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ABSTRACT

The increasing capabilities of large generative models and their ever more
widespread deployment have raised concerns about their reliability, safety, and
potential misuse. To address these issues, recent works have proposed to con-
trol model generation by steering model activations in order to effectively induce
or prevent the emergence of concepts or behaviors in the generated output. In
this paper we introduce Activation Transport (ACT), a general framework to steer
activations guided by optimal transport theory that generalizes many previous
activation-steering works. ACT is modality-agnostic and provides fine-grained
control over the model behavior with negligible computational overhead, while
minimally impacting model abilities. We experimentally show the effectiveness
and versatility of our approach by addressing key challenges in large language
models (LLMs) and text-to-image diffusion models (T2Is). For LLMs, we show
that ACT can effectively mitigate toxicity, induce arbitrary concepts, and increase
their truthfulness. In T2Is, we show how ACT enables fine-grained style control
and concept negation.
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Once upon a time, there was an old man who lived in the forest. He had no family and he spent his days alone col-
lecting mushrooms for food to survive on.
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Once upon a time, there was an amazing woman named Sarah. She had the most beautiful smile and kindest heart
you could ever imagine! Sarah loved to play soccer with her friends on Saturday mornings at 9am sharp every week.
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Once upon a time, the only way to watch football was on TV. The game of soccer had been played in England since
1863 and by the early twentieth century it became one of Britain’s most popular sports.
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Figure 1: Linear-ACT unlocks interpretable controllability for both LLMs and Diffusion, of-
fering explicit control over the strength of conditioning, via a parameter λ between 0 (no transport)
and 1 (full transport).

∗Equal contribution.
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1 INTRODUCTION

Pre-trained Generative Models (GMs) typically undergo an additional fine-tuning phase to better
align them to a desired behavior. For example, Large Language Models (LLMs) are aligned via
instruction fine-tuning (Wei et al.) or RLHF (Ouyang et al., 2022). Although less extensively, these
strategies have also been applied to Text-to-Image (T2I) models (Wallace et al., 2024; Yang et al.,
2024). However, as the number of parameters grows, alignment approaches can become challenging
from a computational and memory perspective (Houlsby et al., 2019). In addition, these strategies
modify the model’s internal mechanisms, realigning its parameters by leveraging new data, which
can have the undesired side effect of impacting the utility of the model on other metrics (Kotha et al.,
2024; Luo et al., 2023), such as 0-shot evaluation or question-answering.

The increasing cost of fine-tuning has motivated research in inference-time interventions on pre-
trained models that offer a better understanding of features (Geiger et al., 2024) or to control specific
behaviors (Suau et al., 2022; Rimsky et al., 2023; Zou et al., 2023; Li et al., 2024). Since these mod-
ifications are typically sparse and/or low-dimensional, they can be estimated using a few hundreds
of sentences (Suau et al., 2024; Turner et al., 2023). For example, Rimsky et al. (2023); Li et al.
(2024) shift activations by a constant vector estimated with sets of desired and undesired data (e.g.,
non-toxic and toxic); or Suau et al. (2024) mitigate toxicity by dampening the activations of expert
neurons. While effective, existing methods do not preserve the activation distribution observed by
the model during training. Considering how brittle GMs can be (Huu-Tien et al., 2024; Sclar et al.,
2024), a constant shift can move activations out-of-distribution (OOD), which can lead to unwanted
behaviors, and hinder both the conditioning and the general model performance.

We propose Activation Transport (ACT), a framework to steer activations according to the optimal
transport (OT) map between two different (source and target) activation distributions, e.g., toxic to
non-toxic language, or between two different styles in T2I generation. ACT applies a set of univari-
ate maps on activations while preserving their target distributions, achieving better controllability
and robustness to the choice of model and layers intervened upon. Our main contributions are:

• A unifying interpretation of existing activation steering methods under the umbrella of OT, show-
ing that most existing methods are equivalent to a mean transport map (Section 3.3).

• Linear-ACT, an inference-time intervention1 based on OT that preserves internal activation dis-
tributions (Section 3.1). The degree of intervention can be controlled by a strength parameter
λ between 0 (no transport) and 1 (full transport), as shown in Figure 1. We also introduce the
transport support to prevent inducing OOD activations.

• We show that, without any hyperparameter tuning, Linear-ACT matches or outperforms existing
inference-time interventions when aiming to control LLMs for the tasks of toxicity mitigation,
concept induction, and increasing truthfulness.

• We find that off-the-shelf Linear-ACT is also effective at controlling T2I diffusion models for
the tasks of fine-grained style control and concept negation. Additionally, we adapt (Li et al.,
2024) (ITI) for T2I. To the best of our knowledge, this is the first work to apply an inference-time
intervention method that is simultaneously effective on both LLMs and Diffusion Models.

2 RELATED WORK

The growing capabilities and prevalence of GMs (Brown et al., 2020; Rombach et al., 2022), along
with the rising costs of fine-tuning and alignment, have driven research into controllability of GMs.

Controlling LLMs. ACTADD (Turner et al., 2023) uses a contrast prompt (one positive and one
negative example) to construct a shift vector. CAA (Rimsky et al., 2023) builds on ACTADD by
calculating the difference vectors for steering based on a dataset of contrast pairs (rather than a
single pair), adding the mean difference during inference time for steering. ITI-C (Li et al., 2024)
estimates the shift vector orthogonal to the hyperplane learnt by a binary linear classifier on two sets
of sentences, showing an increase of truthfulness on the TruthfulQA benchmark (Lin et al., 2021).
The same work proposes MassMean (ITI-M), with an additive vector computed as the difference
in means for both sets of sentences. With a different approach, AURA by Suau et al. (2024) damp-
ens activations proportionally to each neuron’s ability to classify toxic and non-toxic sentences,

1Code available at https://github.com/apple/ml-act
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effectively mitigating toxicity. REPE by Zou et al. (2023) proposes to compute steering vectors at
inference time based on prompt pairs. Wu et al. (2024) considers activations relationships using a
low-rank projection to exchange information with a counterfactual representation and Geiger et al.
(2024) consider rotations of subsets of features. Orthogonal to the works of activation steering,
Dekoninck et al. (2023) have proposed a language model arithmetic that can combine the outputs of
multiple models in a principled way to simulatenously control multiple concepts, however requiring
several (costly) inference passes on the LLM.

Controlling T2I Few works tackle aligment of T2I models. Wallace et al. (2024) align diffusion
models with reinforcement learning (RL) on human comparison data. Yang et al. (2024) remove the
need of a reward model to reduce computational overhead of RL. Other works focus on fine-tuning
to maximize a reward function (Clark et al., 2023) or consistency to reference images (Lee et al.,
2024). The literature on T2I diffusion model controllability is more extensive and it commonly
consists in training structure adapters (Mou et al., 2024; Jiang et al., 2024), style adapters (Stracke
et al., 2024; Ye et al., 2023; Zhao et al., 2024), or low-rank adapters (LoRAs) (Ruiz et al., 2023;
YEH et al., 2024; Gandikota et al., 2023; Stracke et al., 2024). Closer to our work are inference-
time interventions, which do not require backpropation through the model to train the conditioning
mechanisms. Diffusion steering methods are a family of inference-time interventions, which directly
modify the diffusion algorithm at test time for fine-grained control with additional prompts (Nair
et al., 2023; Brack et al., 2022). To the best of our knowledge, our work is the first to explore
inference-time interventions that are not specific to diffusion models and transfer across modalities.

3 TRANSPORTING NEURON ACTIVATIONS

We represent the activations of a GM given an input sentence x ∈ S as a tensor RM×L×K , where
M is the number of activations per layer (assumed constant w.l.o.g. for simplicity), L the number
of layers, and K the number of tokens decoded. We reduce each of the K values to only one using
an arbitrary pooling operator ϕ. From now on we write Z : S → RM×L for the map that turns a
sentence into a matrix of activations statistics, noting that Z incorporates ϕ-pooling.

We consider two probability distributions on sentences p and q. We view these sentences through the
lens of their aggregated activation matrices, i.e., we will examine probability distributions µ := Z♯p
and ν := Z♯q, where we have used the pushforward operator ♯. In practice, we have access to
samples x1, . . . ,xn ∼ p and y1, . . . ,yn ∼ q. For instance, in the case of toxicity mitigation, p
covers toxic sentences and q non-toxic ones. Input sentences xi and yi go through the model to
yield activation matrices ai := Z(xi) and bi = Z(yi), each seen as i.i.d. samples from µ and ν
respectively, resulting in n+ n observations of M ×L matrices. In that context, our goal is to learn
a transport map T : RM×L → RM×L from (ai, bi) that approximately pushes µ to ν, i.e., T♯µ ≈ ν.

3.1 LOW BUDGET ESTIMATORS FOR TRANSPORT MAPS

Since a modern GM can have millions of activations, an ideal transport estimator for T must be
easy to learn, cheap to store in memory, and blazing fast to evaluate to avoid overheads at inference
time. Additionally, because the estimation of OT maps is known to be plagued by the curse of
dimensionality (Chewi et al., 2024, Chap. 2), notable care must be taken to have map estimates that
generalize reasonably well. These issues are all compounded by the fact that our final method, as
presented in §3.2 builds on a composition of such OT maps (i.e. maps for a layer are estimated on
samples that are themselves obtained by using maps for a previous layer). For all these fundamental
reasons, we work our way from very simple map estimators, and follow Suau et al. (2024) to focus on
maps that factorize independently along each dimension (each activation). T is therefore described
as a collection of ML independent univariate maps, where each map indexed by m, l should ideally
map the marginal distribution of µ in that coordinate to that of ν. Recall that:

Proposition 3.1 (Univariate Transport Maps) (Santambrogio, 2015, Chap.2) Let ρ, τ ∈ P(R) be
two univariate distributions. For any submodular cost c : R×R→ R (i.e., such that ∂c/∂x∂y < 0),
the optimal transport map T that can transport ρ to τ is T ⋆ = Qτ ◦ Fρ, where Qτ and Fρ are
respectively the quantile function of τ and the cumulant density function (CDF) of ρ.
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Figure 2: Transport maps using different methods. For distri-
butions with σa = σb (left) all methods (except ACTADD) are
equivalent. When σa ̸= σb (right), vector-based methods (e.g.,
ACTADD, ITI-C, Mean-ACT) diverge from the map defined
by the samples. ACTADD shows a bias since it only uses one
sample pair. The linear estimator is robust to differences in σ.

Figure 3: Actual σa, σb for
toxic and non-toxic sentences
on Gemma2-2B, showing that
σa ̸= σb in real scenarios.

Estimating and storing all ML transport maps would therefore require dealing with as many quantile
and CDF functions. Unfortunately, parameterizing each of these could quickly become intractable,
which is why we scale down ambitions to simplify further our working hypothesis to only consider
affine transport maps. Each of the ML activations we consider results in two families of reals:
source (a1mℓ, . . . , a

n
mℓ) and targets (b1mℓ, . . . , b

n
mℓ). Simpifying notations, we drop mentions to m

and ℓ to focus on values A := (a1, . . . , an) and B := (b1, . . . , bn) each in Rn. We propose to
consider the simple proxy task of finding affine maps that push A to B efficiently. We present such
an affine map, denoted Linear-ACT, in Definition 3.1. Despite its simplicity, we show in Section 3.3
that many state-of-the-art methods boil down to even simpler approximations and heuristics.

Definition 3.1 (Linear-ACT) Given samples A = (a1, . . . , an) and B = (b1, . . . , bn) and a cost
function c : R× R→ R, the Linear-ACT map trained with these samples is defined as

T (a;A,B) := ωa+ β,

where ω, β are the minimizers of minω,β

∑
i c
(
b(i), ωa(i)+β

)
, and can be recovered in closed form

when c(a, b) := (a− b)2, as

ω =

∑
i ã

(i)b̃(i)∑
i(ã

(i))2
, β = mb − ωma,

where ma = 1
n

∑
i a

i,mb = 1
n

∑
i b

i are mean values, and superscripted values with (i) refer to
sorted values in increasing order, (a(1) ≤ · · · ≤ a(n)) and (b(1) ≤ · · · ≤ b(n)). Additionally,
ã(i) = a(i) −ma, b̃

(i) = b(i) −mb are sorted and recentered observations.

An important feature of Linear-ACT is that it can be composed with linear layers in the GM, re-
sulting in no computational overhead at inference time (see Appendix A for details). Note that the
expression in Linear-ACT should not be confused with the closed-form known when transporting
a Gaussian density with parameter (ma, σa) towards a second (mb, σb), which is known (Peyré &
Cuturi, 2019, Remark 2.31) to be T (a) = σb

σa
a+(mb− σb

σa
ma). Note that if one makes the additional

assumption that σa = σb, then the affine Gaussian map becomes a mean shift or translation, with
T (a) = a +mb −ma. We call this very simple baseline Mean-ACT and show in Section 3.3 that
several methods in the literature indeed propose versions of a mean shift strategy.

Figure 2 showcases the effect of different maps on toy data (iid, Gaussian). Note that methods based
on mean-shift (ACTADD, ITI-C, Mean-ACT) can strongly over or undershoot, mapping samples
out-of-distribution. Linear-ACT shows a good trade-off between in distribution mapping and low
computational budget. We note that activations in current GMs show mostly unimodal distributions,
but have different standard deviations for different behaviors as shown in Figure 3, making the linear
choice a suitable one. Note that multimodal distributions would result in non-linear transport maps,
which are beyond the scope of this work.
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Transport Support The map in Definition 3.1 is estimated using n pairs of samples. In practice,
n is in the order of hundreds, which results in a rough approximation of the true transport from µ to
ν. It is fair to assume that the transport error will be higher for input samples in the tail of µ, given
the scarcity of samples in that range. Because transporting OOD samples may lead to unexpected
behavior, and to be on the conservative side, we only transport new samples that are within the
osberved support Qo = [minA,maxA]. Using the support is important when µ is narrower than
ν (typically in a mitigation setup). Unless stated otherwise, we use Qo for concept mitigation and
Q∞ = (−∞,∞) for induction. Appendix E shows an empirical validation of this choice.

3.2 SEQUENTIAL ITERATIVE MAPS

While it might be possible to follow the template approach outlined in Section 3.1 to apply univariate
maps to each of the ML activations, this ignores the causal relationship across activations, where
activations produced by a layer are processed by the next one, i.e., am,ℓ+1 = fℓ(am,ℓ). Any
intervention at the level of a layer must therefore be factored in accordingly before creating the
intervention at the next one. To account for such causality, we estimate the transport maps for each
layer incrementally: we first estimate the transport for the first layer (in the model graph), then we
run inference again by applying the first layer map in order to estimate the map for the second layer,
and so on until all maps are estimated. A similar approach is adopted in Zou et al. (2023), and
detailed with our tools in Definition 3.2. In Appendix C we show that causal estimation achieves
more effective conditioning than a simultaneous estimation. In this work, we use causal estimation
for Mean-ACT and Linear-ACT.

Definition 3.2 (Affine Causal Transport Map) For m ≤ M and ℓ ≤ L, let Am :=
(a1

m,1, · · · ,an
m,1) and Bm := (b1m,1, · · · , bnm,1) denote n families of M activations for the first

layer. Starting with ℓ = 1, and setting

Cm,1 := Am,1, Dm,1 := Bm,1,

compute and store the 2M (ωm, βm) parameters of all M transport maps associated with these
activations using Definition 3.1:

∀m ≤M, ∀ℓ ≤ L, Tm,ℓ := T ( · ;Cm,ℓ, Dm,ℓ) : R→ R,

where observations C and D are refreshed recursively for each of their entries m ≤ M , as ℓ is
incremented,

C·,ℓ+1 := fℓ([Tm,ℓ(Cm,ℓ)]m) ,

D·,ℓ+1 := fℓ([Tm,ℓ(Dm,ℓ)]m) .

At inference time, given a sentence x, we run the recursion starting from the first activation vector
a = (am,1)m, looping for 1 ≤ ℓ ≤ L as a← fℓ([Tm,ℓ(am)]m.

Interpolation Between Measures Using Transport One can easily extend a transport map from
measure µ to ν to one that is able to output an interpolating measure. The idea, outlined by McCann
(1997), consists in defining the following λ-parameterized map from any OT map T ,

T (a, λ) = (1− λ)a+ λT (a), (1)

where λ ∈ [0, 1] and λ = 1 recovers the full transport. Conditioning GMs through OT allows the
user to precisely control the presence of a concept with a continuous and interpretable knob (λ)
during generation, not requiring expensive parameter search (Li et al., 2024) or being limited by
fixed, uncontrollable conditioning (Suau et al., 2024). In applications such as diffusion, where the
utility of the model is harder to assess, our interpretable strength is of key importance, as shown
in Section 5. Note that methods like ACTADD, CAA or ITI-C also have a conditioning strength
parameter. However, this parameter is applied as a multiplier of a conditioning bias as T (a, λ) =
a+ λβ (see Section 3.3), thus making λ unbounded, harder to interpret and not robust with respect
to different models, layers, and tasks.

3.3 GENERALIZATION OF PRIOR INFERENCE-TIME INTERVENTIONS WORK

In this section, we show how many earlier works can be interpreted as special cases of Linear-ACT.
Table 1 summarizes the intervention proposed by several recent methods, where we show that all
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Table 1: Comparison of different inference-time interventions in the literature. All methods listed
can be expressed as a specific form of a linear map. With ACT, the conditioning strength λ interpo-
lated between the activation a and its transformed version (following Equation (1)), while existing
methods use λ as a bias multiplier, thus becoming less interpretable and less robust to model/layer
changes. As a result, many methods require a grid-search to find the best layer to intervene upon.

Method Transport Parameters Support ϕ

Detzero (Suau et al., 2022) ωa+ β ω = 0, β = mb Any layer, a | AP(A,B) > ε max
ACTADD (Turner et al., 2023) ωa+ λβ ω = 1, β = a+ − a− Layer search last
CAA (Rimsky et al., 2023) ωa+ λβ ω = 1, β = mb −ma Layer search last
RePE (Zou et al., 2023) ωa+ λβ ω = 1, β = a+(x)− a−(x) Layer search last
AURA (Suau et al., 2024) ωa+ β ω = 1−Gini(A,B), β = 0 Any layer, a | AUROC(A,B) > 0.5 max
EAST (Rahn et al., 2024) ωa+ λβ ω = 1, β ≈ mb Layer search last
ITI-M (Li et al., 2024) ωa+ λβ ω = 1, β = mb −ma Attention head search last
ITI-C (Li et al., 2024) ωa+ λβ ω = 1, β = fCLS(A,B) Attention head search last

Mean-ACT, Section 3.1 (1− λ)a+ λ(ωa+ β) ω = 1, β = mb −ma Any layer, a ∈ Qo or Q∞ mean
Linear-ACT, Definition 3.1 (1− λ)a+ λ(ωa+ β) ω, β = argminω,β

∑
i(b

(i) − (ωa(i) + β))2 Any layer, a ∈ Qo or Q∞ mean

methods propose a form of linear transport, and all of them (aside from Suau et al. (2022)) add a
bias to the activations. The way this bias is pre-computed is what differentiates each method. Note
that the parameter λ typically multiplies the bias, thus becoming unbounded and non-interpretable.

ACT applies a linear transformation on activations that maximally preserves internal distributions
(Section 3.1, and distribution plots in Appendix F). Moreover, ACT interpolates between the current
and transformed activations, making λ bounded between [0, 1] and interpretable. An additional
aspect is that other methods propose various heuristics to choose the support, while ACT uses all
activations or the observed input range (Qo). Note that CAA, ITI-M and Mean-ACT use a difference
in means. We subsume this family of methods reporting results for Mean-ACT, which has the
additional advantage of an interpretable λ. An additional difference is that many methods use the
last token only (in pseudocode, ϕ(z) = z[. . . ,−1]). Detzero and AURA use max-pooling (ϕ(z) =
z.max(−1)) whileACT uses an average across tokens (ϕ(z) = z.mean(−1)), which we have found
to be more robust (see Appendix D).

4 EXPERIMENTS ON LLMS

We empirically verify the performance of ACT on pre-trained LLMs on toxicity mitigation (Sec-
tion 4.1), general concept induction (Section 4.2), and truthfulness induction in particular (Sec-
tion 4.3), showing the efficacy and robustness of ACT in different scenarios related to LLMs.

4.1 TOXICITY MITIGATION IN LLMS

It is known that LLMs are prone to generate toxic language (Wen et al., 2023), especially when
prompts are designed to elicit toxic behavior. In this section, we study how ACT is effective at toxic
language mitigation compared to some recents methods such as AURA, ACTADD and ITI-C, on
Gemma2-2B (Team et al., 2024) and Llama3-8B Dubey et al. (2024). To do so, we prompt each
LLM with 1000 randomly chosen prompts from RealToxicityPrompts (RTP) (Gehman et al., 2020),
known to induce toxic language generation. Then, we collect the generated continuation to each
prompt and we evaluate toxicity with a ROBERTA-based classifier2, as in Suau et al. (2024). In
addition, we also measure toxicity in a 0-shot manner by querying Llama3-8B-instruct as LLM-as-
a-judge (Zheng et al., 2023) (more details on Appendix H). As a measure of general LLM utility we
report in Table 2: (i) perplexity (PPL) on a fixed set of 20k Wikipedia sentences measured with the
intervened model, (ii) PPL of the generated sentences measured with Mistral-7B (Jiang et al., 2023)
and (iii) MMLU (Hendrycks et al., 2021) 5-shot accuracy using the intervened model. Besides, we
report generation diversity results in Appendix G.

Linear-ACT reduces toxicity up to 7.5× and is robust to λ, layer, and model choice We ob-
serve that Linear-ACT achieves up to 7.5× reduction in toxicity on Gemma2-2B and 4.3× on
Llama3-8B, with minimal impact on PPL and MMLU. Most importantly, ACT obtains the best
results at λ = 1, which is in line with our OT formulation, since λ = 1 means full transport.
Linear-ACT and Mean-ACT obtain similar toxicity mitigation results. ITI-C achieves 5.6× and

2https://huggingface.co/s-nlp/roberta_toxicity_classifier
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Table 2: Toxicity mitigation for Gemma2-2B and Llama3-8B, results over 5 runs. We intervene
upon different layer types (layer column) and show the best layer per method. ITI-C, ACTADD and
ACT have a strength parameter λ which we sweep. For each method, we report results for the λ that
attained the best CLS toxicity that incurs less than +1 increase in PPL Wikipedia. ACT methods
and provide best results for λ = 1, achieving up to 7.5× (Gemma2-2B) and 4.3× (Llama3-8B) CLS
toxicity mitigation with Linear-ACT. ITI-C is very sensitive to λ as well as layer choice (see full
results in Appendix J), and AURA reaches up to 3.1× reduction.

Layer Best λ CLS Tox. (%) ↓ 0-shot Tox. (%) ↓ PPL Wikipedia ↓ PPL Mistral-7B ↓ MMLU ↑
Original - - 4.17± 0.32 13.42± 1.08 13.98 6.68 53.1

ACTADD MLP 0.5 3.96± 0.24 (1.1×) 13.43± 1.42 14.69 (+0.72) 6.67 (+0.05) 53.0 (-0.1)
AURA MLP - 2.12± 0.27 (2.0×) 9.04± 0.66 14.18 (+0.21) 7.04 (+0.36) 53.0 (-0.1)
ITI-C Attention 8.0 0.74± 0.18 (5.6×) 5.36± 0.91 14.90 (+0.92) 7.44 (+0.76) 52.6 (-0.5)
Mean-ACT Post-LN 1.0 0.54± 0.44 (7.7×) 4.10± 0.41 14.21 (+0.23) 7.59 (+0.90) 51.6 (-1.5)
Linear-ACT Post-LN 1.0 0.56± 0.21 (7.5×) 4.14± 0.55 14.79 (+0.81) 7.99 (+1.31) 51.3 (-1.8)

Original - - 5.80 15.00 9.06 5.68 65.3

ACTADD Attention 0.3 5.57± 0.45 (1.0×) 15.73± 0.21 9.71 (+0.65) 5.85 (+0.16) 65.5 (+0.2)
AURA MLP - 1.90± 0.61 (3.1×) 8.12± 0.85 9.52 (+0.45) 6.05 (+0.37) 65.5 (+0.2)
ITI-C Attention 3.0 1.60± 0.22 (3.6×) 6.53± 0.66 9.48 (+0.42) 6.17 (+0.49) 64.7 (-0.6)
Mean-ACT Attention 1.0 1.38± 0.17 (4.2×) 5.60± 0.34 9.56 (+0.49) 6.36 (+0.68) 64.7 (-0.7)
Linear-ACT Attention 1.0 1.35± 0.39 (4.3×) 6.68± 0.81 9.56 (+0.49) 6.28 (+0.60) 64.5 (-0.8)
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3.6× toxicity reduction on Gemma2-2B and Llama3-8B respectively. In line with the ITI-C paper
findings, ITI-C performs well on attention, but is very sensitive to models and layers, as well as to
the choice of λ (see a layer diagram in Appendix B and full tables and plots in Appendix J). AURA
achieves 2.0× and 3.1× toxicity reduction per model and ACTADD induces the mildest mitigation.

4.2 INDUCING CONCEPTS IN LLMS WITH ACT
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Figure 4: Concept induction using ACT (post-LN layers) and ITI-C (attention layers) on Gemma2-
2B. We aggregate results over 7 WordNet concepts, generating 500 sentences at different interven-
tion strength levels. We report concept presence with LLM-as-a-judge (p(yes)), and the PPL of the
generated sentences using Mistral-7B. We plot the median (and 25/75 quantile band) across concepts
and generations per level, showing that Linear-ACT achieves a peak of concept induction at λ ≈ 1,
which is inline with our OT formulation. Other methods show different maxima.

ACT allows transporting activations from distribution µ to ν (derived from sentence distributions p
and q respectively). In an induction setting, p covers generic content, while q a specific concept that
we want to induce. We mine the OneSec dataset (Scarlini et al., 2019), collecting 700 sentences that
contain a specific concept (q) and 700 sentences randomly sampled from other concepts (p). We do
so for seven different concepts (football, cloud, baby, church, book, flower, balloon) and we estimate
an intervention for each of them. We assess the presence of a concept in the generated text in a LLM-
as-a-judge manner by querying Llama3-8B-instruct (LLM-as-a-judge details in Appendix I).

Linear-ACT can induce arbitrary concepts with consistent λ = 1 Figure 4 shows the effect of
increasing λ both on the presence of the concept, p(yes), and the PPL measured with Mistral-7B
on the generated text. We intervene upon the most effective layers for each method according to
the toxicity results: attention for ITI-C, and Post-LN for ACT. In general, we found that LN layers
were the most suited for ACT, across models and tasks. A naive explanation is that centering and
scaling activations keeps the source and target activation distributions within a reasonable range,
which makes the transport map more reliable. We do not include AURA because it is designed for
mitigation, and ACTADD gives lower performance on this task. For Linear-ACT, we observe a peak
of concept presence at λ ≈ 1, with a median p(yes) = 0.87 (i.e., 87% of the generated sentences

7



Published as a conference paper at ICLR 2025

Table 3: TruthfulQA results for Gemma2-2B and Llama3-8B, results over 5 runs. We intervene
upon different layers (layer column) and show the best per model. ITI-C, ACTADD and ACT have a
strength parameter λ which we sweep, reporting the best λ result per model (MC1 Accuracy so that
MMLU is within the best ACT MMLU ± 0.1).

Layer Best λ MC1 Accuracy (%) ↑ MC2 Accuracy (%) ↑ MMLU Accuracy (%) ↑
Original - - 21.05 32.80 53.10

ACTADD MLP 3.0 23.01± 0.00 (+1.96) 34.76± 0.00 (+1.96) 52.83± 0.00 (−0.27)
AURA MLP - 21.20± 0.10 (+0.15) 32.88± 0.22 (+0.08) 52.73± 0.07 (−0.37)
ITI-C MLP 2.0 24.53± 0.11 (+3.48) 37.06± 0.38 (+4.26) 51.39± 0.41 (−1.71)
Mean-ACT All-LN 1.0 25.07± 0.20 (+4.02) 38.68± 0.30 (+5.88) 51.81± 0.12 (−1.29)
Linear-ACT All-LN 1.0 26.00± 0.32 (+4.95) 40.17± 0.24 (+7.37) 51.47± 0.27 (−1.63)

Original - - 25.46 40.27 65.35

ACTADD Attention 0.7 26.19± 0.00 (+0.73) 40.88± 0.00 (+0.61) 65.42± 0.00 (+0.07)
AURA MLP - 25.34± 0.15 (−0.12) 40.47± 0.20 (+0.20) 65.37± 0.06 (+0.02)
ITI-C MLP 2.0 30.11± 0.60 (+4.65) 45.41± 0.24 (+5.14) 64.71± 0.14 (−0.64)
Mean-ACT All-LN 1.0 32.88± 0.54 (+7.42) 48.23± 0.64 (+7.96) 64.83± 0.14 (−0.52)
Linear-ACT All-LN 1.0 33.22± 0.22 (+7.76) 48.69± 0.34 (+8.42) 64.78± 0.15 (−0.57)

G
em

m
a2

-2
B

L
la

m
a3

-8
B

are classified as containing the induced concept) and an acceptable PPL = 8.5. For λ > 1, the
PPL quickly degrades and the presence of the concept diminishes. This is also consistent with the
toxicity mitigation experiments in Section 4.1. Interestingly, the peak for Mean-ACT is at λ ≈ 2.5,
also highlighting that Mean-ACT is a poorer approximation of the OT transport. Notably, ITI-C
achieves a similar p(yes) and PPL as Linear-ACT for λ ≈ 5. However, note that ITI-C’s best λ is
different than the ones for toxicity. Appendix K contains generation examples.

4.3 INDUCING TRUTHFULNESS IN LLMS WITH ACT

One particular concept that has gained attention in previous activation steering works is “truthful-
ness” (Li et al., 2024). We study how ACT can increase truthfulness on Gemma2-2B and Llama3-
8B, compared to the original model. Again, we compare to AURA, ACTADD and ITI-C. We evalu-
ate all methods on the TruthfulQA multiple choice part that has been used in prior work (Lin et al.,
2021; Li et al., 2024). We report both MC1 and MC2 of TruthfulQA, and control for overfitting on
the TruthfulQA task by also evaluating MMLU 5-shot accuracy (Hendrycks et al., 2021).

ACT can induce truthfulness with consistent λ = 1. The results of our experiments are summa-
rized in Table 3. As we can see, ACT can successfully induce truthfulness in both models in its
default setting λ = 1 (corresponding to full transport). Both Linear-ACT and Mean-ACT achieve
the best and second-best MC1 and MC2 accuracy improvements among all methods investigated.
Linear-ACT increases MC1 by roughly 5% for Gemma2-2B and by almost 8% for Llama3-8B,
which is about 1.5% and 3% more than the closest non-ACT baseline (ITI-C), while incurring even
slightly less decrease in MMLU performance. Full results and experimental setup in Appendix L.

5 CONTROLLING IMAGE DIFFUSION MODELS

In this section, we show that ACT improves the controllability of text-to-image diffusion models
(T2Is), a well-known challenge (Cao et al., 2024). We address two open problems in T2I generation:
fine-grained style control (Section 5.1) and concept negation (Section 5.2). We show that off-the-
shelf ACT succeeds at both tasks. In line with OT theory and LLM experiments (Section 4), ACT
consistently achieves the strongest conditioning with λ = 1. We also adapt ITI-C to the topology
of images by training it on the spatial average pooling of activations (as we do by default for ACT),
and applying it to each spatial position independently. Remarkably, ITI-C succeeds at fine-grained
control with our adaptation, but requires tuning λ, and it fails with concept negation.

Setup. We apply ACT on the denoising convolutional UNet of Stable Diffusion XL
(SDXL) (Podell et al.) and the denoising transformer of FLUX.1.Schnell3. For FLUX, we use
the T5-XXL text encoding modality (Raffel et al., 2020) instead of CLIP (Radford et al., 2017) to

3https://blackforestlabs.ai/announcing-black-forest-labs/
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0.0 0.4 0.6 0.8 1.0 2.0 best

0.0 0.4 0.6 0.8 1.0 1.0 best

0.0 0.4 0.6 0.8 1.0 1.0 best

0.0 0.4 0.6 0.8 1.0 1.0 best

0.0 0.4 0.6 0.8 1.0 1.0 best

0.0 0.4 0.6 0.8 1.0 1.0 best

Figure 5: Linear-ACT allows controlled conditioning of SDXL and FLUX. “A cat resting on a
laptop keyboard in a bedroom.” SDXL (left) and FLUX (right) intervened with ITI-C (top), Mean-
ACT (middle) and Linear-ACT (bottom) for the concept cyberpunk, with a λ strength in [0, 1]. The
image with the best λ (according to the highest 0-shot score in Figure 6) is shown right. Qualitatively,
Linear-ACT balances better a cyberpunk style increase with prompt semantics preservation.

account for the effects of language modelling. We use a distilled version of SDXL, which only re-
quires 4 diffusion steps (Lin et al., 2024) like FLUX. We intervene upon all normalization layers in
SDXL’s UNET and the output of most residual layers in FLUX (details in Appendix M.8). We only
show results for ACT and ITI-C since ACTADD is not applicable to images and AURA resulted in
noisy images. To measure the presence of a style or a concept, we use a CLIP zero-shot classifier
with the classes (+) “A picture of a {style or concept}” and (-) “A picture of something”.
We also track whether the content from the original prompt (with no style or concept modifiers) is
preserved using the CLIPScore (cosine similarity of CLIP embeddings, Hessel et al. (2021)) between
the images generated after the intervention and the original prompt.

5.1 STYLE CONTROL

A major challenge in T2I generation is fine-grained control. For example, while one can prompt
SDXL to create a sketch of an object, it is hard to control the level of “sketchiness”. Models such
as SDXL have a guidance parameter, but its use is limited since low guidance values tend to remove
image semantics (see example in Appendix M.1). To showcase the ability of ACT to achieve such a
fine-grained control, we sample 2048 prompts from the COCO Captions (Chen et al., 2015) training
set and append a series of tags generated with Llama-8B-instruct to induce the following styles:
anime, art nouveau, cyberpunk, impressionism, sketch, watercolor (see Table 15 for details). Then
we use the original prompt as the source distribution (p) and the style-modified prompt as the target
distribution (q) to learn transport maps for style. To evaluate, we sample 512 prompts from the
COCO Captions validation set and generate images with different intervention strengths.

Linear-ACT is a robust method for fine-grained control in text-to-image generation. Fig-
ure 6a shows that Linear-ACT on SDXL and FLUX increases the presence of a desired style, e.g.,
on SDXL from ∼ 12% to ∼ 95% of the generated images while keeping ∼ 80% of the similarity to
the original prompt (λ = 1). In accordance to the theory and experiments on LLMs, the maximum
conditioning (i.e., highest 0-shot score) for ACT is achieved at λ = 1 for both models. ITI-C
can also accomplish fine-grained control, but its best performance is achieved at different λs,
equal to 2 and 1 for SDXL and FLUX respectively, which is in turn not consistent with the best λ
found in LLM experiments. A closer look at images generated with ITI-C for best λ in Figure 5
and appendix M.3 reveals that ITI tends to exaggerate style traits while distorting the semantics.
This further highlights the reliability of ACT across different modalities, tasks, and models. While
quantitatively ACT and ITI-C perform well, we invite the reader to compare the quality of the
generated images and styles in Figures 1 and 5, and in more examples in Appendix M.3.

5.2 CONCEPT NEGATION

T2I diffusion models struggle with concept negation (Li et al.; Hwang et al., 2024) — recent models
such as Stable Diffusion (Rombach et al., 2022) and DALL-E 3 (Betker et al., 2023) are prone to
generate a pink elephant when instructed not to generate one. To improve controllability, some
models like SDXL include a negative prompt mechanism to remove concepts from the generated
images. However, we found that both SDXL (CLIP encoder + negative prompt) and FLUX (T5-
XXL encoder) still tend to generate unwanted concepts (see some examples in Appendix M.2).
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(b) Concept Negation

Figure 6: Style control (a) and concept negation (b) on SDXL and FLUX. Top row shows the
fraction of generated images classified (CLIP 0-shot) as containing a given concept or style. Bottom
row shows how much the intervened model deviates from the unmodified one in terms of ClipScore
between the image and the original unconditional prompt. Points inside the gray area represent
images that have lost their semantic content.

Figure 7: Concept Negation for “A plate of food with rice and beans, broccoli and meat. And a pink
elephant is missing.”. (a) Linear-ACT on SDXL with transport strength λ linearly increasing from
0 to 1. Note how the presence of the pink elephant is prominent for the original model (leftmost
image) and gradually disappears as λ increases.

We use the COCO Captions (Chen et al., 2015) training set to sample 2048 prompts used to gen-
erate the images. To create a source and target activation distribution to estimate ACT, we ask
Llama3-8B-instruct to generate a diverse set of prompt modifiers requiring the model to include the
following concepts: pink elephant, white bear, and gorilla. The exact phrasing of the modifiers is
provided in Table 16. We estimate our transport maps from the modified prompts (p, with concept)
to the unmodified prompts (q). To evaluate the model, we sample 512 captions the COCO Captions
validation set and ask Llama-3B-instruct to negate each of the modifiers used before (e.g., “without
a pink elephant”, “a gorilla cannot be seen anywhere”) to generate images with unintended concept
spillage such as the leftmost image in Figure 7 or the examples in Figures 18 and 19.

Linear-ACT is a robust method for concept negation in text-to-image generation. In Fig-
ure 6b, we observe that ACT is more effective at concept negation than ITI-C while better
preserving the original semantics of the image, as indicated by the drop in 0-shot concept score for
higher CLIPScore than ITI-C. ITI requires a stronger intervention to reduce the presence of the
undesired concept, at the cost of losing the whole semantic content, hence the drop in the Relative
ClipScore. Additional examples and images for each concept can be found in Appendix M.4.

6 LIMITATIONS AND DISCUSSION

In this work, we introduce Activation Transport (ACT), a general framework to achieve intuitive and
fine-grained control of GMs. Our approach is based on optimal transport theory, effectively mapping
activations from a source to a target distribution by preserving the latter, and unifies many previous
activation steering works. We show experimentally that our Linear-ACT approach generalizes well
across models and tasks, for both LLMs and T2I architectures. Moreover, ACT provides a robust
parameter to control the amount of conditioning, bounded between 0 and 1, which makes it user-
friendly and interpretable. While effective, Linear-ACT assumes a linear transport between i.i.d.
activations, which are simplifications adopted for compute and memory reasons. Additionally, the
map estimation purely depends on the samples used, thus being limited by their expressiveness. In
future work, we plan on exploring non-linear maps and joint activations distributions.
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ETHICS STATEMENT

Our method could theoretically be used to mitigate or induce the presence of any concept. Therefore,
it could eventually lead to the development of censorship or misinformation tools.

While our work can be used to align in pre-trained GMs, it should not be taken as a reason not to
pursue the adoption of clean data and additional alignment strategies during the pre-training phase.

REPRODUCIBILITY STATEMENT

Our code and data are publicly available on https://github.com/apple/ml-act. To aid
reproducibility, all tables contain the best λ found through grid-search and results are averaged over
5 runs. We include additional details on the intervened layers in Appendix B, ablations on the
effect of transport support in Appendix E, pooling operation ablations in Appendix D, the exact
prompt templates of LLM as a judge in Appendices H and I, experimental details on TruthfulQA
in Appendix L, as well as experimental details for T2I models in Appendix M.
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A MEMORY AND COMPUTATIONAL ASPECTS

Linear-ACT requires storing 2 floats (ω, β) per activation intervened. For example, Linear-ACT on
post-LN layers of Gemma2-2B requires (2× 52 layers× 2304 activations× 4 bytes) = 0.91 Mb. If
we choose to use the support transport, 2 more floats per activation are storedQo = [minA,maxA],
which means an extra 0.91 Mb for the Gemma2-2B example. In terms of compute, Linear-ACT
requires an extra element-wise product and sum per intervened layer. However, the inference cost
of such operations is of second order compared to the overall LLM inference cost.

One has the option to fix λ. If so, our Linear-ACT formulation in Definition 3.1 becomes T lin(a) =(
λ(ω− 1)+ 1

)
a+λβ = ω̃a+λβ. Assuming we intervene after a linear layer γa+ δ, we compose

both functions as (T lin ◦ f)(a) = ω̃γa+ (ω̃δ + λβ), which is also a linear map whose parameters
can replace those of f in the computational graph, without any extra cost at inference time. The
memory cost is 0 if we fix λ and compose Linear-ACT with the model linear layers.

A.1 DETAILS ON COMPUTATIONAL COMPLEXITY

The computational cost of Linear-ACT can be divided in two main parts: estimation and inference.

Estimation. The estimation cost is the cost related to extracting activations from a model and
estimating a transport map on top. Let us assume the cost for running an inference step with a
model up to the latest layer where an intervention is placed L is ML, N the number of samples upon
which we learn the transport, and D the dimensionality of each activation vector. We also assume
batch size = 1.

• Extracting activations:
– Assuming non-sequential iterative maps (see Section 3.2 in the submission): the cost

for extracting activations is O(NML).
– Assuming sequential iterative maps, we need two forward passes per layer: the first is

used to estimate a transport map, and the second to produce responses after applying
the map. Since the cost of applying a map with fixed strength is 0 (as it can be fused
with the weights), the cost of extracting activations with iterative maps is O(2NML).

• Estimating a linear transport map involves sorting NLD activations for the source and
target distribution and computing the affine transport params analytically (see Definition
3.1). Assuming half of the N samples belong to the source and the target distributions re-
spectively, the cost is dominated by the sorting operation O(NLD log(NLD)) (assuming
quicksort is used), which is also smaller than the cost of a forward pass through the model.

Inference. The inference cost is the cost related to generating an output with an intervened model.
As explained at the beginning of the section, assuming a fixed transport map strength (λ), the affine
transport map can be directly fused into the model weights and thus the additional cost of Linear-
ACT is O(0). If we need to be able to tune the intervention strength, then we cannot fuse it into
the weights and the cost is that of a 1-d affine map on all the transported activations, which is
significantly smaller than the cost of a forward pass on the model, which involves expensive matrix
multiplication: O(LD) << O(M).

Summarizing, estimation is only done once, has cost O(NML), and it is amortized during inference.
During inference, the transport cost is O(0) with fixed λ and O(LD) with variable λ. In plain words,
estimating a transport map is much cheaper than training a model and has no impact at inference
time unless one needs control over λ, in which case the additional cost is significantly smaller than
the cost of a forward pass with the model.
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Figure 8: Schema of a Transformer block of Gemma2-2B with the layer names as referenced in this
work. Note that Llama3-8B has a similar structure without the Post-LN layers.

C CAUSAL VS. SIMULTANEOUS ESTIMATION OF ACT

In Table 4 and Table 5 we compare the estimation of ACT interventions in a causal and simultaneous
way (see Section 3.1). We observe that causal estimations show better toxicity mitigation than its
simultaneous counterparts.

Table 4: Causal (gray background) vs. simultaneous estimation of ACT on Gemma2-2B in a toxicity
mitigation setting (explained in Section 4.1). Causal estimation provides better conditioning (lower
toxicity).

Causal Layer Best λ PPL Wikipedia ↓ PPL Mistral-7B ↓ CLS Toxicity (%) ↓ 0-shot Toxicity (%) ↓
Original - - - 13.98 6.62 4.08± 0.36 13.25± 0.88

Mean-ACT Attention 1.0 13.90 7.23 (+0.61) 1.12± 0.35 5.60± 1.01
Mean-ACT ✓ Attention 1.0 14.08 (+0.11) 7.23 (+0.61) 1.06± 0.17 5.14± 0.50
Linear-ACT Attention 1.0 14.04 (+0.06) 7.26 (+0.64) 0.97± 0.39 5.75± 0.90
Linear-ACT ✓ Attention 1.0 14.21 (+0.23) 7.24 (+0.62) 0.90± 0.33 5.06± 0.63

Mean-ACT Post-LN 1.0 14.11 (+0.13) 7.71 (+1.09) 0.62± 0.05 4.47± 0.65
Mean-ACT ✓ Post-LN 1.0 14.21 (+0.23) 7.59 (+0.97) 0.54± 0.44 4.10± 0.41
Linear-ACT Post-LN 0.9 14.54 (+0.57) 7.87 (+1.25) 0.65± 0.17 4.40± 0.39
Linear-ACT ✓ Post-LN 1.0 14.79 (+0.81) 7.99 (+1.37) 0.56± 0.21 4.14± 0.55

Table 5: Causal (gray background) vs. simultaneous estimation of ACT on Llama3-8B in a toxicity
mitigation setting (see Section 4.1). Causal estimation provides better conditioning (lower toxicity).

Causal Layer Best λ PPL Wikipedia ↓ PPL Mistral-7B ↓ CLS Toxicity (%) ↓ 0-shot Toxicity (%) ↓
Original - - - 9.06 5.68 5.80 15.00

Mean-ACT Attention 1.0 9.35 (+0.28) 6.33 (+0.65) 1.40± 0.29 6.73± 1.13
Mean-ACT ✓ Attention 1.0 9.56 (+0.49) 6.36 (+0.68) 1.38± 0.17 5.60± 0.34
Linear-ACT Attention 1.0 9.38 (+0.32) 6.27 (+0.58) 1.38± 0.24 6.55± 0.75
Linear-ACT ✓ Attention 1.0 9.56 (+0.49) 6.28 (+0.60) 1.35± 0.39 6.68± 0.81

D THE EFFECT OF THE POOLING OPERATION

The number of activations to store to compute a transport map is O(NMLK), where N is the
number of samples used to estimate the transport, M is the number of activations per layer, L is the
number of layers, and K the number of tokens decoded. This number can easily become intractable
so most methods perform a pooling operation ϕ over K. We run an ablation on the pooling operation
for ACT on Gemma2-2B, in the toxicity mitigation setup. We find that mean pooling achieves a
better trade-off between toxicity mitigation and utility, measured as MMLU (Table 6).
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Table 6: Ablation on the choice of pooling operation (see Section 3) on Gemma2-2B.

Method Pooling ϕ Strength λ CLS Tox. (↓) MMLU (↑)
Original - - 4.17± 0.32 53.06

Linear-ACT min 1 0.77± 0.12 45.85± 0.09
Linear-ACT max 1 1.80± 0.12 47.01± 0.30
Linear-ACT last 1 0.47± 0.17 48.49± 0.25
Linear-ACT mean 1 0.70± 0.10 51.87± 0.06

E THE EFFECT OF THE TRANSPORT SUPPORT

In this section we validate the choice of transport support, as a way to make the pro-
posed intervention more robust. In this experiment, we sweep different supports by
narrowing the quantiles (qt) of the input data set A, in the setting of toxicity mit-
igation (as in Section 4.1), both for Mean-ACT and Linear-ACT. The supports tested
are: [qt40, qt60], [qt30, qt70], [qt20, qt80], [qt10, qt90], [qt5, qt95], [qt3, qt97], [qt1, qt99], [qt0, qt100] and
(−∞,∞).

Note that [qt0, qt100] = Qo, as defined in Section 3.1. We show the results of this sweep in Fig-
ure 9, where we observe that [qt0, qt100] offers a good trade-off between conditioning strength and
acceptable increase in PPL (below +1 points with respect to the original model).
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Figure 9: We measure toxicity mitigation on Gemma2-2B by increasingly expanding the transport
support from [qt40, qt60] on the farther right of the plots to [qt0, qt100] = [minA,maxA], which
means the support spanned by all the samples in A. For completeness, we add the full real support
(−∞,∞). For Linear-ACT, using [qt0, qt100] achieve the best toxicity mitigation by incurring less
than +1 increase in PPL. Note that (−∞,∞) results in higher PPL.

F HOW DO DIFFERENT INTERVENTIONS AFFECT DISTRIBUTIONS?

We show in this experiment how activation distributions are modified by the effect of different
interventions. For that, we plot in Figure 10 the distribution of source activations µ (toxic), that of
target activations ν (non-toxic) and also the distribution obtained when mapping samples with a map
T , i.e., T♯µ. Ideally, we would like to observe that ν ≈ T♯µ. We show the distributions of those
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activations with highest normalized cost w̄ computed as

c̄ =
1
N

∑N
i=0

(
b(i) − ωa(i) − β

)2
|mb −ma|+ σb + σa

, (2)

so that we pick activations with µ ̸= ν for the sake of illustration. We observe that Linear-ACT
obtains a very good overlap of distributions (first row) while ITI-C does not in many cases (this
result extends to any bias-based method, we show ITI-C as an example of such family of methods).
The latter is only shifting activations with a bias, thus becoming impossible to adapt the shape of
distributions. Moreover, we can observe that with ITI-C some activations are mildly shifted (4th
column), and some others are strongly shifted (2nd, 3rd, 5th columns). This makes it evident that it
is very hard to set a robust λ for bias-based steering methods.
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Figure 10: Transport of distributions. We show how different interventions transport the internal
distributions. In gray the source distribution µ (toxic), in blue the target distribution ν (non-toxic)
and in red the distribution T♯µ obtained when pushing-forward µ through a given intervention T .
Each column contains the distributions for the activation with highest c̄ (see Equation (2)) in a given
layer. In the first row we show Linear-ACT, observing a good overlap between ν and T♯µ. The
second row shows ITI-C, with a poorer distribution overlap. We use λ = 1 for Linear-ACT and
λ = 8 for ITI-C (optimal λs from Table 2).

G ASSESSING TEXT GENERATION DIVERSITY

One important question is whether the generated text after a model intervention still shows diversity.
To answer this question, in Table 7 we measure the Self-BLEU score (Zhu et al., 2018) for the
sets of generated sentences after RTP prompts. Note that smaller Self-BLEU scores indicate higher
diversity in the set, while large Self-BLEU shows repeatedness in the sentences. For example, a
set of identical sentences will return a Self-BLEU of 1. We evaluate the best configuration for each
method (layer, λ choice) according to Table 2.

From the results in Table 7, we observe that Linear-ACT (Self-BLEU = 0.134) better preserves the
diversity shown by the non-intervened model (Self-BLEU = 0.130). In this setting, ITI-C achieves
0.144 and our Mean-ACT a Self-BLEU of 0.140. We obtain these results averaging over 4 runs of
1000 generations each, and the standard deviations show that the results are significant.
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Table 7: ACT obtains better diversity. We measure the Self-BLEU score as a proxy for diversity,
on 4 randomly chosen sets of 1000 generations after RTP prompts. Linear-ACT obtains the closest
result to the original model, showing higher diversity.

Method Self-BLEU (↓)
ITI-C 0.144± 0.003
Mean-ACT 0.140± 0.002
Linear-ACT 0.134± 0.002

Original 0.130± 0.003

H 0-SHOT TOXICITY CLASSIFICATION

We query Llama3-8B-instruct with the system prompt below, where [SENTENCE] contains the
sentence to be assessed in 0-shot manner.

"You are a highly accurate toxicity classification
model. Your task is to determine if a given sentence
contains toxic content. You will output ’yes’ only
if the sentence is toxic and ’no’ if the sentence is
neutral or non toxic.\n [SENTENCE]"

Then, we measure the toxicity probability as count(yes)
count(yes)+count(no) , reported as 0-shot toxicity in

Tables 2, 8 and 9. Note that we use the logits for tokens yes and no, so we consider the answer to
be positive when logit(yes) > logit(no).

I 0-SHOT CONCEPT PRESENCE CLASSIFICATION

We query Llama3-8B-instruct with the system prompt template below.

"You are a chatbot who answers whether the provided
sentence is referring to [CONCEPT] defined as
[WORDNET DEF]. Note that the sentence might not
contain the word [CONCEPT], but may just be
referencing concept as defined.\n [SENTENCE]".

Where:

• [CONCEPT] can be {football, cloud, baby, church, book, flower, balloon}.
• [WORDNET DEF] are taken from WordNet Fellbaum (1998):

– football: Any of various games played with a ball (round or oval) in which two teams
try to kick or carry the ball into each other’s goal.

– cloud: A visible mass of water or ice particles suspended at a considerable altitude.
– baby: A very young child (birth to 1 year) who has not yet begun to walk or talk.
– church: A place for public (especially Christian) worship.
– book: A written work or composition that has been published (printed on pages bound

together).
– flower: A plant cultivated for its blooms or blossoms.
– balloon: Large tough nonrigid bag filled with gas or heated air.

• [SENTENCE] Contains the sentence to be assessed in 0-shot manner.

We measure the probability of a concept being present as we do with toxicity, explained in Ap-
pendix H.
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J EXTENDED RESULTS ON TOXICITY MITIGATION

We report here the full experimental results for toxicity mitigation, which have been summarized in
Section 4.1. Note the variability in the optimal strength λ for ITI-C and ACTADD, which compli-
cates the applicability of these methods on different models and layers.

Table 8: Toxicity mitigation for Gemma2-2B, results over 5 runs. We show results intervening
different layers in the model (layer column). ITI-C, ACTADD and ACT have a strength parameter λ
which we sweep, reporting for each method the best result (best λ) in CLS toxicity that incurs less
than +1 increase in PPL Wikipedia. ACT methods are robust to the choice of layer and provide best
results for λ = 1, achieving up to 7.5× toxicity mitigation with Linear-ACT. ITI-C is very sensitive
to λ as well as layer choice, and AURA does not provide a strength control.

Layer Best λ PPL Wikipedia ↓ PPL Mistral-7B ↓ MMLU ↑ CLS Toxicity (%) ↓ 0-shot Toxicity (%) ↓
Original - - 13.98 6.68 53.1 4.17± 0.32 13.42± 1.08

ACTADD Atention 0.5 13.99 (+0.02) 6.58 53.2 (+0.2) 4.17± 0.15 13.25± 1.63
ITI-C Atention 8.0 14.90 (+0.92) 7.44 (+0.76) 52.6 (-0.5) 0.74± 0.18 5.36± 0.91
Mean-ACT Atention 1.0 14.08 (+0.11) 7.23 (+0.55) 52.5 (-0.6) 1.06± 0.17 5.14± 0.50
Linear-ACT Atention 1.0 14.21 (+0.23) 7.24 (+0.56) 52.2 (-0.9) 0.90± 0.33 5.06± 0.63

ACTADD Post-LN 0.1 14.04 (+0.06) 6.61 53.2 (+0.2) 4.08± 0.43 13.50
ITI-C Post-LN 13.0 14.89 (+0.92) 7.34 (+0.66) 52.8 (-0.3) 3.08± 0.61 12.24± 0.69
Mean-ACT Post-LN 1.0 14.21 (+0.23) 7.59 (+0.90) 51.6 (-1.5) 0.54± 0.44 4.10± 0.41
Linear-ACT Post-LN 1.0 14.79 (+0.81) 7.99 (+1.31) 51.3 (-1.8) 0.56± 0.21 4.14± 0.55

AURA MLP - 14.18 (+0.21) 7.04 (+0.36) 53.0 (-0.1) 2.12± 0.27 9.04± 0.66
ACTADD MLP 0.5 14.69 (+0.72) 6.67 (+0.05) 53.0 (-0.1) 3.96± 0.24 13.43± 1.42
ITI-C MLP 1.0 13.99 (+0.01) 6.77 (+0.08) 52.8 (-0.3) 4.50± 0.32 15.06± 0.76
Mean-ACT MLP 1.0 14.33 (+0.35) 7.02 (+0.34) 52.4 (-0.7) 1.30± 0.37 7.28± 0.88
Linear-ACT MLP 1.0 14.89 (+0.92) 7.53 (+0.85) 51.9 (-1.2) 1.30± 0.39 7.15± 0.98

Table 9: Toxicity mitigation for Llama3-8B, results over 5 runs. Similar conclusions as in Table 8
are extracted.

Layer Best λ PPL Wikipedia ↓ PPL Mistral-7B ↓ MMLU ↑ CLS Toxicity (%) ↓ 0-shot Toxicity (%) ↓
Original - - 9.06 5.68 65.3 5.80 15.00

ACTADD Atention 0.3 9.71 (+0.65) 5.85 (+0.16) 65.5 (+0.2) 5.57± 0.45 15.73± 0.21
ITI-C Atention 3.0 9.48 (+0.42) 6.17 (+0.49) 64.7 (-0.6) 1.60± 0.22 6.53± 0.66
Mean-ACT Atention 1.0 9.56 (+0.49) 6.36 (+0.68) 64.7 (-0.7) 1.38± 0.17 5.60± 0.34
Linear-ACT Atention 1.0 9.56 (+0.49) 6.28 (+0.60) 64.5 (-0.8) 1.35± 0.39 6.68± 0.81

AURA MLP - 9.52 (+0.45) 6.05 (+0.37) 65.5 (+0.2) 1.90± 0.61 8.12± 0.85
ACTADD MLP - - - - - -
ITI-C MLP 1.0 9.09 (+0.03) 5.79 (+0.11) 63.5 (-1.9) 5.62± 0.96 15.48± 1.16
Mean-ACT MLP 0.9 9.90 (+0.84) 6.24 (+0.55) 60.7 (-4.6) 2.10± 0.48 10.65± 1.02
Linear-ACT MLP 0.8 10.06 (+0.99) 5.98 (+0.29) 61.9 (-3.4) 2.23± 0.53 10.27± 0.97
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Figure 11: ACT achieves the best conditioning at λ = 1 on Gemma2-2B and Llama3-8B.
We show the λ sweeps for toxicity mitigation on Gemma2-2B. In gray we show the PPL+1 interval
considered to be the maximum loss in PPL we can assume. The bold markers are the results reported
in Table 2. For clarity, we only show the experiments that yielded best results reported in Table 2.
The full results are shown in Table 8.

K EXTENDED RESULTS ON CONCEPT INDUCTION ON LLMS

Tables 10 to 12 contain examples of generated sentences by Gemma2-2B intervened for concept
induction with Linear-ACT and ITI-C. These results complement those presented in Section 4.2.
Note the more gradual increase of concept with Linear-ACT, reaching strong and consistent condi-
tioning at λ = 1 with great quality. ITI-C also performs well on concept induction, however the
choice of λ is less clear. For example, for λ = 10 it fails for concept Cloud while it works well for
Football.
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Table 10: Generations at different λ inducing concept Football.

Concept Method λ Generation

Football ITI-C 0.0 Once upon a time, there was an old man who lived in the forest. He had no
family and he spent his days alone collecting mushrooms for food to survive on
until one day when someone came along with some money! This person gave
him all of their savings so that they could live together forever

Football ITI-C 5.0 Once upon a time, the only way to watch football was on TV.
It wasn’t just about watching your team play either – it was also about getting
together with mates and having an afternoon of footy in front of the telly at home
or down at the local club for some beer

Football ITI-C 10.0 Once upon a time, the only way to watch football in Australia was on Saturday
afternoon.
And it wasn’s even just for kids and mates at local clubs or schoolboys matches
– no-one would have ever heard of Aussie Rules Football! 1908 saw an associ-
ation called

Football Linear-ACT 0.0 Once upon a time, there was an old man who lived in the forest. He had no
family and he spent his days alone collecting mushrooms for food to survive on
until one day when someone came along with some money! This person gave
him all of their savings so that they could live together forever

Football Linear-ACT 0.5 Once upon a time, there was an amazing woman named Sarah. She had the most
beautiful smile and kindest heart you could ever imagine!
Sarah loved to play soccer with her friends on Saturday mornings at 9am sharp
every week for as long as she can remember...until one day when

Football Linear-ACT 1.0 Once upon a time, the only way to watch football was on TV. The game of soccer
had been played in England since 1863 and by the early twentieth century it
became one of Britain’s most popular sports with over three million spectators
attending matches each season (and many more

Table 11: Generations at different λ inducing concept Flower.

Concept Method λ Generation

Flower ITI-C 0.0 Once upon a time, there was an old man who lived in the forest. He had no
family and he spent his days alone collecting mushrooms for food to survive on
until one day when someone came along with some money! This person gave
him all of their savings so that they could live together forever

Flower ITI-C 5.0 Once upon a time, there was an artist who lived in the land of flowers. She had
beautiful hair and wore it like a crown on her head. Her name is called “Flower”.
She loved to paint pictures with water colours because she thought that they
were very pretty. One day when

Flower ITI-C 10.0 Once upon a time, there was an artist who lived in the land of flowers. She had
beautiful and fragrant petals that she called ‘flowers’.
She also has another name for her petal which is known as “petals”. I have no
idea what it means but i think you can see

Flower Linear-ACT 0.0 Once upon a time, there was an old man who lived in the forest. He had no
family and he spent his days alone collecting mushrooms for food to survive on
until one day when someone came along with some money! This person gave
him all of their savings so that they could live together forever

Flower Linear-ACT 0.5 Once upon a time, there was an old man who lived in the forest. He had no
children and so he decided to grow some flowers for himself instead of having
them on his own body!
The flower is called “the red-eyed lily” because it has petals that are bright pink

Flower Linear-ACT 1.0 Once upon a time, there was an egg-shaped seed that grew into the first true
leaves. These tiny green structures are called sepals and they grow in clusters at
the base of each flower. The petals may be white or pink with 5 to 8 mm long
stalks; these will

23



Published as a conference paper at ICLR 2025

Table 12: Generations at different λ inducing concept Cloud.

Concept Method λ Generation

Cloud ITI-C 0.0 Once upon a time, there was an old man who lived in the forest. He had no
family and he spent his days alone collecting mushrooms for food to survive on
until one day when someone came along with some money! This person gave
him all of their savings so that they could live together forever

Cloud ITI-C 5.0 Once upon a time, the only way to get your cloud-based computing infrastruc-
ture was by using an existing provider. But now that we’ve got so many of them
in our sky (literally), it can be difficult for us cloudshifters and meteorologists
to tell one from another!

Cloud ITI-C 10.0 Once upon a time, the clouds were named by cloud-cloud optical properties.
These are called cirrus or altocumulus and middle cir cir circir (Alto Alto Cu-
mulus) Cloud family:.

Cloud Linear-ACT 0.0 Once upon a time, there was an old man who lived in the forest. He had no
family and he spent his days alone collecting mushrooms for food to survive on
until one day when someone came along with some money! This person gave
him all of their savings so that they could live together forever

Cloud Linear-ACT 0.5 Once upon a time, there was an island called the Isle of Skye. The weather on
this isle is very unpredictable and can change from sunny to stormy in minutes!
The clouds are always moving around with no real pattern or structure as they
do not have any defined tops like those found over land

Cloud Linear-ACT 1.0 Once upon a time, there was an island called the Bermuda. It is located in middle
latitudes of both hemispheres and has been known to be associated with high-
level clouds (cirro- or alto-transparent). The altitude ranges from about 10,0

L EXPERIMENTAL DETAILS AND EXTENDED RESULTS ON INDUCING
TRUTHFULNESS

L.1 EXPERIMENTAL DETAILS

We follow the original experimental protocol for evaluations on the TruthfulQA multiple choice part,
as described in Lin et al. (2021). This consists of preprompting the model with the same default
prompt before each question as proposed by Lin et al. (2021) in Figure 21, which we replicate
below for the reader. To then evaluate a model on a (preprompted) question, the likelihood of each
multiple choice answer is computed independently (conditional on the default prompt and question).
The answer option with the highest likelihood is counted as the model’s answer to the question.
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Figure 12: Figure 21 from Lin et al. (2021) showing the default preprompt used for the TruthfulQA
multiple choice part.
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L.2 EXTENDED RESULTS

L.2.1 FULL RESULTS OVER 5 SEEDS FOR ALL LAYERS

Table 13: TruthfulQA results for Gemma2-2B, results over 5 runs. ITI-C, ACTADD and ACT have
a strength parameter λ which we sweep, reporting for each method the best result (best λ) in MC1
Accuracy that incurs at least equal performance in MMLU accuracy compared to the best (in terms
of MC1 accuracy) of the two ACT methods (see L.2.2, giving 0.1% slack).

Layer Best λ MC1 Accuracy (%) ↑ MC2 Accuracy (%) ↑ MMLU Accuracy (%) ↑
Original - - 21.05 32.80 53.10

AURA MLP - 21.20± 0.10 32.88± 0.22 52.73± 0.07

ACTADD Attention 3.0 22.64± 0.00 34.64± 0.00 53.02± 0.00
ITI-C Attention 5.0 23.18± 0.28 36.16± 0.34 52.10± 0.44
Mean-ACT Attention 1.0 21.62± 0.07 34.08± 0.19 52.83± 0.09
Linear-ACT Attention 1.0 21.71± 0.14 34.47± 0.22 52.86± 0.08

ACTADD All-LN 1.0 21.42± 0.00 32.93± 0.00 51.65± 0.00
ITI-C All-LN 4.0 23.94± 0.96 36.62± 0.86 51.37± 0.41
Mean-ACT All-LN 1.0 25.07± 0.20 38.68± 0.30 51.81± 0.12
Linear-ACT All-LN 1.0 26.00± 0.32 40.17± 0.24 51.47± 0.27

ACTADD Post-LN 0.8 22.40± 0.00 34.27± 0.00 53.11± 0.00
ITI-C Post-LN 8.0 23.16± 0.40 35.94± 0.55 51.39± 0.45
Mean-ACT Post-LN 1.0 21.93± 0.20 34.98± 0.25 52.77± 0.10
Linear-ACT Post-LN 1.0 22.45± 0.22 35.94± 0.36 52.43± 0.20

ACTADD MLP 3.0 23.01± 0.00 34.76± 0.00 52.83± 0.00
ITI-C MLP 2.0 24.53± 0.11 37.06± 0.38 51.39± 0.41
Mean-ACT MLP 1.0 21.98± 0.19 35.18± 0.31 52.84± 0.04
Linear-ACT MLP 1.0 21.93± 0.20 35.47± 0.25 52.73± 0.19

Table 14: TruthfulQA results for Llama3-8B, results over 5 runs. ITI-C, ACTADD and ACT have
a strength parameter λ which we sweep, reporting for each method the best result (best λ) in MC1
Accuracy that incurs at least equal performance in MMLU accuracy compared to the best (in terms
of MC1 accuracy) of the two ACT methods (see L.2.2, giving 0.1% slack).

Layer Best λ MC1 Accuracy (%) ↑ MC2 Accuracy (%) ↑ MMLU Accuracy

Original - - 25.46 40.27 65.35

AURA MLP - 25.34± 0.15 40.47± 0.20 65.37± 0.06

ACTADD Attention 0.7 26.19± 0.00 40.88± 0.00 65.42± 0.00
ITI-C Attention 1.0 27.42± 0.30 42.01± 0.42 65.26± 0.11
Mean-ACT Attention 1.0 26.73± 0.19 42.20± 0.24 65.37± 0.06
Linear-ACT Attention 1.0 27.17± 0.23 42.15± 0.31 65.33± 0.11

ACTADD All-LN 1.0 25.58± 0.00 41.00± 0.00 64.88± 0.00
ITI-C All-LN 3.0 29.65± 0.71 44.43± 0.56 64.71± 0.22
Mean-ACT All-LN 1.0 32.88± 0.54 48.23± 0.64 64.83± 0.14
Linear-ACT All-LN 1.0 33.22± 0.22 48.69± 0.34 64.78± 0.15

ACTADD MLP 0.5 25.46± 0.00 40.64± 0.00 65.34± 0.00
ITI-C MLP 2.0 30.11± 0.60 45.41± 0.24 64.71± 0.14
Mean-ACT MLP 1.0 26.17± 0.24 41.27± 0.34 65.01± 0.20
Linear-ACT MLP 1.0 26.41± 0.52 39.34± 0.54 60.98± 3.14

L.2.2 SWEEPING λ FOR ITI-C AND ACTADD

In Figures 13 - 16, we show the results of sweeping the value of λ for ITI-C and ACTADD for both
Gemma2-2B and Llama3-8B. For each model, we also indicate the MMLU accuracy of the best
ACT method for that model with a horizontal grey dashed line, as this is our point of reference for
choosing λ for ITI-C and ACTADD: we choose the value of λ that achieves the best MC1 accuracy,
while achieving at least equal MMLU accuracy to this grey dotted line (up to a slack of 0.1%).

For ITI-C, where we see a clear relationship between MMLU and MC1 accuracy as λ varies, we
sweep λ ∈ [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0]. For ACTADD,
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Figure 13: Sweeping λ for inducing truthfulness with ITI-C on Gemma2-2B. Left endpoint of line
is λ = 1.0, right endpoint of line is λ = 15.0 (each point increasing λ by 1.0). Note this is for 1
seed only.

where the relationship can be more erratic, we also sweep values < 1.0. Here, we sweep λ ∈
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0].

Overall we see that λ can have a strong impact on performance for ITI-C, but in a different way for
each layer and model. In particular, it can decrease MMLU performance to catastrophic levels (more
than halving performance on Gemma2-2B for MLP layers and on Llama3-8B for both attention and
MLP layers), making it necessary to sweep λ to find its value that provides a reliable control method
using ITI-C for the problem at hand. Similar things can be found about ACTADD (e.g. when
interventing upon on all Layernorm layers on Gemma2-2B, Figure 14).
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Figure 14: Sweeping λ for inducing truthfulness with ACTADD on Gemma2-2B.
Left endpoint of line is λ = 0.1, right endpoint of line is λ = 5.0 (λ ∈
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0]). Note this is for 1 seed only.
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Figure 15: Sweeping λ for inducing truthfulness with ITI-C on Llama3-8B. Left endpoint of line is
λ = 1.0, right endpoint of line is λ = 15.0 (each point increasing λ by 1.0). Note this is for 1 seed
only.
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Figure 16: Sweeping λ for inducing truthfulness with ACTADD on Llama3-8B.
Left endpoint of line is λ = 0.1, right endpoint of line is λ = 5.0 (λ ∈
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0]). Note this is for 1 seed only.
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M EXPERIMENTAL DETAILS AND EXTENDED RESULTS FOR T2I
GENERATION

Appendix M.1 illustrates the effect of the guidance parameter in SDXL. Appendix M.2 illustrates
the problem of concept negation when using negative prompts. Appendix M.3 contains additional
qualitative examples of style control on SDXL and FLUX. Appendix M.4 contains additional qual-
itative examples for concept negation in SDXL and FLUX. Appendices M.6 and M.7 contain the
list of tags used as prompt modifiers to generate the target/source distribution of activations for each
style/concept respectively. Appendix M.8 contains details on FLUX’s architecture conditioning.

M.1 GUIDANCE PARAMETER IN EXISTING DIFFUSION MODELS

We show in Figure 17 the effect of changing the guidance scale parameter in SDXL. While large val-
ues lead to effective conditioning, lower values destroy content. This makes guidance non intuitive
and harder to use by users.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Figure 17: SDXL with art nouveau tags appended to the prompt as described in Appendix M.3 and
guidance strength linearly increasing from 1 to 6. Note how for low guidance (left most images) the
semantic content is almost completely lost.

M.2 NEGATIVE PROMPTING

Stable diffusion models allow using negative prompts to avoid unwanted elements in the generated
images (Rombach et al., 2022; Podell et al.). Here, we show that this method is ineffective at
removing pink elephant, white bear, and gorilla. Figures 18 and 19 contain some failure cases of
SDXL and Stable Diffusion 3 (Esser et al., 2024) at removing unwanted concepts. Figure 26 and
Figure 27 show results intervening SDXL with ACT, showing its effectiveness at removing these
concepts with the same prompts. In Figure 28 we show some failure cases at concept negation.

Figure 18: SDXL with Negative Prompt. Prompt: “There is a banana and two pieces of cheese on a
plate. A {pink elephant, gorilla, white bear} cannot be seen anywhere.”. Negative
prompt: “A {pink elephant, gorilla, white bear}”.
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Figure 19: Stable Diffusion 3 with Negative Prompt. Prompt: “2 tier cake with multicolored stars
attached to it. A {pink elephant, gorilla, white bear} cannot be seen anywhere.”
Negative prompt: “A {pink elephant, gorilla, white bear}.”.

M.3 STYLE CONTROL

Figures 20 to 22 complement the results shown in Section 5.1.

(a) Anime (b) Art Nouveau

(c) Cyberpunk (d) Impressionism

(e) Sketch. (f) Watercolor

Figure 20: SDXL - A plane floating on top of a lake surrounded by mountains. From left to
right conditioning strength λ increases from 0 to 1. Rightmost column corresponds to the best
strength found in Figure 6 (λ = 1 for ACT and λ = 2 for ITI-C). Linear-ACT succeeds at inducing
different styles. Mean-ACT fails at inducing art nouveau. ITI-C introduces noise for art nouveau
and cyberpunk.
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(a) Anime (b) Art Nouveau

(c) Cyberpunk (d) Impressionism

(e) Sketch. (f) Watercolor

Figure 21: SDXL - A firetruck with lights on is on a city street. Rightmost column corresponds
to the best strength found in Figure 6 (λ = 1 for ACT and λ = 2 for ITI-C). Mean-ACT fails at
inducing impressionism and art nouveau. ITI-C achieves the strongest conditioning and generates a
noisy image for art nouveau.
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(a) Anime (b) Art Nouveau

(c) Cyberpunk (d) Impressionism

(e) Sketch. (f) Watercolor

Figure 22: SDXL - A sandwich is placed next to some vegetables. Rightmost column corresponds
to the best strength found in Figure 6 (λ = 1 for ACT and λ = 2 for ITI-C). ITI-C fails at inducing
style progressively (e.g. (c) cyberpunk).
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(a) Anime (b) Art Nouveau

(c) Cyberpunk (d) Impressionism

(e) Sketch. (f) Watercolor

Figure 23: FLUX - A group of zebra standing next to each other on a dirt field. Rightmost
column corresponds to the best strength found in Figure 6 (λ = 1 for all methods). Linear-ACT is
successful at inducing all styles. ITI-C fails at inducing cyberpunk and anime.
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(a) Anime (b) Art Nouveau

(c) Cyberpunk (d) Impressionism

(e) Sketch. (f) Watercolor

Figure 24: FLUX - Black cat with green eyes sitting in a bathroom sink. Rightmost column
corresponds to the best strength found in Figure 6 (λ = 1 for all methods). ACT’s conditioning is
weak for sketch and watercolor. ITI-C fails at inducing cyberpunk.

35



Published as a conference paper at ICLR 2025

(a) Anime (b) Art Nouveau

(c) Cyberpunk (d) Impressionism

(e) Sketch. (f) Watercolor

Figure 25: FLUX - A semi truck is driving down a street. Rightmost column corresponds to the
best strength found in Figure 6 (λ = 1 for all methods). ACT is able to preserve the semantics for
all styles and we observe only mild conditioning for impressionism and watercolor. ITI-C fails at
inducing anime and cyberpunk.
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M.4 CONCEPT NEGATION

(a) Many cars parked on a city street with tall buildings in the background.

(b) A cat sitting in front of a large computer monitor.

Figure 26: SDXL - Concept negation examples I. Rightmost column corresponds to the best
strength found in Figure 6 (λ = 1 for ACT and λ = 4 for ITI-C). Every 3 rows represent a
different concept in {gorilla, pink elephant, white bear} which was negated at the
input of the image generator. Mean-ACT and Linear-ACT succeed at removing the unwanted con-
cept. ITI-C fails for gorilla and produces a blurry image for pink elephant.
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(a) There is a banana and two pieces of cheese on a plate.

(b) 2 tier cake with multicolored stars attached to it.

Figure 27: SDXL - Concept negation examples II. Rightmost column corresponds to the best
strength found in Figure 6 (λ = 1 for ACT and λ = 4 for ITI-C). Every 3 rows represent a different
concept in {gorilla, pink elephant, white bear} which was negated at the input of
the image generator. Linear-ACT and Mean-ACT succeed at removing the negated concepts while
ITI-C tends to modify the semantics of the image.
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(a) Closeup of a white and yellow vase with a red circle at the bottom.

(b) A table topped with bananas next to a coin.

Figure 28: SDXL - Concept negation examples III (failures) Rightmost column corresponds to
the best strength found in Figure 6 (λ = 1 for ACT and λ = 4 for ITI-C). Every 3 rows represent a
different concept in {gorilla, pink elephant, white bear} which was negated at the
input of the image generator. While Mean-ACT and Linear-ACT are successful at removing the
concept, there is sometimes a change in semantics of the image for the maximum strength. ITI-C at
best strength (λ = 4) changes semantics for all concepts.
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(a) 2 tier cake with multicolored stars attached to it.

(b) A table topped with bananas next to a coin.

Figure 29: FLUX - Concept negation examples I. Rightmost column corresponds to the best
strength found in Figure 6 (λ = 1 for ACT and λ = 5 for ITI-C). Every 3 rows represent a different
concept in {gorilla, pink elephant, white bear} which was negated at the input of
the image generator. Linear-ACT removes the negated concepts except for white bear in (a). ITI-C
is effective at “best” (λ = 5). At high strengths, Linear-ACT and ITI-C also affect other image
semantics.
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(a) There is a banana and two pieces of cheese on a plate.

(b) A sandwich is placed next to some vegetables.

Figure 30: FLUX - Concept negation examples II (Failures) Rightmost column corresponds to
the best strength found in Figure 6 (λ = 1 for ACT and λ = 5 for ITI-C). Every 3 rows represent a
different concept in {gorilla, pink elephant, white bear} which was negated at the
input of the image generator. ACT does not remove white bear, and fails to remove gorilla in (b).
For high λ, Linear-ACT modifies the semantics of the image. ITI-C removes the unwanted concept
for λ = 5.
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M.5 DETAILED RESULTS
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(d) Impressionism
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(f) Watercolor

Figure 31: Style induction. For each style (a-f) and model (left-right), we show the 0-shot classifi-
cation score for the style being present in the generated images (top) and the ClipScore to track how
much generated images deviate from the unconditional prompt (bottom). The gray area indicates
images that have lost their semantic content.
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(a) Gorilla

0.1 1.0 10.0
0.00

0.25

0.50

0.75

1.00

0-
sh

ot
(s

ty
le

)
(→

)

λ
=

1

SDXL-Lightning

0.1 1.0 10.0

λ
=

1

FLUX.1.Schnell

0.1 1.0 10.0
Intervention strength λ

0.000

0.075

0.150

0.225

0.300

C
lip

S
co

re
(→

)

λ
=

1

Noisy images area

ITI

Linear-AcT

Mean-AcT

0.1 1.0 10.0
Intervention strength λ

λ
=

1

Noisy images area

(b) Pink elephant
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(c) White bear

Figure 32: Concept negation. For each concept (a-c) and model (left-right), we show the 0-shot
classification score for the concept being present in the generated images (top) and the ClipScore
(bottom) to track how much generated images deviate from the unconditional prompt. The gray area
indicates images that have lost their semantic content.

42



Published as a conference paper at ICLR 2025

M.6 STYLE PROMPTS

Table 15: List of tags generated with Llama-8B-instruct (right) to induce different styles (left).

Anime anime style, large expressive eyes, stylized hair,
bold outlines, simplified colors, dynamic perspective,
exaggerated features, angular shapes, chibis, manga
inspired, emotive facial expressions, action sequences,
speed lines, cell shading, graphic backgrounds, vibrant
palettes

Art nouveau Art Nouveau, Alphonse Mucha, Gustav Klimt, flowing
lines, organic shapes, floral motifs, geometric
patterns, ornamental designs, Jugendstil, Secessionism,
symbolism, female figures, gold leaf, intricate details,
turn of the century art, early 20th century

Impressionism impressionism, Claude Monet, brush strokes, light,
color, outdoor scenes, water lilies, haystacks, Rouen
Cathedral, reflections, nature, atmospheric, vibrant
colors, visible textures, 19th century art, French
impressionism

Cyberpunk cyberpunk, neon lights, urban jungles, high-tech
architecture, augmented reality, AI technology,
biopunk, futuristic cities, post-apocalyptic scenes,
digital hacking, megacorporations, androids, dystopian
societies, cybernetic enhancements, chromed details,
glowing neon signs, rain-soaked streets

Photorealism photorealism, hyperrealism, optical precision,
photographic quality, fine detail, lifelike textures,
realistic lighting, accurate perspective, human
figures, still life, cityscapes, landscapes, skin tones,
reflections and shadows, everyday objects, documentary
style art, contemporary realism

Sketch sketches, pencil drawing, charcoal sketches, ink
illustrations, gestural lines, quick studies, figure
drawing, perspective sketching, urban sketching,
landscape sketches, still life drawings, sketchbook
art, doodles, minimalist lines, expressive mark-making,
observational drawing

Watercolor watercolor style, transparent media, wet-on-wet
application, dry brush strokes, soft blending, delicate
touches, gentle shading, luminous hues, atmospheric
lighting, ethereal quality, subtle textures, color
gradients, painterly aesthetics, fluid paint behavior,
watercolor paper texture
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M.7 CONCEPT PROMPTS

Table 16: List of tags generated with Llama-8B-instruct (right) to induce different concepts (upper
left) or to prompt models not to generate them (lower left).

Pink elephant a pink elephant. containing a pink elephant. with a
pink elephant in plain view. and a pink elephant. it
displays a pink elephant. featuring a pink elephant.
in addition to a pink elephant. and also a pink
elephant. and a pink elephant as well. the pink
elephant can be clearly seen.

Gorilla a gorilla. containing a gorilla. with a gorilla in
plain view. and a gorilla. it displays a gorilla.
featuring a gorilla. in addition to a gorilla. and
also a gorilla. and a gorilla as well. the gorilla can
be clearly seen.

White bear a white bear. containing a white bear. with a white
bear in plain view. and a white bear. it displays a
white bear. featuring a white bear. in addition to a
white bear. and also a white bear. and a white bear as
well. the white bear can be clearly seen.

No pink elephant without a pink elephant. not containing a pink
elephant. without a pink elephant in plain view.
and a pink elephant that cannot be seen. it does not
display a pink elephant. not featuring a pink elephant.
lacking a pink elephant. and not a pink elephant. and
a pink elephant is missing. the pink elephant cannot be
seen.

No gorilla without a gorilla. not containing a gorilla. without
a gorilla in plain view. and a gorilla that cannot be
seen. it does not display a gorilla. not featuring a
gorilla. lacking a gorilla. and not a gorilla. and a
gorilla is missing. the gorilla cannot be seen.

No white bear without a white bear. not containing a white bear.
without a white bear in plain view. and a white bear
that cannot be seen. it does not display a white bear.
not featuring a white bear. lacking a white bear. and
not a white bear. and a white bear is missing. the
white bear cannot be seen.

M.8 DETAILS ON FLUX CONDITIONING

FLUX’s diffusion architecture 4 is based on the transformer architecture (Vaswani et al., 2017). Con-
cretely, it is composed of N consecutive multi-modal fusion transformer residual blocks followed
by M uni-modal transformer residual blocks. We found that the most effective strategy for strong
conditioning is to intervene upon the output of all blocks. However, we found that conditioning
blocks closest to the output tends to deteriorate the generated images. Thus, we condition all the N
multi-modal blocks and the first 15 uni-modal blocks.

4https://blackforestlabs.ai/announcing-black-forest-labs/
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