data |,

5) Hy—1 ~logn .
Furthermore, just as the single-layer bound in [26] depends on the maximal norm of a patch of the
data, ours actually depends only on the maximal norm of particular slices of the data, which we here
denote as | X |;. In the special case of the stride being equal to the spatial dimensionality, these slices

are over the channels at fixed local position (see Remark C.9 and the last chain of inequalities in the
proof of Theorem C.7). Thus, for the contribution of the first layer, we can use

©) |x|s ~ X1

Last, we empirically evaluate a maximum operator which appears in the quantity R in the two layer
bound (Theorem 2) in [26], i.e.,

1 max; <. ||Wj. ||
< J< J 2
(N max;<n||dK (zi)ll, — v

With these simplifications, our bound (&) becomes

2 2

Lip(W) || K—K©

0o\ 2
Blogn Ao el6er) ( > ”“)+(Lip(w)H(W—W(O))THm) (38)

NG

and the bound from Theorem 2 in [26] becomes

768 log Lip(W) [ K=K O], \* ( Lin(o) [|(W-WO)T||, 1\ *
= vm VP ( ; Vi

K — K© . )
with D = max (H H2’1 Lip() c RSP HW - W(O)H Llp(K)m)

3
2

_|_

(39)

k Lip(¢x) = vn 2 7

As expected, ignoring constants and log terms, the bound from [26] is better by a factor of v/ (square
root of number of classes) in the summand corresponding to the last layer.

Empirically, we evaluate the bounds for networks of varying width ¢ € {32,1024, 8192} trained
on CIFAR100. Here, we compute exact values and do not use the simplifications (1) - (7). As the
models do not fit the training data, we use a margin parameter of v = 1 for simplicity. Overall, the
models performed rather poorly (as expected) with testing accuracies of 21%, 29%, 31% and training
accuracies 32%, 99.8%, 99.9%.
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Table 4 lists the computed values of the bounds and how they distribute over the respective factors
(weight & data norms, logarithmic term, numerical constant, sample size dependency). Results are
presented on a logarithmic scale with base 10. Overall, we observe the following effects:

1.

Relatively, the contribution of the second layer in [26] is improved by a factor of 10. This is
expected, as 10 is the square root of the number of classes in the CIFAR100 dataset.

. The wider the network, the more dominant the term corresponding to the first layer becomes.

At width 32, the factor from weight and data norms of [26] is clearly superior. This is due
to the improved class dependency. However, for a width of 1024, this effect is already
negligible.

. For the wider networks (¢ € {1024, 8192}), we improve over [26] by a factor of approxi-

mately 10*° ~ 30. Ignoring numerical constants, we improve by a factor 10°3 ~ 2 , which
is due to an improvement in the logarithmic term.

For fixed width, the bounds and factors do not vary over the random initializations. For the
models with widths 1024 and 8192, the standard deviation of the base 10 logarithms are
< 0.005, which corresponds to a geometric standard deviation of less than a factor 1.01, i.e.,
1%.

Last, we consider a network whose first layer has kernel size 3 and stride 1. Reduction of the spatial
dimensionality is achieved by a subsequent max pooling layer of window size 32 x 32. This setting
favors [26] as this work can better account for the pooling layer. In our simplified bound of Eq. (38),
the factor 1/k in the first summand disappears because of the unit stride; their result improves due to
the now smaller convolutional patches. In this setting the contribution of the first layer’s weight and
data norms is clearly larger in our bound. Yet, our bound is still smaller, but only due to numerical
constants.
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Table 4: Numerical comparison of bounds (Ours and Ledent et al.) and relevant factors computed for two-layer networks trained on CIFAR100 data (5 networks,
randomly initialized, per width). Reported are the mean = standard deviation of the base 10 logarithms, i.e., the logarithms of the geometric mean and geometric

standard deviation. The top table corresponds to an architecture without pooling layers and stride 32; the bottom table corresponds to an architecture with a pooling
layer of window size 32 x 32.

Width 32 Width 1024 Width 8192
Ours Ledent et al. Ours Ledent et al. Ours Ledent et al.
Bound 5.669 £ 0.009 6.704 £ 0.009 6.538 £ 0.001 7.973 £0.001 7.111 £ 0.001 8.657 £ 0.001
Weight data norms 4.760 £ 0.009 4.294 £ 0.009 5.575 £ 0.001 5.544 £ 0.001 6.121 £ 0.001 6.208 £ 0.001
— 1st layer 4.255 +£0.012 4.202 £+ 0.009 5.356 + 0.001 5.507 = 0.001 6.036 = 0.001 6.195 £+ 0.001
— 2nd layer 4.358 £ 0.008 2.976 £0.011 4.757 £0.001 3.661 £ 0.002 4.749 4+ 0.001 3.674 £ 0.002
Logarithmic term 0.543 £+ 0.000 0.839 £+ 0.000 0.597 £ 0.000 0.858 £ 0.000 0.624 £+ 0.000 0.879 £ 0.000
Numerical constants 1.681 £ 0.000 2.885 4+ 0.000 1.681 £ 0.000 2.885 4+ 0.000 1.681 £ 0.000 2.885 + 0.000
Sample size dependency | —1.315+ 0.000 —1.315+0.000 | —1.315+0.000 —1.315+0.000 | —1.3154+0.000 —1.31540.000
Width 1024 (pooling)
Ours Ledent et al.

Bound 7.009 £ 0.002 7.235 £ 0.001

Weight data norms 6.010 £ 0.002 4.803 4+ 0.001

— 1st layer 5.823 +£0.002 4.118 £ 0.003

— 2nd layer 5.408 £+ 0.002 4.523 +0.001

Logarithmic term 0.544 £+ 0.000 0.862 £+ 0.000

Numerical constants 1.681 £ 0.000 2.885 + 0.000

Sample size dependency | —1.315 4+ 0.000 —1.315 4 0.000




B Additional Experiments

B.1 Excess capacity in non-residual networks

In addition to the experiments presented in Section 4 of the main manuscript, we performed the same
excess capacity experiments on a non-residual convolutional network.

Architecture. Essentially, we rely on the same 11-layer convolutional network with ReLU activations
as described in Section A.3, only that we substitute each convolutional layer with stride 2 by a
convolutional layer with stride 1 followed by a max-pooling layer with kernel size 3 and stride 2.
This is done so that we can enforce the constraints on the capacity-driving quantities via the approach
described in Section B.2. Consistent with our ResNet18 experiments, the linear classifier is fixed
with weights set to the vertices of a (#classes — 1) unit simplex in the output space of the network
and kernel sizes of the convolutional layers are not larger than the width of their input.

Datasets & Training. Experiments are performed on the CIFAR10 and CIFAR100 benchmark
datasets [25]. We minimize the cross-entropy loss using SGD with momentum (0.9) for 200 epochs
with batch size 256 and decay the initial learning rate (of 3e-2) with a cosine annealing scheduler
after each epoch. No data augmentation is used. For projecting onto the constraint sets, we perform
one alternating projection step every 10th SGD update. After the final SGD update, we additionally
do 15 alternating projection steps to ensure that the trained model is within the capacity-constrained
class.

Results. We observe similar phenomena as for the residual (ResNet18) network studied in Section 4.
When comparing models trained with and without constraint, we see a substantial amount of excess
capacity, and this excess capacity increases with task difficulty. In fact, compared to our results
with the residual network architecture, this effect is even more pronounced as the capacity-driving
quantities in the unconstrained setting are surprisingly large. For instance, the median Lipschitz
constant of the model trained on CIFAR100 is 11.53 (cf. Table 5), compared to 2.17 for the ResNet18
results in Table 1. Notably, the capacity-driving quantities can be drastically reduced without a loss
of testing accuracy and the constraints can be chosen equally across datasets. This is similar to
Section 4 where constraints are not precisely equal, but within a small range. We also observe another
manifestation of task difficulty: tightening both constraints beyond the identified operating point
leads to a more rapid deterioration of the testing error as task difficulty increases (Fig. 6, middle).

Different to Section 4, the constrained models (almost) fit the training data. However, under slightly
stronger constraints, we can still find models with testing accuracy comparable (but slightly worse)
to the unconstrained setting, but with noticeably less generalization gap (Fig. 6, bottom). Again,
this is primarily due to leaving the zero-training-error regime. We suspect that the constraints could
be much stronger, but enforcing the constraints appears to more heavily influence optimization for
networks without skip connections. In this context, it is also worth pointing out that the constraints
are quite strong for the non-residual network (proportionally much stronger than for the ResNet18
model in Section 4). During training, we projected after every 10th SGD step, which was actually not
enough to enforce the constraints throughout the whole training procedure. Only towards the end of
training, when the learning rate is already small, do the constraints become satisfied. Increasing the
projection frequency might thus allow for even stronger constraints.

B.2 Projection method

A key aspect of the experiments in Section 4 is to obtain, for each pair of Lipschitz constant and
(2, 1) group norm constraints, a model with testing accuracy as high as possible. The quality of such
a model depends, to a large extent, on the way the constraints are enforced. This section specifies the
projection method used for the experiments and provides additional background information.

As mentioned in Section 4, we utilize orthogonal projections. Given zo € R? and a nonempty closed
convex set A C R?, the orthogonal projection of o onto A is defined as the unique

Tonh = argmin ||z — zo, . (40)
€A

Orthogonal projections have several beneficial properties. First, if f: R¢ — R is a strictly con-
vex function, then, for appropriately chosen step sizes, projected gradient descent (i.e., gradient
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Table 5: Assessment of the capacity-driving quantities for the non-residual 11-layer convolutional network
of this section. We list the median over the Lipschitz constants (Lip.) and the (2, 1) group norm distances
(Dist.) across all layers. Err. denotes the training/testing error, Capacity denotes the measures (¢, #) from
Theorem 3.5 (adapted to the non-residual setting) and Gap the empirical generalization gap. The top part lists
results in the unconstrained regime (see 4 in Fig. 3), the bottom part lists results at the operating point of the
most restrictive constraint combination where the testing error is on a par with the unconstrained case. Mar.
denotes the margin parameter y used for computing the capacity measures, which we choose such that the
unconstrained and constrained models have the same ramp loss value.

Lip. Dist. Mar. Err. (Tst) Err. (Trn) Capacity (&, #) Gap

CIFARIO  4.66  370.0  16.4 0.17 0.00 1.2:10'%/8.1-10*  0.17
CIFAR100 11.53 854.0 52.1 0.47 0.00 1.0-10*¢/9.2-102 0.47
2
CIFAR10 1.80 200.0 10.0 0.17 0.00 6.6-108/6.9-10 0.17
CIFARIOO0  1.80  200.0  10.0 0.47 0.03 6.6:108/6.9-10°  0.43
CIFAR10 CIFAR100
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Figure 6: Fine-grained analysis of training/testing accuracy in relation to the Lipschitz constraint and the (2, 1)
group norm distance to initialization constraint for the 11-layer non-residual convolutional network of this
section. We see that testing accuracy can be retained (relative to 4) for a range of fairly restrictive constraints
(top row), compared to the unconstrained regime (cf. Lip./Dist. columns in the top part of Table 5). However,
this range noticeably narrows with increasing task difficulty (middle row). Best-viewed in color.

descent with a subsequent orthogonal projection onto A after each step) converges to the minimizer
argmin, ¢ 4 f(z) [7]. Second, for a tuple (Cy, . . . Civ) of closed convex sets C; C R? with orthogonal
projections Fc,, alternating orthogonal projections, i.e., the sequence x; 11 = FPcy o --- 0 Pe, (7;)
converges [5] to a point in the intersection C; N --- N Cy (if it is non-empty). Notably, there are
variants of alternating orthogonal projections, e.g., Dykstra’s algorithm [12], which converge to the
orthogonal projection P ¢, onto the intersection (; Ci. However, there is a key disadvantage of
orthogonal projections. Being defined by the optimization problem Zo, = argmin, ¢ 4 ||z — zo||,
of Eq. (40), they often can only be computed numerically and might require a large compute budget.
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In Section 4, the convex set is C = {K € RenXconxbnxku . ||| — K05 <b, Lip(¢x) < s}.
The orthogonal projection onto C is unknown, but the alternating orthogonal projection onto the sets

C, = {K c Rc,,lxc,,mxhxw . HK _ KO”?J < b},
Co = {K € RewXCounxhXw . Tin(ghp) < s}, (41)
CS — {K c RCirlXCnlerth . Kijkl —=0fork > kh;j > kw} ,

still defines a projection onto C C R¢» X cauXFknxFkw considered as subset of R% X uXPXw Tmportantly,
all three orthogonal projections are known. The projection onto C; is due to [30]. The projection onto
C, requires a singular value decomposition of M, i.e., the hwe;, X hwc,,, matrix corresponding to
the linear map ¢ . As this matrix can be quite large, this is infeasible in practice. However, [40]
show that for strides 14, due to the particular structure of convolutions, it suffices to compute the
singular value decomposition of hw matrices of size ¢, X ¢,y Still, the computation of the projection
onto Cs is the bottleneck of the training procedure in Section 4. The orthogonal projection onto Cs,
which is a plane, is realized by setting the corresponding coordinates to zero.

Another approach is to use radial projections. Given o € R% and a norm ||-||, the radial projection
of o onto the ||-||-ball B(r,y, ||-||) of radius r centered at y , is defined as

r
Trag = To — 1>(woy)llm_ o (42)
< o =9l ol

Such a projection is called radial, as it translates the point x( in radial direction w.r.t. the ball
B(r,y,]|"]|) such that it lands on the boundary (if it is not already in B(r,y, ||-]|))-

Notably, C; and Cq are both balls, one with respect to the (2, 1) group norm, the other with respect to
the spectral norm of the matrix M associated to K. Importantly, the spectral norm can be easily
estimated by the power method for convolutional layers [15, 27], so radial projections have far less
computational overhead. However, alternating radial projections are not guaranteed® to converge to a
point in the intersection C. Furthermore, by definition, we have ||z — Zrd|ly > || — Torml|5, SO We
expect radial projections to yield inferior results (w.r.t. the constraint strengths that can be enforced).

We evaluated three different approaches to obtain models with constrained capacity: (1) training
with a variant of projected gradient descent, where we perform one alternating orthogonal projection
step after every 15th SGD update; (2) performing one alternating radial projection step after every
SGD update®; (3) orthogonal projection onto C of an already trained unconstrained model, using 100
iterations of Dykstra’s algorithm. Our findings are summarized in Fig. 7. We see that, alternating
orthogonal projections during training allow for the strongest constraints, without a drop in the testing
accuracy. This is expected, because they divert the weights less from the training trajectory than
radial projections. By the same logic it is obvious that projecting only at the end of training is not
feasible, as the weights of the trained network are already too far away from the constraint set. We
conclude that alternating orthogonal projections allow for the best estimate of excess capacity.

B.3 Comparison between constrained and unconstrained models beyond testing error

So far, we have analyzed to which extent the weights of neural networks can be constrained without a
loss of testing accuracy. In particular, we have identified the maximal constraint strength (i.e., the
operating point) such that the testing error of the constrained models is on a par with the one of
unconstrained models. However, this does not imply that constrained models and unconstrained ones
can be used interchangeably, as they might differ in other aspects. In this section, we will study how
pronounced such differences are with respect to (i) biases to particular classes, (ii) susceptibility to
adversarial attacks, and (iii) compressibility in terms of the number of weights (via weight pruning).

For the evaluation, we use 25 unconstrained and 25 constrained models trained on CIFAR100, with
the same architecture and optimization hyperparameters as listed in the main text, i.e., Section 4. As
constraint strength, we choose a layer-wise Lipschitz constant of 0.8 and a distance constraint of 70.

“Extensions to strides >1 are not straightforward but seem possible.

Sempirically, we still observed convergence

SThe increased projection frequency is possible because of the reduced computational overhead of radial
projections compared to orthogonal projections.
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Figure 7: Comparison of different projection techniques for ResNet18 models trained on CIFAR10. Best-viewed
in color.
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Figure 8: Prediction frequencies per class index on the testing portion of CIFAR100, averaged over the
predictions of 25 constrained and 25 unconstrained (vanilla) ResNet18 models. Best-viewed in color.

B.3.1 Biases to particular classes

For each of the 50 models, we counted how often each class is predicted on the testing data, which
consists of 100 images per class. If there are no biases to particular classes, the counts should
be distributed around this value with preferably small spread. Fig. 8 visualizes the results. We
immediately see, that for the unconstrained models, the predictions per class are more uniformly
distributed with the average class close to 100 and small standard deviations. In contrast, for the
constrained models, the standard deviations are much larger. Most striking is the peak at class index
21, indicating that the constrained models are indeed biased to this particular class (chimpanzee). In
fact, only one of the 25 models predicted this class less than 100 times. Notably, the unconstrained
models are also biased towards this class, as the error region of (mean =+ standard deviation) does not
contain 100. Overall, there are more favored/disfavored classes for the unconstrained models (32 vs.
only 5 for the constrained models), but for the constrained models, the biases are more pronounced.

B.3.2 Susceptibility to adversarial attacks

We tested several adversarial attacks (FGSM, FGM, L2PGD, LinfPGD, L2DeepFool,
L2AdditiveGaussianNoise, L2AdditiveUniformNoise, L2ContrastReduction, GaussianBlur) using
the foolbox [39] Python package. To compare constrained vs. unconstrained models, we extract
1024 images from the testing data, which are correctly classified by all 50 models (25 constrained
models, 25 unconstrained models) on which the attacks are evaluated. The fraction of correctly
classified images for increasing attack strengths is visualized in Fig. 9. As can be seen from the
figure, constrained models are less susceptible to the gradient-based attacks FGSM, FGM, L2PGD,
and LinfPGD. For L2DeepFool, contrast reduction (L2ContrastReductionAttack) and Gaussian blur
(GaussianBlurAttack), constrained and unconstrained models are equally affected. To our surprise,
the constrained models more vulnerable to additive Gaussian and uniform noise.
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Figure 9: Results of running several adversarial attacks against constrained and unconstrained ResNet18 models
on CIFAR100 across varying attack strengths (x-axis). Each solid line represents one trained model, the dashed
lines represent the medians. The y-axis shows the fraction of correctly classified images that remain correct as

attack strength increases. Best-viewed in color.

33



B.3.3 Compressibility via weight pruning

We measure compressibility for global (unstructured) [; weight pruning. This simple prun-
ing technique identifies a predefined fraction of a model’s parameters (i.e., elements of the
weight tensors/matrices) and sets them to zero. No subsequent fine-tuning steps were performed.

As illustrated in Fig. 10, unconstrained models are
less affected by this pruning technique than con-
strained models. Yet, constrained models can still
be pruned, and, in the range of pruning strengths
0 to 0.15, the median testing accuracy drops only
marginally for both model types. Only at larger prun-
ing strengths do differences between the model types
become visible. If we consider a median testing ac-
curacy of 46%, resp. 45%, to be acceptable, then this
threshold allows for pruning 20%, resp. 30%, of the
weights of constrained models and 30%, resp 40%,
of the unconstrained models. Of course, the pruned
models might not satisfy the constraints anymore. In
particular, the distance constraint gets violated, as
with increasing constraint strength, the distance to
initialization converges to the norm of the initializa-
tion. Typically, the latter is already larger than the
distance constraint (of 70). Thus, when combining

Figure 10: Results of global (unstructured) [y
weight pruning on 25 constrained and 25 uncon-
strained ResNet18 models. Each solid line repre-
sents one trained model. Best-viewed in color.

norm constraints with weight pruning, constraining the distance with respect to the zero weight
appears to be more sensible. This can be done, as the distance constraint in Theorem 3.5 is not
required to be with respect to the initialization; it can be chosen relative to any reference weight as
long as the reference weight does not depend on the training data.

B.4 Hardware resources

All experiments were run on an Ubuntu Linux 20.04.4 LTS system with 128 GB of main memory, an
Intel®Core™ i9-10980XE processor and two NVIDIA GeForce RTX 3090 graphics cards (24 GB
memory, CUDA 11.4, driver version 470.129.06). All models are implemented in Pytorch (v1.10).
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C Proofs

In the following sections, we present proofs for the theoretical results listed in the manuscript as well
as additional supplementary results.

C.1 Preliminaries
In terms of notation, we consider spaces F of functions f: (X, ||-|| ) = (¥, [|-[|;)) between normed

spaces. We write
1S (1) — fl2)lly

erasex |1 — T2l

Lip(f) =

and
Lip(F) = sup Lip(f)
feF
for the Lipschitz constant of f and the supremal Lipschitz constant of F, respectively. For the
remainder of the section, all function spaces F will have bounded Lipschitz constants Lip(F) < oc.
Such function spaces are vector spaces, where addition and scalar multiplication are defined pointwise
via the vector space structure on ), i.e., (f + g): = — f(z) + g(z) and (af): z — af(x).

We equip F with a data-dependent norm, defined below.

Definition C.1. Let F be a space of functions f : (X, ||-[| x) — (I, [|-||;,) between normed spaces.
The data-dependent norm, denoted as ||-|| , on F restricted to X = (z1...,z,) € A", ie., F|x,is

defined as
I£llx = | D@ - (43)
i=1

Remark C.2. This norm is a seminorm on 7 and a norm on F|x = {fl(z,,...z,} : f € F}. If
f € Fhasnorm || f|| = 0, then it holds that Vi : f(z;) = 0. Thus, f is the zero element in F|x,
but not necessarily the zero element in F, as there might exist v € X' \ {z1,...,x,} with f(v) # 0.

Two fundamental properties concerning compositions of functions are worth pointing out:

[fogllx =Ifllgx) — and  [[fog—fohlly <Lip(f)llg—hlx - (@4

Further, we recall the definition of covering numbers.

Definition C.3. Let (X, ||-||) be a normed space, S C H and € > 0. We call any subset U C S
an internal e-cover of S if for every s € S there exists u € U such that ||s — u|| < e. The internal
covering number N'™(H,, ¢, ||-||) is the cardinality of the smallest internal e-cover of S, i.e.,

NS, e, ||-||) = min ({|U] : Uis an internal e-cover of S}) (45)

Dropping the requirement U C S, we analogously define external e-covers U C H and external
covering numbers N (S, ¢, ||-]|).

In the manuscript, if not stated otherwise, covers will always be internal and covering numbers will
be denoted as N = N,

Internal and external covering numbers are related via the following chain of inequalities:
NS e |-l < NS e (1) < NS /2, - (46)

The first inequality follows directly from the definition of covering numbers; the second one follows
from the triangle inequality. Furthermore, for any subset 7" C S, it holds that

N, e, ||-) S NS, e ||-]]) - (47)

Notably, this is not true for internal coverings. For example, the unit ball in R? defines an internal
cover of itself, whereas an annulus cannot be covered internally with only one ball of radius 1.
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C.2 Single-layer covering number bounds

This section contains the covering number bounds for single convolutional layers. For simplicity, we
will first present the special case of the single-layer covering number bound for 1D convolutions
with one channel, stride 1, odd kernel size and input size preserving (zero) padding. The proof of the
general case then follows along the same line of arguments, but is more tedious, due to the additional
notation and subindices.

Let X = (z1,...,2,) € X" withz, € X = R”. Further, let K € R¥, with k odd, be a convolutional
kernel and ¢ : R” — R” the corresponding convolutional map, which is defined coordinate-wise as

k—l

(K () Z KoZisalivaciin - (48)

k-1
Pl

a=—

For the norm of the data X, we write

(49)

Our covering number bounds hinge on the seminal Maurey sparsification lemma. We state one variant,
see [3, Lemma A.6].

Lemma C.4 (Maurey sparsification lemma) Fix a Hilbert space H with norm ||-||. Let U € H
be given with representation U = Zz La;V; where V; € H, a € RS S0\ {0} and Z || < 1.
Then, for any positive integer m, there exists a choice of non-negative integers (my, ..., mg) with

>, mi = m, such that
2
< = HllaX 1Vi]1? (50)

.....

Uf—Zml f

Theorem C.5 (Single-layer covering number bound — Simple 1D variant). Let b > 0, k odd and
let F = {¢r| K € R*,||K||, < b} be the set of 1D convolutions determined by kernels K € R*
with ||K||, < b. Forany X = (z1,...,2,) € X" = R"" and ¢ > 0, the covering number
N(F, ¢, ||l ) satisfies

log N (F, e, |-x) < P' I w log(2k) (51)

g N'(F, e, |1l ) < (2k—1)10g< P' I bQD . (52)

Proof. We rewrite the coordinate-wise definition of the 1D convolutional operation from Eq. (48)
with unit stride as

and

E—1
5 h

:Z Z Lj=ai Ka xJ—ZMijxj-

i=1 \a=_kz1 j=1

:J\{[ij

Thus, convolution is a linear map parametrized by a matrix M € R"*" with entries

k=1
2
= Z Licari K
a=—k=1

In particular, we can write M = Zg:_lzf_l)m KQM(O“) with Mi(;’) = 1,_;—, and note that for

every v € R" and every o, we have

|| < jal
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For example, if h = 5 and k£ = 3, we have

Ky K 0 0 0
K—l Ko Kl 0 0
M= 0 K, Ky K& 0|,
0 0 K., Ko K
0 0 0 K. Kp
000 00 10 0 0 O 01 0 00
10 0 00 010 00 001 0O
MEY =10 10 0 of, MP=f0o 0 1 0 0], MV=]0 0 0 1 0
0 01 00 00010 0 00 01
000 10 0 00 01 000 0O
In summary, we have
(k—1)/2 (k—1)/2 K
— (@) — Zapapa)
¢r(x)= Y K MWz= Y beaa;.
a=—(k—1)/2 a=—(k—1)/2
By assumption, we have ) |%| = @ < 1 and so we can instantiate Maurey’s
sparsification lemma (Lemma C.4) on the Hilbert space (F|x,|-||y) for {Vi,...Vaq} =
{:U = £OM g o =1, ... ,d} C F. As a consequence, for any convolutional kernel X € R* and
any m € N, there exist (mq, ..., magq) with Zfil m,; = m such that
1 & o
2
- = Vil <= 1% -
’(bK m;mz‘é = oo max Vil

Thus, for fixed € > 0, if we choose m € N such that L max; HVZH?( < €2, then the solutions (in m;),

m

2d
of .7, m; = m, define an e-cover

L 2d
— Vil mi € Nxo, i = F .
{mZm | m; € N> Zm m}C

i=1 i=1

As the number of non-negative 2d-tuples that add up to m is equal to’
2d—1
Ny = ("1

2d -1
this means that F has an e-cover of cardinality at most N (m, d), and so N'(F ¢, ||-|| ) < N(m,d).

Since for all i € {1,...,2d}, the norms HVZHi( satisfy

2 o) S a) . |12 S 2 2
IVille = [Jpar || =02 37 |z <6 37 s = 02 1
j=1 j=1

— [
we can choose N> m = | —5—|.

The theorem then follows from two particular bounds on N (m, d), see Lemma C.24. These are

m+2d—1
< m
(P <o,

which implies Eq. (51), and

m—+2d—1
2d — 1

which implies Eq. (52). O

) < (14m)*=t,

"This number equals the number of possibilities to separate m objects by 2d — 1 delimiters. This corresponds
to choosing 2d — 1 elements (position of delimiters) from a set of m + 2d — 1 elements (objects + delimiters).
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Remark C.6. The definition of the convolution operation in Eq. (48) corresponds to convolutional
layers with zero-padding, such that the dimensionality & of the data remains unchanged (i.e., input-
size preserving). The covering bound equally holds for other types of padding, corresponding to
other matrices M (%), as long as

2] < =

for all x. In particular, it holds for convolutional layers with circular padding, where the matrices
M () become permutation matrices.

Next, we study the general case of 2D multi-channel convolutions with strides. To that end, let ¢ x be

the map determined by a weight tensor K & R x¢n>knxkw where c,,,, ¢;; denote the number of

output and input channels, resp., and (k, k., ) is the spatial extension of the kernel. For input images

z € RoXw convolution ¢ (s, s,) : RO¥MXW — Rewx[h/snlxTw/swl with strides (s, s, is

defined coordinate-wise as
T e B el

D5, (sns50) (@) = D Z > Korij Trtts, (ue1)+itsn (r—1)+ (33)

r=1,_|_ kh =ty o kus)

“Lgsn(u=1)+ic,h) Lidsn (v—1)+j€[1,0]

Theorem C.7 (Single-layer covering number bound — General case). Let b > 0. Define the class
of (sn, 8w )-strided 2D convolutions parametrized by tensors K € RCu*cn>xknxFw ypigh W =
CoutCinknkw parameters and (2,1) group norm ||K||2’1 <bas

F = {¢K7(sh,sw) | K e RCmﬂXCkath‘w’ HKH2,1 < b} .

Then, for any X = (x1,...,2,) € RW@XhXW gnd ¢ > 0, the covering number N (F e, ||| )
satisfies

log N (F. e, ||| ) < P' "5 } log(2WW) (54)

2192
log N (F, e, || x) < (2W —1)log (1 + ’V||Xe||2b-‘> . (55)

Remark C.8. Recall that convolution with kernel size 1 and input size 1 is a linear map on the input
channels, determined by the matrix M = K..11. In this situation, the convolutional layer reduces to
a fully-connected layer and our first bound reduces to [3, Lemma 3.2].

and

Proof. The proof is quite similar to the one of the special case in Theorem C.5. Recall, that
the convolution operation is defined coordinate-wise in Eq. (53). Using identities of the form

Licq1,...n} = D1y Li=s, we write

[¢K,(sh,sw) ((E)]o',u,z/ -

kh 1 Lkw 1J

Cin Cout  Cin
Z szaﬁ'y ZZ Z Z Kprv] p= a a= TI]-,G 1+sp (p— 1)+z]]-'y 1484 (r—1)+j
a=1p=1~vy=1 p=1r=1, =|- kh 1jj = kw ka1 | (M, 7)]a6w

and condense this into

k 1 kq 1
h — J L w

Cin w Cour  Cin 2
e o =333 0 | Z Z S K MERIE
a=1p=1v=1 p=1lr=1, kh_lJ]'*L ’Cw—lj

=M

Cin w

= Z > Tapy MG

a=1p=1~vy=1
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Thus, the convolution is a multilinear map Ré»</xw _y Renx[h/snlx[w/sw] parametrized by

kp—1 ko —1
con cn L5 [F—]

1555 DD SRS DR ST

p=lr=1;_| ka—t | _kuol|

kp— kyw—1
Cou i LB) [F—]

S8 T T i) ()

p=1r= 1 L kh, ijt kw lJ

Since
kfl )
X
e D S

o L Lkw g Cin 2 /. 1/2
||XHbZ Z ) <Z|Kpm'j2> (Z || )
r=1

kh—lJ |- kw Byl

=[x

1 Cout

B |kl g, 1/2
ST (Sier)

P=lim| -t == Bt
||K||271 (by assumption)
-y = b

we can instantiate Maurey’s sparsification lemma (Lemma C.4) on the Hilbert space (F|x, ||-|| ) for

X1 o

M (P7553)
1% ]

pe{l,....cou},m €{1... ¢},
e {5 )
re{l-E

As a consequence, for any convolutional kernel K € Réu>cnxknxkw and any m € N, there exist
(mq, ..., mow) with 2123/1 m; = m such that

‘ ¢K (ShsSw)) Zmz i

Thus, for fixed € > 0, if we choose m € N such that - max; [|V; ||§{ < €2, then the solutions in m;
2W
of Y7} m; = m, define an e-cover

1 2W 2W
{ Zle|mz € Nxo, Zmz—m} CF. (56)

= =1

{V1,---,V2W}:{i

<
b'e

1 2
— max |Vill%

As the number of non-negative 2W -tuples which add up to m, denoted as N (m, W), is equal to

m+2W1)

N(m’W)( oW — 1

this means that F has an e-cover of cardinality at most N (m, W); thus, N'(F ¢, ||-|| ) < N(m, W).
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In order to compute the norms HV1H§(, we use that for all (p, 7,4, J) € [Cou) X [cin] X [kn] X [kw] and
for all z € Renxhxw it holds that

HM(W”'J)xHQ = 3 (M) g2
g,V

Cin

- (S g

o,u,v \a=1p=1v=1

Cin

Z ZZZIP ola=rlg=14s), (u-1)+ily=1+s, (v—1)+jTasy

o,y \a=1pa=1~v=1

= Z (ﬂpzaxr,1+sh(ufl)+i,1+sw (1/71)+j)2

O, L,V
[h/sn] Tw/sw]

= Z Z (x’r',l-‘rsh(u—1)+i,1+sw(u—1)+j)2

p=1 v=1
h w
2
= Z Z (zrﬂ’y) ]l,BE(l+i) mod sj, ]]-wE(l—i-j) mod sy,
B=1~=1

2 2
(@rpy)” = [l |

M=
M=

Il
-

B
Thus, forany ¢ € {1,...,2W},

1y

XU i || XTI 8 )
||‘/t||2 = Hj: DtsTt50t,7t H Pt Ttybe,Jt ka
* X | x X P e Z
_ Xy 2
< ||2Z|| xR

and we can choose N > m = [%7)2(“2—‘ to get an e-cover of F via Eq. (56).

The theorem then follows from two particular bounds on N (m, W) = (m+2W*1). These are

2W—1
m—+2W —1

< (2w)™
("o ") =ew

which implies Eq. (54), and

m+2W —1 oW —1
< =+

which implies Eq. (55); see Lemma C.24 for details. O
Remark C.9. In the proof, we bound

h w h w
ZZ 2r5y)* Lg=(14+9) mod s Iy=(143) mod 50 < D D (Trg)’
B=1~=1

ﬁ:l ~y=1

Under additional assumptions on the data X this result might be improved as, on average, one expects

h  w
Z Z wrﬂ'y ]lﬁz(1+i) mod sp ]l'yE(lJrj) mod sy <
B=1~=1

HXH b?

which would reduce the terms in the bounds by the factor 1/(sp,5.).
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C.3 Whole-network covering number bounds (general form)

In order to prove covering number bounds for residual networks, we utilize the following basic obser-
vation: a residual network is a composition of residual blocks and each residual block corresponds to
addition of two (compositions of) functions on the same input (one of them is typically the identity
function). Thus, if we know the covering numbers of compositions and additions, we can derive
whole-network covering number bounds in an inductive way.

Importantly, the derived covering bounds hold for a broad class of network architectures, including

the special cases of non-residual and residual networks.

C.3.1 Covering number bounds for compositions and summations

Given normed spaces (X, ||-| ,) and function spaces F; and G; of functions X; — X1, we present
covering number bounds for the following derived function spaces:

Comp(F1,...,Fr) ={fro---o fi| fi € Fi} (57)
Sum(F;, Gi) = {fi + 9i| fi € Fi,9i € Gi} (58)

Lemma C.10 (Compositions). Fori € {1,2,3}, let (X}, ||| 5,) be normed spaces and let F; be

classes of functions X; — X1 with Lip(F;) < oo. Then, for any €1,63 > 0 and any X =
(z1,...,2n) € AT, the covering number of the class Comp(Fi, F2) is bounded by

N (Comp(F1, F2), Lip(Fo)er + ea, [l x) < N(Fren, |-l x) <fSUJI__) N <f2a€2a ||'||f(X))> (59
SV

If Fo = {f2} is a singleton, then
N(Comp(Fy, F2), Lip(F2)er, [ x) < N(Fren [Illy) - (60)
Remark C.11. There is an analogous result which holds for external covering numbers, i.e.,
N (Comp(F1, F2), Lip(Fa)er + €2, [l )
< N ) ( sup N (e ||~f(X))> D
[ X=X

Notably, in this case, the supremum is taken over all f: X7 — X5. However, this form is unusable
for deriving the whole-network covering number bounds in Section C.4 as we want to handle the
supremum via an assumption on the Lipschitz constant of the layer.

Proof. Fix €1, > 0. Let Uz, C F; be a minimal e;-cover of (Fi, ||| i), i.e., card(Ur,) =
N (Fi,e1, |||l x)- For any covering element v € Ur,, let Ur,(v) C F, be a minimal ex-cover of
(F2s [ lo(x))» L& card (U, (v)) = N(F2, €2, [ llyx) -

Denote ¢z = Lip(F2). We will show that
Ucomp(r,72) = 1w’ ov|v € Ur,, w” € Ur,(v)} C Comp(F1, Fa)

defines an (e;¢2 + €2)-cover of (Comp(Fi, Fa), ||-|| i), i.e., forany fi € Fy and any fo € Fo, there
exist v € Ur, and w¥ € U, (v) such that

lfao fi —w'ov|ly < coer +ea .

Indeed, since Uz, is an e;-cover of (F1, ||| ), we can choose v € Ur, such that [|f1 — v x <
€1, and, since Ur, (v) is an ex-cover of (F, |||, (x)), we can choose w” € Uz, (v) such that

Hf2 - wUHU(X) S €9. ThuS,

[f2ofi —w’ovllx =[[(fao fi — faov)+ (faov—w"ov)|x
<fzofi—foovlx +llfa0v—w’onv|x
< Lip(f2) [l f1 —vllx +[1f2 — w"lo(x)
<261 F €2,
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where the second inequality follows from Eq. (44). Therefore,
N (Comp(Fi1, Fa), cae1 + €a, || ) < card (Ucomp(F, 7))
= card ({w’ ov|v € Ur,, W’ € Ur,(v)})

= 3 card U, (v)

’UEZ/(]:l
< ( sup card (U]:Q(v))> Z 1
vEUF, vEUF,

= ( sup card (Z/l]:2 (’U))> card(Ur,)

vEUF,

*

< ( sup card (U, (f))) card (Ur,)

feF1

—~
N

< (SUP N(~7:2>62a||'||f(X)>>N(flaﬁlv|'||X) :

fer
For (x), we used that Uz, C JFi is an internal cover.

The special case of Fo = {f2} being a singleton is obvious, as we can choose Uz, (v) = {f2} for
every v € Ur,. Then, for every fo € F» and every w” € Ux,(v), it holds that card(Uz,(v)) = 1

and || f2 — w;'”v(x) =0.

O

Lemma C.12 (Summations). Let (X, ||-|| ) and (I, |-||y) be normed spaces and let F, G be classes

of functions X — Y. Then, for each er,eg > 0 and each X = (x;,...,x,) € X", the covering
number of the class Sum(F, G) is bounded by
N(Sum(f7g>76f + €g, ””X) < N(.F, €F, ||'||X)N(g7697 HHX) . (62)
If G = {g} is a singleton, then
NSum(F,G), ex, L) = N(F,er |-l x) - (63)
Proof. Fix er,eg > 0. Let Ur C F be a minimal ex-cover of (F, ||-||y) and let s C G be a

Il x
minimal eg-cover of (G, ||| ). i.e., N(F, ex, ||| ) = card(Ur) and N'(G, g, ||-|| ) = card(Ug).
We will show that
Usum(r,g) = {v +w|v eUr, w e Ug} C Sum(F,G)

defines an (e + eg)-cover of (Sum(F,G), |||l x ), i.e., for every f € F and every g € G, there exist
v € Ur and w € Ug such that

I(f+9) = (w+w)lx <erteg .
Indeed, since U is an e z-cover of (F, ||-|| i), we can choose v € Uz such that || f — v||y < er and
since Ug is an eg-cover of (G, ||-|| ), we can choose w € Ug such that ||g — w]|| < €g. Then,

I(f +9) = (v +w)lx = [I(f =v) + (g —w)llx
<N = vllx +llg —wlix
Serte .
Therefore, we have
N (Sum(F,G),er + g, ||-lx) < card (Usum(r.g))

= card ({v + w|v € Ur, w € Ug})

< card(Ur) card(Ug)

= N(F,er 1IN (G €, ]l x) -

The special case of G = {g} being a singleton is obvious, as we can choose Ug = {g}. Then
Usum(r,g) = {v+glveUr} is a cover of Sum(F,G) with cardinality card(Usum(r,g)) =
card(Ur) and radius er.
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Identify structure

I 7] BEOEE |ff| L
& @ L []
e T Fib
Fib

Bound covering numbers

Figure 11: Schematic illustration of how to obtain whole-network covering number bounds by first identifying
a way to write the network via summations and compositions, and then iteratively applying the respective
inequalities. The function classes are systematically denoted by words with characters a and b. Starting with F
at the very right, we always add a character when replacing a function class by its building blocks.

Now that we know how to bound the covering numbers of compositions and summations, we can
iteratively derive covering number bounds for all function classes obtained from these two operations.

C.3.2 General strategy for bounding the covering numbers of complex classes

Let F be a function class whose covering number is unknown to us. If F can be built iteratively by
compositions and summations of function classes with known covering number (bounds), then we
can derive covering number bounds for F via the following strategy. In a first step, we identify the
structure of F, i.e., how it is built from compositions and summations. In a second step, starting with
F, we iteratively replace each function class by its simpler building blocks and the covering number
of F by the respective bound.

To be more specific, we know by Lemma C.10 and Lemma C.12 that for F = Comp(F,, Fp), it
holds that

N(F, Lip(Fo)er, + €7, Il x) S N(Farer, - x) (fsg N(Fv, €7, ||'||f(X))>

and for 7 = Sum(Fg, Fp), it holds that
N(fv €F, T €Fys ””X) < '/\/‘(’F(l’efa’ ”'HX)N(fb’E}-zﬂ

lx) -

Now, if (for z = a or x = b) some class F, is of the form F, = Comp(Fyq, Fup) OF Fp =
Sum(Fyq, Fzb), we bound the right-hand side of the equations above by the same argument. We
repeat this procedure until the right-hand side contains only terms of known covering number bounds.
For an illustration of this stepwise process, see Fig. 11.

C.3.3 Examples

Example C.1 (Multi-composition). Let (X1, [|-[|,), -, (XL, |||y, ) be normed spaces. Let F;

be classes of functions X; — X;11 with bounded Lipschitz constants, i.e., Lip(F;) < co. Denote
—F; = Comp(Fi,...,F;_1). Then, for any ¢; > 0 and any finite X = (x1,...,z,) € X", the
covering number of the class 7 = Comp(Fy, ..., Fr) is bounded by

L L L
. Leara(rF;)>1
N<]:a E ( | I Llp(ﬂ)) 6i]lcaurd(.7--i)>la ||||X> S | I ‘SU;P.FN(FVMEM ||H’¢L(X))

i=1 \I=i+1 i=1%i
(64)
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Proof. We have
L L
N <]:72 ( H Llp(]:l)> 6i]lcard(./":i)>17 |||X>

i=1 \l=i+1

= N(Comp(ﬁfL,}"L),

-1/ L-1
Llp fL <Z ( H Llp(ﬂ)) 6i:l]-card(.)":l)>1> + 6LILcard(.7:L)>17 ”X)

i=1 \l=i+1

L-1 / L—1
<N—<H}—L7 Z ( L1p(]:l)> €ilcard(F)> 15 I° ||X>

i=1 \l=i+1

Leara(Fp)>1
. sup N (Fp,er, |, )
(LDLG FL Yo (X)

S...

Leara(F;)>1
<H sup_ A (Fivets g, )

e F
Here, we used Lemma C.10 with e~ 7, = Z (Hl i1 Llp(]:l)) Leard(Fi)>1 O
Remark C.13. We want to point out that Example C.1 implies the whole-network covering bound

as in [3, Lemma A.7]. To see this, let X; = R%, X; = (z;,,...,%;, ) € R%*" and let o; be fixed
pi-Lipschitz functions. Further, let A; be sets of matrices A € R%+1%9i_ Then, the maps

i (Fi={oio Al Ae A} |lllx,) = R,
g; O A O'Z(AXZ)

define isometries, because

l[1i(oi o A)||z22 = |los(AX5) ||122

= lloa(Azi,)|”
k=1

= > ll(os 0 A) ()|
k=1

2
= [loi o All,

(65)

Consequently,

N(Fi, pici, I x,) = N (i(F2), paeas [I]];,)
= N{oi(AX:)| A € Ai},pici [I,)

NHAX;| A e A} e |IFll,)

IN

which are the factors on the right hand side of [3, Lemma A.7].
Example C.2 (Addition block). Let F be the function class of addition blocks, i.e.,
F =Sum(G,H) ,
where G = Comp(Gi, . ..,Gr,) and H = Comp(H, ..., Hr,, ). For brevity, we write

~G; = Comp(Gy,...,Gi—1) ,
_>Hi = Comp(’Hl, ce ,,Hifl) .
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The covering number of a block F = Sum(G, H) is bounded by

Lg
(f Z < H Llp gl >€g7 card(G;)>1 T

=1 \l=i+1

Ly H Lg Lcard(g;)>1
Z ( H Lip Hl)) €H,; ]]-card(H )>1s || ”X) (H sup N <gz;€g7 | |¢;(X))>
i=1 \l=i+1 Ppe~
Leara(w;)>1
(H sup N(Hue%a | |1/;(X))>

i3 lw
(66)
Proof. From Lemma C.12, we know that
N(F,eg + e Il x) NG eq, [ x) N (H e, |1l x)
holds for every eg > 0 and e3; > 0. Choosing
Lg
€g = Z < H Llp gl ) Egl card(G;)>1
i=1 \l=i+1
and
Ly
n= < [T Lip(H) ) e Leard(m)>1 >
i=1 \l=i+1
and bounding each factor on the right-hand side via Example C.1 yields Eq. (66). O

Example C.3 (Residual network). In the setting of Example C.1, let the function classes F; be
residual blocks
Fi = Sum(Gs, Hs)
where
Gi = Comp(Gir, ..., Girg,) and H; = Comp(Hir, ..., HiLy,) -

Assume, that Lip(G;; ), Lip(#;;) < oo and that input data X is given. For brevity, we write

ﬁgij = Comp(gih cees gi,jfl)

“Hij = Comp(Hit, ..., Hij-1)

~F; = Comp(F1,...,Fi-1) -

The covering number of the residual network, 7 = Comp(Fy, ..., L), is bounded by
N(‘Fv €F, HHX) <

L L; Leard(g;;)>1
HH sup N(gijvegij7H.|wij(X))
i1 =1 hij €
Comp(~ F;,” Gij) (67)
L L; Teard(;5)>1
H H sup N (Hija €y ||| wij(X)) ’
i=1j=1 Yis € .
Comp(~ Fi, 7 Hij)
where
L L
er=> ( 11 Lip(ﬁ))ef,
i=1 \l=i+1
with
Lg, Lg; L, -
er, = Z H L1p glk €g,, ]lcard(gij)>1 + Z H Lip(?—lik) €M, ]lcal‘d(Hij)>1 .
= k=i j=1 \k=j+1
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Proof. Assuming card(F;) > 1, we apply Example C.1 to F = Comp(Fy, ..., Fy) to obtain

L L L
i=1 \l=i+1 i=1 Vi€ i
Bounding the covering number of each block F; via Example C.2 yields Eq. (67). O

C.3.4 Covering number bounds for concatenations

The general approach to bounding covering numbers of function classes, obtained from linking simple
function classes via summations and compositions, can be easily extended. As an example, we can
incorporate concatenations, as typically used in DenseNets [22], via the following lemma.

Lemma C.14 (Concatenations). Let (X, ||| ) be a normed space and let (Y, ||-||y,) = (R, l1Il,,)
and (Z, |-l z) = (R*=,|||[,,). Let F,G be classes of functions X — Y, resp. X — Z. Define the
function class Cat(F,G) of concatenations X — Y x Z as

Cat(F,G) ={(f,9) :x— (f(x).9(x)) | fEF, g€ G} . (68)

Ifwe equip Y x Z = R with the 5 norm, then
N(Cat(]:vg)a\/637+€éa||'||X)SN(‘F76}'7H'HX)N(gveg’H'HX) . (69)
Proof. Fix er,eg > 0. Let U C F be a minimal e z-cover of (F, ||-||y) and let g C G be a

X
minimal eg-cover of (G, ||-|| ), i.e., N(F, ez, ||| x) = card(Ur) and N (G, eg, ||-|| x ) = card(Ug).
We will show that

ucat(].-yg) = {(v,w)| v €Ur, we Ug} C Cat(F1,Fz)

defines an /€3 + eg-cover of (Cat(F,G),||-[|,,), i.e., forevery f € F and every g € G, there exist

v € Ur and w € Ug such that
1(£.9) — (vw)llx < /e + e .

Indeed, since U is an e z-cover of (F, ||-|| i), we can choose v such that || f — v|| y < e and since
Ug is an eg-cover of (G, ||-|| ), we can choose w such that ||g — w||y < eg. Then

\E

1(f,9) = (v, @)% = D II(f 9) (i) — (v, w) (@)l

i=1

©
I

[
NE

I(f = v.g = w)(@:)ll,

1

s I

(ICF = o) @I, + (g — w)(@))I7,)  (Pythagorean thm.)

i=1
2 2
If = olx +1lg —wlx

2 2
6]:"‘Eg 5

IA

Therefore,

N(Cat(F,G), /e + €&, I x) < card(Ucar(7,g))
= card ({(v,w)| v € Ur, w € Ug})
= card(Ur) card(Ug)
= N(F,er xIN (G €g, ]l x) -
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C.4 Whole-network covering number bounds (convolutional & fully-connected)

In order to compute covering number bounds for specific residual network architectures, we need
to specify the function classes G; and H;. We will present exemplary proofs for a simple residual
network with fixed shortcuts (Theorem C.15, which corresponds to Theorem 3.4 in the main text)
and the ResNet18 architecture [20] without batch normalization, see Example C.4.

C.4.1 Bounds for residual networks

Theorem C.15 (Covering numbers for residual networks). Fori = 1,..., Lletj = 1,...,L;,
845 > 0 and b;; > 0. Further, let F be the class of residual networks of the form
f=orLofLo---o0i0f1, (70)

with o; fixed p;-Lipschitz functions satisfying 0;(0) = 0, and f; residual blocks with fixed shortcuts
gi, L.e.,
firgi+(oir, 0 fir,0---00i0 fa) , (71)

where 0;; are fixed p;;-Lipschitz functions with 0;;(0) = 0 and g, is Lipschitz with g;(0) = 0.

The fully-connected or convolutional layers f;; € layer,; are parametrized by matrices A;; or weight
tensors Kij, respectively. They satisfy Lipschitz constant constraints s;; and (2,1) group norm
distance constraints b;; w.r.t. reference weights M;;. That is, for convolutions

layer;; = {¢KU Lip(¢k,;) < sijs |55 — Mijlly, < bij}
and for fully-connected layers

layerij = {¢ LT = Aijx | Llp(¢) S 5ij7 HA;; — MZ—; |271 S blj}
Upon letting W;; denote the number of parameters of each layer and defining

L L;
X [L.2, pirsik by
Cij = Cy(X) = 27” H (H 510[) el

\/ﬁ =1 S4 Sij
L L;
L=) L, W=maxWy , s =Lip(g:)+ [[risi ,
i=1 Y j=1
it holds that
3
2 2/3 n
log N (F, e, [|1) < log2w) | - [e2°] | [5] 72
i=1j=1
and
L L; ~ n
log N'(Foe [llx) <D " 2Wi;log (1 +[22¢2] Lﬂ) . (73)
i=1j=1

Proof. As we consider residual networks with fixed shortcuts, the covering number bound from
Example C.3 simplifies to

L
NIFED

K2

L Ly [ L,
(H Lipm))Z TT Lin(Han) | eIl
1 \i=it1 j=1 \k=j+1
L;
<11 s N (Hig e, |
i=1 =1 Yis €
Comp (™ Fy, 7 Hij)

bij (X))
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Hi; = Comp(layer,;, {oi;}) with Lip(H;;) <

In our setting, F; = {o; o f;} with Lip(F;) < p;s;,
= Lyj As covering numbers decrease with the radlus it

pijsij. Further, eHZ = p;j€ij and LH”
follows that

L L;
N ]—'72 ( S101 Z ( H SikPik | Pij€ijs I HX
) l=i+1 j=1

i=1 =j+1
L L
<1I swp W (tayery i g x))
i=15=1 Yij €

Comp(~ F,,Hlayerij)

Now, for each 7j referring to convolutional layers, we have

N (layerija €ij ||| zpij(x))
=N ({0, | Lin(ox,,) < sigs 1Koy = Migllpy < bis f il x) )
= N ({ém, = onn, | Lin(or,) < sigo 1K = Miglly, < bis focig Iy, )

=N ({¢KU—MU | Lip(¢xc,;) < sijs [|K5 — Milly, < bij }76ij7 I

wu(X>>

In this chain of equalities, we used the translation invariance of covering numbers, i.e., Lemma C.12
with one summand being the singleton {—¢ M;; }, and the linearity of ¢ in the weights to accommodate
the distance to initialization. An analogous inequality holds for fully-connected layers.

Theorem C.7 provides bounds for the covering number of the superset
{(bKU—M” | (155 — Myl < bij}

Hence, to proceed, we need to transition to external covering numbers, which requires halving the
radius e. This yields

N (layerl—j, €, ||'HW(X))

< N ({61 -aa, | Lin(6i,) < s 1Ky = Miglly < bis} i, ox0)
Eq. (46) ext . €ij
N ({qﬁmrz\/[u Lip(¢k,;) < sij, [|Kij — Mijlly, < by } g x))
Eq( 7 " €ij
N <{¢Kij—M1-j 1Ky — Mijllyy < bij} i wij(X)>
Eq. (46) €ij
< N ({¢Ki_j—A4ij ||K7«.7 - Min2,1 < b”} ) ’” wa(X)) ’ (74)

Thus, by Eq. (5§4), it holds that

L L L; L;
log N/ J-',Z(H zpz)Z [T sipin | pizeis -l x
i=1 \l=1 =1 \k=j+1
L L
<>y sup log(2Wi) M
i=1 j=1 Vi€ &
Comp(~ Fi, ' layer, ;)
L L 2 /i-1 2(,2.
<log(2W) ) 4 x| (HSzPl) <Hslkplk> f
i=1 j=1 k=1 i

Notably, the second inequality requires the assumption that all g;, f;;, o; and 0;; map zero to zero.
The next step is to choose radii €;; so that the right-hand side becomes small under the condition that

L L L [ Li
Z < H SlPZ)Z H SikpPik | Pij€ij =€ - (75)

i=1 \l=i+1 j=1 \k=j+1
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We choose
€ Qij Y
L L; an. B
(Hl:i+1 slpl> (Hk:j+1 Sikpik> i > Otk CHy
which would be optimal for the analogous optimization problem without ceiling functions. Then,

IOgN(]:’Ga ”HX)

(76)

6,‘]‘ =

2
L L L 2 (HL Si1.0s ) 2 2 Ly 2
k=1 SikPik b ||X||
< log(2W) Z Z 4 <H Slpl> 2 o) a2 2 Z Qg
1=1

i=1 j=1

LoL . 2 (HLi S ) 2/3 L L ;2/3\ 2
k=1 SikPik HX” blk
< log(2W) Z Z 4 <H Szpz) 2 52/3 ) Z 2/3
i=1 j=1

=1 i ij 1=1 k=1 Sik
2/37\ 3
L L; L Li o
SN (TLEsspe) b, n
<log(2W) | Y 2= []sun | ——=+ [—21
i=1 j=1 Vi =1 5i 8ij €
3
L L, "
= log(2W) Z [ 2/3—‘ [6—2—‘ ,
i=1 j=1

which establishes the first covering number bound, i.e., Eq. (72), from Theorem C.15.
Similarly, Eq. (55) implies

log N/ Z

i=1

L L i1 2 /i1 252,
SR I (rm) (Hp) g

=1 k=1 ij

L L; L;
(H Szpz)Z H SikPik pij€ijaH'||X

l=i+1 j=1 \k=j+1

Again, we need to choose the ¢;; such that Eq. (75) holds. We choose
€ Q44
(Hf:m sw;) (Hﬁ;jﬂ Smpm) pij 2tk Ok

This simple choice yields the optimal solution for the problem of minimizing

2 (1rie1 2 (rj—1 2,

X (T2 i) (2L o) ¥

> log 2
ij

€ij = with Q5 = 1. (77)

ij
Hence, we expect it to be a good choice if the W;; are roughly equal and € is small. Overall, we get

2
L 2<HLi S ) 2 2
_ k=1 5ikPik ) b2 || X
2W;jlog | 1+ [4L? (Hslpl> . TJH |
1

—1 S; Sij €

L L
log NV (F,e, |l x) < ZZ
L L; _ n
ZZQW“ log (1 + [L*CE) [E—QD ;
i=1 j=1

which establishes the second covering number bound, i.e., Eq. (73), from Theorem C.15. O
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Corollary C.16 (Covering numbers for non-residual networks). Fori € {1,..., L}, let layer; be a
Sfunction class with Lipschitz constraint s; and (2, 1) group norm distance constraint b; with respect
to a reference weight M;. In particular, if layer; is convolutional, then

layer, = {éxc | Lin(¢c) < si, 1K — Millo, < bi}
and if layer; is fully-connected, then
layer, = {QS rx = Ay | Lip(o) < s, [|[Ai — Milly, < bi}

We write W; for the number of parameters of each layer, i.e., the number of elements of each K;, resp.
A;. Further, let F = {o o fpo---0071 0 f1 | fi € layer;}, where the maps o; are p;-Lipschitz
with 0;(0) = 0, and define

111 (- b
CZ-:Ci(X):2W lesl 5 W = max W, . (78)
=1 i ‘

Then, for every input data X = (x1,...,x,) and every € > 0, it holds that

3
log N (F, ¢, ||-ll ) < log(2W) (ZL: [Cf/BD L%W (79)

=1

and
L

log N'(F.e, [ x) < 3 2Wi log (1+ [c2] L%D . (80)

i=1

Proof. Follows directly from Theorem C.15, as the network can be considered as a single (long)
residual block, whose shortcut g : = +— 0 is the zero map.

Remark C.17. Similarly, we can derive covering number bounds for networks, where each

block F; is a sum of w; parametrized maps, ie., F; = Sum(G1,...,Giw,), With G;; =
Comp(layer,;, oij1, - - -, layer;; Ly OijLas ). In this setting, the whole-network covering number is
bounded by
3
L wi L?] n
/3
log N (F, e, ||l ) < log(2W) ZZZ[ LM Lﬂ 81)
i=1 j=1 k=1
and
L w; Lij
n
log N (F. e, |l ) ZZZ Wijx log (1+ (2202, [?D (82)
i=1 j=1 k=1
for
ijmSijm bz i
C’ij _ 4” || <HS p> m= 1pJ J Jk ZZLU , (83)
Sijk
=1 j=1

w; ij . .
where s; = ijl (Hk:]1 sijkpijk), pijt = Lip(oijx) and s, b;jx are constraints on the layers

layer ijk

C.4.2 Application to specific architectures

Example C.4 (ResNet18). We derive covering number bounds for the ResNet18 architecture [20]
without batch normalization, illustrated in Fig. 12. We can think of the ResNet18 as a composition
of 10 residual blocks, the first and last one having the zero map as shortcut and five blocks having
identity shortcuts. The remaining 3 blocks have downsampling shortcuts of the form o o), where v is
a 1x1 convolution and p is the ReLU activation function. These blocks are handled by Remark C.17.
Furthermore, all nonlinearities are 1-Lipschitz and map zero to zero.

For any data X = (z1,...2,) and any € > 0, the covering number of the function class F
corresponding to the ResNet18 architecture without batch normalization, with no bias parameters and
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Prediction

] ] M ]

Figure 12: ResNet18 [20] architecture without batch normalization.

with distance and Lipschitz constrained layers, is approximately (ignoring ceiling functions) bounded
by

s
log N, 6, [1x) S 41 log(217)
2 2
2

87 H (14 $41842) H (Si,down + Si1842) 5%

i€{2,3,5,7,9} i€{4,6,8}

2/3 2/3 2/3 2/3
et > ol (e )
5] S10 ie{2,3,5,7,9} (1+ si15i2) Si1 i2

2/3 2/3 2/3\ 1°
1 bi,down bil big
> 7 (e e ) |

A e 2/3
s 518
i€{4,6,8) (84 down + 8i15:2) idown il 82

Here s;1, resp s;2, denotes the Lipschitz constraint on the first, resp. second, layer in the ¢-th residual

block and s; gown the constraint on the downsampling layer (1x1 convolution). The (2,1)-distance
constraints are denoted by b;1, b;2 and b; gown-

C.5 Rademacher complexity & Generalization bounds

The empirical Rademacher complexity can be upper bounded via Dudley’s entropy integral. In the
following, we restate a variant of this standard result as it appears in Bartlett et al. [3].

Theorem C.18 (Dudley entropy integral, cf. [3, Lemma A.5]). Let F be a class of functions mapping
to [0, 1] containing the zero function. Then

iy (F) < inf [ -L 12 ﬁ\/lo NE el e d
1m R —_— € . €
X = o<t<ym \/ﬁ n J, g ’ &y X

We will compute Dudley’s entropy integral for the covering number bounds from Section C.4.

Theorem C.19 (Empirical Rademacher complexity for residual networks). Fori = 1,...,L let
j=1,...,L; 855 > 0and b;; > 0. Further, let F be the class of residual networks of the form
f=opofrLo---0010f1, (84)

with o; fixed p;-Lipschitz functions satisfying c;(0) = 0, and with f; residual blocks with identity
shortcuts, i.e.,

fi :Id+(aiLi o fir, o---00;1 0 fi1) , (85)
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where 0;; are fixed p;j-Lipschitz functions with 0;;(0) = 0 and f;; are convolutional or fully-
connected layers. The layers f;; satisfy Lipschitz constraints Lip(fi;) < s;; and the corresponding
weight tensors K;j, respectively weight matrices A;j, satisfy distance constraints

HK” - K H <bi; , respectively HAij - AE?>H2,1 <bij ,

with respect to reference weights K i(j ), respectively Ai 5

Upon letting W;; denote the number of parameters of each layer and defining

N L 4X [T, pinsi by
Cytx) = 0y = 2120 (HL (Fo )me
) ij

L
_:ZLi’ W =maxW;; ,
, ij

the empirical Rademacher complexity of the function class F.,, with margin parameter v > 0, satisfies

3/2
'L

() < o+ ot logail) (o3 fe (86)

=1 i=j

and

Rx (F) < =) EL 3 2Wi; | 1 (1+ [PC’?D +¢ 34 v 3 1+1/ﬁ202] 0
* ~ i=1 j=1 A “ 2’ ¢ 2’ i
(87)

Here, H,_1 =Y ", ! L denotes the (n — 1)-th harmonic number and {(s,q) = > n"_, (q+n)5 the

Hurwitz zeta functlon.

Remark C.20. The harmonic number satisfies H,,—1 < log(n) 4+ v & log(n) + 0.58. The function
Y x> ¢ (%, 1) /3 ¢ (%, 1+ 1/:E)2/3 is monotonically increasing with ¢/(0) = 0 and upper
bounded by ( (%) ~ 2.62. So, for large C = max; C‘ij, the second summand is negligible and

Eq. (87) scales as \/ W log(L2C?). Here, W = > _i; Wij denotes the number of network parameters.

Proof. Both inequalities follow from a combination of Dudley’s entropy integral with a covering
number bound from Theorem C.15.

Since £.,(—M(-,-)) is a fixed 2/~-Lipschitz function, the covering number of F., can be bounded as
in Corollary C.16 with

?

- 41X (& b
Ci(X) = Cy(x) = 2 17 (H msl> X 58)
=1

To prove Eq. (86), we insert Eq. (72) into Dudley’s entropy integral, which yields

3/2
L L
5 _ At 12 N T2/ /ﬁ NG
R < f — 4+ —+/log(2W C: —| d
X(]:)_Oéltréﬁ \/ﬁ+ - og(2W) ;:1 j:j if -‘ t . €
L L; 3/2 1
4¢ - ~2/3 / ’71—‘
= inf — + log(2W C;/ —| ds
o<t<vm | VN V/n (2w) ;jzl[ 7-‘ NAK
3/2

|
o
LB
AFh
o
B~
~
4
—~
@]
o}
Py
©
=
=
—
(O}
SR
@
—_
—
E—|
W | =
_ 1
(oW
)
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The value of the integral is a harmonic number if 1/¢ € N, as then

1y t=1 1/m 1 1/t-1 1 1 1/t-1 1
AP S S RIS oY COLES PR S
/t H 2:‘1 1/(m+1) | 8 mZ‘l m  m+1 mzzlm

Choosing ¢t = 1/n, establishes the inequality in Eq. (86).

To prove Eq. (87), we first observe that, by Jensen’s inequality, it holds that
L[ oeNF ) W T os N F e 1)
— log N (F,e, || de < —/ log N (F,e, || de
Vv Jo X Vv Jo X

1 Vn
- / log N (F €, || ) de
n 0

and thus

12 4, | [V
Rx(F) < ;n log N (F e, ||-|| ) de .
0
Then, recalling Eq. (73), i.e.,

log N(Fy e, 1) < D 2Wilog (1+ [ 2263 [ 5] )
ij
yields

N
| e N e ) de
0
v FeA2 | [T
<oy [ (14 [2263] [4]) ae
ij
! 72 A2 1

_ \/5;2%]»/0 log (1+ {L Cij] LQD ds

Lemma C.25 o~ 3 1/3 3 e~ 2/3
NI <log (1 + {LZCZT@D + ¢ (2, 1) ¢ (2, 1+ 1/[L20i2j—‘>
ij
The last inequality follows from Lemma C.25 (proof deferred to Section C.6). Overall, this implies

< 2, 23S0, (s (14 3] ¢ (31) (o] )

i=1 j=1

which establishes the inequality in Eq. (87). O

Corollary C.21. Let v > 0 and let C; = 2C; /7. For non-residual networks as specified in
Corollary C.16, the empirical Rademacher complexity of F., satisfies

L 3/2
Rx (F,) < %+ 125%*1 log(2WW) <Zl (@f / BD (89)
and
X 12 | & - 3 \'% /3 1\ ?
R (F) < ﬁ\l;QWi <log (1+[z2¢2]) +c<2,1> g(2,1+1/[L2q2D ) .

(90)
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For the sake of completeness, we state the generalization bounds that result from the Rademacher
complexity bounds for networks with a priori constrained weights.

Theorem C.22. Fori =1,...,Lletj =1,...,L; s;5 > 0and b;; > 0. Let F be the class of
residual networks of the form
f=opofro---o010f ©n
with o; fixed p;-Lipschitz functions satisfying o;(0) = 0, and with f; residual blocks with identity
shortcuts, i.e.,
fi :ld+(oir, © fir, 0=~ 00 o fi) , 92)
where o;; are fixed p;;-Lipschitz functions with 0;;(0) = 0 and f;; are convolutional or fully-
connected layers whose weight tensors K;j, resp. weight matrices A;j, satisfy the distance constraints

o 0
CR T

)

ij

with respect to reference weights K Z.(j(.)), resp. AEJQ), and the Lipschitz constraints Lip(f;;) < s;;.

Let W;; denote the number of parameters of each layer and define

A A 4 ||XH Hﬁil PikSik bij
Cij(X)=0Cy = Lip —__=
! ]‘_‘[ Lip(F;) sy

E:ZLi , W = maxW;; .
ij

Then, for fixed margin parameter v > 0, every network f € F satisfies

3/2
L L; 2
H, IOg(f)
<P /3 1 5
P[ztl“:glma;(f( )i £y <R, () + = +24\/10g ;;[ —‘ N +3 o
93)
and
P[a_rg max f(@)i # y]
< 7%(f)
L L 3 \/3 /3 o 2/3
+ =23y <log (1 n [L?CQD e (2,1> ¢ (2,1 n 1/[L2C%D )
1=1 i=3
ol )
2n
94)
with probability of at least 1 — § over an i.i.d. draw ((x1,y1), .., (Tn,Yn))-
Proof. Recall Lemma 3.1, i.e.,
. . log(2)
Plarg max f(a); 7 9] < Ry (f) + 2Rs(F,) + 3| 5.2 | (95)
where
Fy=A(z,y) = L, (-M(f(x),y)) : f € F} . (96)

Bounding the empirical Rademacher complexity Rg (F) via Theorem C.19 proves the theorem. [

Remark C.23. By a union bound argument over the constraint sets and the margin parameter, the
generalization bound above can be transformed to a generalization bound which depends directly on
the norms of the network weights and the Lipschitz constants instead of a priori constraints, see for
example [3, Lemma A.9]. Furthermore, Lipschitz augmentation [43] allows to replace the product of
Lipschitz constants by empirical equivalents, i.e., norms of activations and norms of Jacobians.
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C.6 Calculations

This section contains postponed calculations.
Lemma C.24 (used in Theorem C.5 and Theorem C.7). For any n € N, it holds that
k
(”Z ) < min ((k+1)", (n+ 1)¥) 97)
Proof. To prove the first inequality, note that

n

. k
<n+k> _ (AR (kD) (ntk) :Hk%gﬂ(kﬂ):(kﬂ)’l :

Similarly,
n+k\ (k) (atD)--(ntk) frati_ T .
- = = < 1) = 1L
< k ) k!n! 1k 1;[1 ; _E(n+ )=(Mm+1)

Lemma C.25 (used in Theorem C.19). For any o > 0, it holds that

1 1/3 2/3
/ log (14—04[12—‘) dsglog(1+a)+4<3,1) <<3’1+o¢> (98)
0 5 2 2"«

Proof. The function

Lo (s) log (1+a Ll?D = f: L1 o (s)log (14 a(m+1))

Vvm+1’/m

is piecewise constant and so its integral is defined as

/Ollog <1+a leD ds = A}iinoomzj\i:llog(l—ka(m—kl)) (\/lm — m1+1>

For any M € N, the partial sums are

Mo
- log (14 a(m + 1
D (i~ ey st alm+ 1)
Mo Moo
:mz::lﬁlog(l—|—oz(m—|—1))—mz::1 m+1log(l+a(m+1))
Mo M1
:Z—log(l—i—a(m—i—l))— —log (1 + am)
m:l\/a m:2\/ﬁ
M M
1 1 log (1 4+ a(M +1))
= —log(1+a(m+1)) — ——log (1 4+ am) +log (1 + ) —
mzzjl\/ﬁ g(1+a(m+1)) ;\/ﬁ g ( ) + log (1 + ) T
M
1 1+a(m+1) log (1 4+ a(M +1))
mz_l\/ﬁ()g< 1+ am )—i—og( +a) M+1
M
1 log (1 + a(M +1))
= —1 14— log (1 — .
m_1m0g< +1/a+m>+og( +e) M1
Since lim ;00 % = 0 for every a > 0, we conclude

! 1 =1 1
/Olog<1+osz—D ds:;mlog(l+w>+log(l+a) : (99)
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: 1
Since m

g (14 ) = > BV (7as m)k .

k=1
Inserting this into the series from above and exchanging the order of summation, we get
| 1 (DTS 1 1
—=1 14— | = AN - -
S (1 ) "X T S Gt
This is an alternating convergent series in k, so its first summand
1/3 2/3
S (5 (S et
= Vmlja+m =\ £~ m?/2 = (1/a+m)3/?
=((3/2.1)/%¢(3/2,1 + 1/a)*/®

(using Holder inequality) already provides an upper bound, i.e.,

/01 log (1 + « [512-‘) ds <log(1+ a) +¢(3/2, 1)1/3<(3/27 14 1/a)2/3 .
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€ (0,1) for any @ > 0 and m € N, the logarithm is given by the Mercator series
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