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ABSTRACT

Despite the significant success of deep learning models in computer vision, they
often exhibit systematic failures on specific data subsets, known as error slices.
Identifying and mitigating these error slices is crucial to enhancing model robust-
ness and reliability in real-world scenarios. In this paper, we introduce HiBug2, an
automated framework for error slice discovery and model repair. HiBug2 first gen-
erates task-specific visual attributes to highlight instances prone to errors through
an interpretable and structured process. It then employs an efficient slice enumer-
ation algorithm to systematically identify error slices, overcoming the combinato-
rial challenges that arise during slice exploration. Additionally, HiBug2 extends
its capabilities by predicting error slices beyond the validation set, addressing a
key limitation of prior approaches. Extensive experiments across multiple do-
mains — including image classification, pose estimation, and object detection —
show that HiBug2 not only improves the coherence and precision of identified er-
ror slices but also significantly enhances the model repair capabilities. Our code
is available at https://github.com/cure-lab/HiBug2.

1 INTRODUCTION

Deep learning models have made substantial progress in computer vision tasks. However, they still
exhibit systematic failures on critical subsets of data (Buolamwini & Gebru, 2018), known as “error
slices”. In high-stakes applications like healthcare (Giger, 2018) and autonomous driving (Fujiyoshi
et al., 2019; Breitenstein et al., 2021), identifying error slices is crucial to improving model robust-
ness and ensuring safety. At the same time, uncovering error slices in widely-used public models,
such as CLIP (Radford et al., 2021) and BLIP (Li et al., 2022a), is also important, as these models
are applied across various tasks by a large number of users.

Identifying coherent error slices — subsets of failure samples that share common visual attributes
— is challenging due to the lack of detailed visual attribute annotations in most evaluation datasets.
Previous works (d’Eon et al., 2022; Yenamandra et al., 2023) typically attempt to identify error slices
by clustering failure samples within an embedding space, and relying on human experts to manually
annotate coherent slices. Some approaches (Eyuboglu et al., 2022; Jain et al., 2022) incorporate
captioning models to assist with slice annotation. We refer to these approaches as “slice-then-tag”
methods, where error slice identification is followed by descriptive tag generation. However, these
methods often struggle to ensure the coherence of error slices (Gao et al., 2023; Johnson et al.,
2023) due to the entangled embedding space (Chen et al., 2024). This makes it difficult for humans
to interpret the slices or to conduct efficient model repair.

To address these challenges, particularly with the rise of multi-modal models, a new line of
work (Gao et al., 2023; Chen et al., 2024; Liang et al., 2024; Metzen et al., 2023; Gannamaneni
et al., 2025) has emerged that prioritizes visual attribute generation before slice discovery. For ex-
ample, AdaVision (Gao et al., 2023) iteratively uses GPT (OpenAI, 2023) to establish potentially
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critical scenarios and retrieves relevant data for validation, while HiBug (Chen et al., 2024) pro-
poses to exhaustively generate visual attributes for the dataset and cluster the data based on attribute
similarity to discover error slices.

While these methods improve slice coherence and offer better interpretability, they still face several
limitations. First, the visual attributes used by recent approaches (Eyuboglu et al., 2022; Chen et al.,
2024; Liang et al., 2024) primarily focus on object-centric factors such as “object color” and “object
type”, overlooking contextual elements like background properties, which limits comprehensive
error slice discovery. Second, the exploration of attribute combinations can lead to a combinatorial
explosion, restricting fine-grained analysis of multi-attribute slices. Furthermore, these methods tend
to overlook potential errors beyond the validation set, leaving potential high-risk slices unexplored.

In this paper, we introduce HiBug2, a fully automated, closed-loop debug framework. As depicted
in Figure 1, HiBug2 encompasses attribute and tag generation, error slice discovery, and model re-
pair. To generate comprehensive visual attributes, we implement a structured generation process
informed by model failure analysis and engineering insights. To mitigate the combinatorial explo-
sion issue, we develop an efficient slice enumeration algorithm based on the unique characteristics of
data slices, along with slice selection and image querying techniques to facilitate model repair. Ad-
ditionally, we also employ feature-based tag substitutions and instruction-based methods to address
unseen errors beyond the validation set.

Our experiments across image classification, pose estimation, and object detection tasks, spanning
multiple datasets and models, demonstrate the superior performance of HiBug2. Specifically, Hi-
Bug2 consistently produces attributes of significantly higher quality than existing methods, while
its slice enumeration algorithm achieves an impressive 510x speedup over naive approaches. Fur-
thermore, HiBug2 shows strong generalizability in identifying error slices on widely-used models.
For instance, we identified approximately 500 distinct error slices for CLIP in image classification
tasks. In addition, the classification models involved in the experiments exhibit performance de-
clines of up to 64.6% on predicted unseen error slices. Finally, experimental results validate that
HiBug2 outperforms prior methods in its model repair capabilities.

2 RELATED WORKS

2.1 ERROR SLICE DISCOVERY

Error slice discovery refers to the process of identifying groups of failure cases in model predictions,
akin to failure analysis in engineering disciplines. It helps engineers pinpoint a model’s weaknesses
and subsequently improve its performance. Due to its practical relevance, interpretability is a key
requirement in error slice discovery. The discovered failure groups must be coherent, meaning they
share similar and interpretable visual attributes.

Slice-then-tag methods: Because of the absence of visual attribute annotations, early methods for
error slice discovery (Eyuboglu et al., 2022; Jain et al., 2022; d’Eon et al., 2022; Yenamandra et al.,
2023) typically cluster failure samples in an embedding space and then rely on human experts or
captioning models to generate descriptions for the identified slices. For instance, Spotlight (d’Eon
et al., 2022) locates high-failure areas in the model’s embedding space, while FACTS (Yenaman-
dra et al., 2023) amplifies the model’s dependencies on latent features and clusters underperforming
slices in the CLIP (Radford et al., 2021) space. Domino (Eyuboglu et al., 2022) and Jain et al. (2022)
use mixture models and linear classifiers to cluster failures within the CLIP space, and automatically
assemble slice descriptions from a predefined natural language corpus. However, studies (Gao et al.,
2023; Johnson et al., 2023; Chen et al., 2024) have shown that these methods often struggle to pro-
duce coherent slices. Popular embedding spaces (e.g, CLIP) are entangled, making these methods
difficult to cluster data based on task-specific attributes (Chen et al., 2024). Additionally, the gener-
ated slice descriptions may contain irrelevant or contradictory information (e.g., “a photo of setup by
banana”, “a photo of skiing at sandal”) (Gao et al., 2023), leading to confusion when users attempt
to act on the findings (Johnson et al., 2023).

Tag-then-slice methods: With the advancement of large multi-modal models, generating attribute
annotations has become more feasible. By prioritizing the generation of visual attributes and clus-
tering data accordingly, these methods naturally maintain slice coherence. For example, AdaVi-
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Figure 1: The main workflow of HiBug2 for closed-loop model debugging and repair.

sion (Gao et al., 2023) leverages GPT (OpenAI, 2023) to iteratively generate critical scenarios and
retrieve relevant data slices for validation, while Metzen et al. (2023) employ human-defined at-
tributes and tags to generate slices and verify model performance. AIDE (Liang et al., 2024) focuses
on object detection, generating descriptions for failure samples and clustering them by object cat-
egory. HiBug (Chen et al., 2024) proposes an exhaustive approach that generates visual attributes
for the dataset and clusters data by attribute similarity. Although these methods offer greater inter-
pretability and coherence, challenges remain with the quality of attributes, and the large number of
attributes leads to combinatorial explosions during slice enumeration.

Several methods fall outside these two primary categories. For instance, GradCam (Selvaraju et al.,
2017) offers a sample-specific visualization technique to assist humans in discovering error slices,
while VLSlice (Slyman et al., 2023) provides an interactive system to retrieve data and validate
correlations of interest. SliceLine (Sagadeeva & Boehm, 2021) introduces a monotonic slice scoring
function alongside an efficient slice search algorithm.

We adopt a tag-then-slice approach, addressing two key challenges in prior methods: attribute and
tag quality, and the efficiency of slice enumeration. Our structured generation process produces task-
specific visual attributes that highlight error-prone instance, enhancing the coverage and coherence
of identified error slices. Simultaneously, our efficient enumeration algorithm alleviates the combi-
natorial explosion issue, facilitating the rapid discovery of complex slices that encompass multiple
attributes. Additionally, we also address on predicting unseen errors beyond the validation set that
are often overlooked in previous works.

2.2 VISUAL ATTRIBUTE AND TAG GENERATION

Visual attribute refers to a specific visual characteristic (e.g., “object pose”), while tags are the pos-
sible values that describe the attribute (e.g., “standing”, “lying down”). Visual attribute and tag
generation is fundamental to tag-then-slice approaches, providing the basis for identifying and ana-
lyzing error slices. Despite its importance, this area remains underexplored in error slice discovery.
Existing methods often rely on human experts (Metzen et al., 2023; Jain et al., 2022; Eyuboglu
et al., 2022) or directly query models like GPT with simplistic prompts (Chen et al., 2024), which
are inadequate for the complexity of this task.

In other domains, attribute and tag generation has been extensively studied, such as in image tagging
and interpretable image classification. However, these methods are not applicable to error slice dis-
covery. Image tagging models (Zhang et al., 2024; Chen et al., 2023) are designed to identify image
content and generate image-specific tags; however, the significant variation in these tags across dif-
ferent images limits the ability to form coherent data slices. Similarly, approaches in interpretable
image classification (Yang et al., 2023; Yan et al., 2023) generate attributes to differentiate between
classes, whereas error slice discovery requires attributes that capture failure patterns and cause con-
fusion between image classes, presenting a unique challenge.
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3 METHOD: AUTOMATIC ATTRIBUTE AND TAG GENERATION

We present the workflow of HiBug2 in Figure 1. Attribute and tag generation serves as the founda-
tion of HiBug2, as it is closely linked to the coherence and coverage of error slices. Our attribute and
tag generation consists of the following steps: attribute generation, tag determination, and dataset-
wide tag assignment. It addresses several key challenges identified in existing approaches.

3.1 KEY CHALLENGES IN ATTRIBUTE AND TAG GENERATION

Current methods (Chen et al., 2024; Liang et al., 2024; Eyuboglu et al., 2022) for generating at-
tributes and tags for image datasets exhibit several critical shortcomings:

1. Narrow Attribute Focus: Existing methods primarily concentrate on attributes related to
the main objects of interest in the images, often overlooking crucial contextual factors such
as background properties and global image characteristics. Furthermore, these attributes
tend to be general rather than specifically tailored to error-related and task-specific needs.

2. Inconsistent and Biased Tagging: Tags are generated directly from the data without exter-
nal references. Due to the biases of the data, the generated tags often have inconsistencies
in granularity and semantics for the same attribute.

3.2 STRUCTURED AND COMPREHENSIVE GENERATION

To address these challenges, HiBug2 leverages the strengths of multi-modal models (in this paper,
we use GPT (OpenAI, 2023)) for attribute and tag generation, combined with a structured process
to ensure the accuracy, consistency, and coverage of the results.

3.2.1 ATTRIBUTE GENERATION

Target: Brown Bear   
Predict: Black Bear

Target: Brown Bear    
Predict: Polar Bear

Target: Car (in box)     
Predict: None

Target: Pedestrian (in box)    
Predict: None

Classification

Distribution Issue:
object color: dark brown

Distribution Issue:
background: snow

Inherent Difficulties: 
brightness: high

Detection

Inherent Difficulties:
limb visibility: not visible

Figure 2: Common errors of deep learning models can be grouped into data distribution issues and
inherent task difficulties.

To effectively capture the properties related to error slices, the generated attribute set is required to
cover a diverse range of image characteristics that influence model performance.

Through interviews with engineers and a detailed analysis of common errors in classification and
object detection models, as illustrated in Figure 2, we identify two primary types of model errors:
errors caused by data distribution issues (e.g., rare cases, distribution shifts, spurious correlations,
etc), and errors resulting from inherent task difficulties (e.g., occlusions, small object sizes, low
image resolutions, etc). In response to these error sources, we categorize attributes into three key
types according to the subjects they refer to: main object, background, and global. This structured
categorization ensures that we capture not only the features of the primary object but also essential
contextual and global information of the images.

Main object attributes capture properties that are directly related to the objects of interest, such as
their shapes and colors. These attributes are crucial in tasks such as classification, where the model
primarily focuses on distinguishing features of the main objects. Background attributes refer to
elements surrounding the main objects, such as the environment and distracting objects in the scene,
which are particularly important in tasks such as object detection. Global attributes describe overall
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image characteristics, such as resolutions, noise levels, and lighting conditions, which can introduce
image-wide artifacts and impact model performance across a variety of tasks.

Existing methods often rely on directly querying LLMs with generic questions such as “Give me
some attributes related to humans”. Given the potentially infinite number of attributes, this approach
is inefficient and unlikely to capture the subtle distinctions necessary for identifying error slices. To
tackle this challenge, we develop two targeted attribute generation algorithms respectively for the
two error types presented above. To address errors caused by data distribution issues, on top of direct
query, we further employ a comparative approach. Specifically, we present multi-modal models with
a sufficient number of image pairs from the dataset and ask them to generate contrasting attributes
that highlight key differences within the pairs. This ensures that the generated attributes are not only
comprehensive but also contextually grounded in the dataset, helping to uncover subtle biases and
anomalies. To capture attributes associated with inherent task difficulties, we design task-specific
queries aimed at identifying error-prone features. For example, in classification tasks, we instruct
the model to generate attributes that could blur the boundaries between two similar categories if
assigned with specific tags. In object detection and pose estimation tasks, we focus on identifying
features that may lead to localization errors or issues with occlusions.

With this structured and targeted approach for attribute generation, we ensure that the generated
attributes are both relevant and capable of addressing the error-inducing factors present in the dataset.

3.2.2 TAG DETERMINATION AND ASSIGNMENT

Once the attributes are determined, the next step is to generate consistent and meaningful tags for
each attribute. A common issue in previous works is the inconsistency in tag generation in terms of
both granularity and alignment with the semantic definitions of the attributes. To mitigate this issue,
our method employs a multi-stage refinement process that operates as follows.

HiBug2 begins by generating an initial list of potential and unbiased tags for each attribute, es-
tablishing the semantic scope and granularity. To ensure that the generated tags are concrete and
unambiguous, we employ clear conventions: for binary attributes, such as “whether an object is
occluded”, we adopt a straightforward “yes/no” tag format, while for open-ended attributes, Hi-
Bug2 generates a descriptive set of tags. Next, HiBug2 collects new tags by reviewing a subset of
validation data, incorporating additional tags as needed to ensure comprehensive coverage of varia-
tions. Once the attributes and tags are finalized, HiBug2 assigns these tags to all images within the
dataset, ensuring that each image receives a tag corresponding to each attribute. This multi-stage
process promotes consistency in tags throughout the dataset, thereby enhancing the robustness of
subsequent analyses. We discuss HiBug2’s scalability and potential issues regrading attribute and
tag generation in Appendix A.8.

4 METHOD: EXPLORING DATA SLICES

4.1 EFFICIENT SLICE DISCOVERY AND REPAIR

With the generated attribute and tag sets, we define “data slices” as data subsets that share a tag or a
combination of tags from several attributes. Slice enumeration aims to comprehensively enumerate
data slices, forming the foundation for error analysis and subsequent model repair.

4.1.1 BASIC NOTATIONS

Let A = {a1, a2, . . . , an} be a set of attributes, where each attribute ai has a corresponding set
of possible tags Ti = {ti1, ti2, . . . , timi

}. Slice S is defined as a combination of tags from these
attributes, where each attribute contributes one tag to the slice:

S = {(a1, t1j1), (a2, t2j2), . . . , (ak, tkjk)}, with tij ∈ Ti, k ≤ n (1)

4.1.2 KEY CHALLENGES IN SLICE ENUMERATION

Let the number of tags within a set Ti be denoted as |Ti|. The primary challenge in slice enumeration
arises from the combinatorial explosion of potential slices, which is upper-bounded by the term:
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∑n
i=1

(
n
i

)
(max |Ti|)i. When considering combinations of k attributes within a validation set of N

data points, the brute-force enumeration process has a time complexity of:
∑k

i=1

(
n
i

)
(max |Ti|)i ×

N . This complexity increases rapidly with the number of attributes in a slice k, the total number
of attributes n, and the size of the validation set N . As a result, exploring error slices involving
multiple attribute combinations becomes computationally infeasible without efficient algorithms.

4.1.3 PROPERTIES OF DATA SLICES

Data slices are characterized by two key properties: the average model performance and the data
count. The average model performance (e.g., average accuracy in image classification, average
object keypoint similarity (OKS) in pose estimation, and average intersection-over-union (IoU) in
object detection) is essential for identifying error slices, as it reflects the model’s performance on a
specific subset of the data. The data count indicates the prevalence of the slice and is related to the
reliability and generalization of the error pattern. In general, a model’s performance on slices with
larger data counts is more likely to generalize to unseen data belonging to those slices.

Monotonicity: During enumeration, we define monotonicity by comparing a slice S with its parent
slice Sp, where Sp ⊂ S. The average model performance is non-monotonic, as it may increase or
decrease when moving from a parent slice to a child slice. In contrast, the data count is monotonic,
as it always decreases or remains constant from parent to child slices.

4.1.4 ALGORITHM DESIGN

Breadth-First Tree-structured Enumeration. To address the above challenges, we propose a
breadth-first tree-structured enumeration process. We establish a tree based on the generated at-
tributes and tags, in which slices stored in child nodes are formed by adding one attribute-tag pair to
slices stored in their parent nodes. The parent-child relationships of slices can then be represented
by the parent-child relationships of nodes, and the numbers of attributes in the slices grow with the
tree’s depth. Note that a child node may correspond to multiple parent nodes in the tree. Crucially,
since the data count monotonically decreases with deeper layers, data enumeration of a slice can be
upper-bounded by its parent slices, significantly reducing the search space. We employ breadth-first
search (Bellman, 1958) (BFS) to ensure that parent slices are enumerated before child slices.

Pruning and Intersection. Uninformative slices, particularly those with low data counts, offer
limited insight into model errors. Since the data count decreases monotonically with deeper layers,
we can safely prune subtrees with the data counts of the root nodes (i.e., slices) fewer than M (in
our experiments, M = 10).

Similarly, due to the monotonicity of slice data counts, a necessary condition for any informative
slice is that all of its parent slices must be retained. Therefore, rather than generating all possible
slices for each new layer, we intersect the slices that survive pruning from the previous layer to
form new candidates. We define two slices in the same layer as a matched pair if they share k − 1
attributes, where k is the number of attributes in the slices of the current layer. By intersecting
these matched slice pairs, we only maintain new slices that are likely to yield informative insights.
Additionally, we use hash tables for fast-matched pair search and matrix multiplication to speed up
data counting and accuracy calculations. The pseudo code is in Appendix A.7.

Post-processing. Unnecessary tags that are not related to errors can be confusing when presented
in error slices. Therefore, after enumeration, we conduct post-processing to remove slices that have
higher average model performance than their parent slices. Notably, slice enumeration is dataset-
specific and only needs to be executed once for all models on the same dataset, whereas the post-
processing step must be performed individually for each model.

Integration with Model Repair. We incorporate image querying techniques for model repair. After
post-processing, HiBug2 first ranks the slices based on their average model performance. Given a
data pool, HiBug2 then assigns tags to the data and prioritizes those corresponding to error slices
with the lowest average performance. This ensures that the most critical cases are addressed first,
effectively targeting the model’s weakest points for repair.
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4.2 PREDICTING ERROR SLICES BEYOND THE VALIDATION SET

The validation set may not capture all potential error types and their corresponding data slices,
leaving some high-risk slices unfixed in data repair. To mitigate this, we propose two strategies for
predicting potential error slices. The predicted slices will serve as complements of discovered error
slices when the validation set is limited in size.

Tag Substitution. We compute the text embeddings for all tags using CLIP (Radford et al., 2021).
For each identified error slice, one of its tags is substituted with another tag from the same attribute
that has the closest feature distance. This method is akin to data augmentation, allowing exploration
of nearby regions in the feature space from the existing identified regions.

Instruction-Based Method. We utilize few-shot learning with GPT to predict potential error slices
based on the provided attributes and tags, following task-specific instructions. These instructions
are similar to those used for generating error-related attributes. For instance, in image classification,
we instruct the model to generate slices that blur boundaries between closely related categories. In
object detection and pose estimation, we focus on generating slices prone to localization errors or
occlusions. Unlike Tag Substitution which is built upon identified error slices, the instructions-based
method leverages GPT’s extensive knowledge base without any prior information about the model.

5 EXPERIMENTS

5.1 COMPARISONS OF ATTRIBUTE AND TAG GENERATION

Domino HiBug HiBug2
is image in focus:yes
image brightness:low
image contrast:high
image resolution:medium
saturation:low
lighting conditions:dusk
camera angle:rear
image sharpness:high
image noise:high
image 
exposure:underexposed

object shape:van
object reflection:low
object color:white
is object damaged:no
is object blurred:no
object size:medium
wheel design:spoke
is object parked:yes
is object moving:no
vehicle type:commercial
is brand logo visible:yes
is license plate visible:yes
object dirt level:moderate
object visibility:fully visible

is road presented:yes
road type:paved
is traffic sign visible:no
background clutter:high
is tree presented:no
background color:grey
background motion:static
environment type:urban
is sky visible:no
background light sources:natural
is background vehicles presented:yes
is background similar in color to object:no

color: white
make: van
model: van
body style: hatchback
wheels: sliver
headlights: square
taillights: red
windows: tinted
license plate: white
interior: diver’s side

van 
delivery
advertising
provisional
registration
scotia
promotional
vehicle
auto
registered
transit
mobility
deliver
postal
branded

Figure 3: Attributes and tags generated by the error slice discovery methods.

In this section, we present detailed comparisons of the attributes and tags generated by different error
slice discovery techniques. All results are generated without human intervention. As illustrated in
Figure 3, when applied to an image of a van in an object detection scenario, Domino produces overly
generic descriptions such as “van” or “delivery”, offering little insight into the visual characteristics
or potential error patterns. Furthermore, the unstructured nature of these tags limits their usefulness
for systematic error analysis. HiBug improves upon this by generating more structured tags, such as
“color: white” and “make: van”, but it focuses primarily on surface-level characteristics, neglecting
important background and global attributes.

In contrast, our method generates attributes and tags that are both task-specific and highly relevant
to error slice discovery. We capture not only essential object properties such as “object shape:
van” and “object color: white” but also more nuanced details, such as “is object damaged: no”
and “object visibility: fully visible”. Additionally, our method considers environmental factors and
image quality indicators, such as “background clutter: high” and “image sharpness: high”, which
are crucial for diagnosing model failures in real-world scenarios.

Moreover, in the context of error slice discovery, precise dataset annotations are critical. We observe
that attributes generated by HiBug are often ambiguous, leading to inconsistent tag semantics across
the dataset. For instance, tags under “wheel” refer to both wheel shape and color, creating confu-
sion. In contrast, our method generates clear, structured attributes and tags, ensuring consistency in
both semantics and granularity. Overall, the attributes and tags generated by our method are more
effective for model debugging and refinement compared to existing approaches. We provide a full
list of the generated attributes and tags by our method and the baselines in Appendix A.2
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5.2 EFFECTIVENESS OF SLICE ENUMERATION

Naive Tree-Structured Ours
101

102

103

104

105

106

Ti
m

e 
(s

ec
on

ds
) [

lo
g 

sc
al

e]

1952s
(1x)

210s
(9x)

17s
(115x)

167708s
(1x)

2292s
(73x)

329s
(510x)

3 attributes combination
4 attributes combination

Figure 4: Comparison of the slice enu-
meration methods.
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Figure 5: Ablation study across varying
numbers of images and tag sets.

We conduct experiments to evaluate the performance of our slice enumeration algorithm in com-
parison with both a naive enumeration approach and a baseline version of the breadth-first tree-
structured algorithm. The naive approach is a brute-force method that lists all possible data slices
and searches for matching data for each slice, as described in Section 4.1.3. The breadth-first tree-
structured baseline refers to a simplified version of our slice enumeration algorithm, without pruning
and intersection. We present the algorithms of the three methods in the Appendix A.7.

As shown in Figure 4, our method achieves approximately 115x and 510x speedups over naive enu-
meration, and 12x and 7x speedups compared to the baseline tree-structured algorithm, for the enu-
meration of slices with 3 and 4 attributes respectively. These significant improvements in efficiency
allow for rapid slice enumeration across multiple attributes, substantially reducing the computational
time required for model analysis in real-world scenarios. Additionally, we conduct ablation studies
focusing on the enumeration of slices with 3 attributes to assess the effect of data volume and total
number of attributes in runtime. The results in Figure 5 demonstrate that runtime increases linearly
with the data volume, while remaining feasible even in cases where tasks involve up to 72 attributes.

5.3 IDENTIFIED ERROR SLICES

We conduct experiments across three tasks — image classification, pose estimation, and object de-
tection — to evaluate our method’s ability to identify error slices. For image classification, we
select five bear species from ImageNet (Deng et al., 2009) and debug three models: ResNet18 (He
et al., 2016), CLIP (Radford et al., 2021), and BLIP (Li et al., 2022a). For pose estimation, we
use an industrial private dataset and debug the tiny, small, medium, and large variants of RTM-
Pose (Jiang et al., 2023). For object detection, we use the “Car” and the “Pedestrian” instances
of the KITTI (Geiger et al., 2012) dataset and debug four models: YOLOv8 (Varghese & Sambath,
2024), CO-DINO (Zong et al., 2023), ViTDet-L (Li et al., 2022b), and RTMDet-X (Lyu et al., 2022).
We apply HiBug2 to automatically generate attributes and tags and perform slice enumeration, fol-
lowed by error slice analysis based on the results. In the main paper, we consider slices with three
attributes. Implementation details of all models and datasets are shown in Appendix A.3.

Error slices are defined as slices with average performance value (i.e. accuracy, OKS and IoU for
the three tasks) lower than the overall model performance by a constant C (in our experiments,
C = 0.2). For image classification, we identify 1086, 499 and 384 error slices for ResNet18,
CLIP and BLIP respectively. Figure 6 showcases error slices of these models, revealing model-
specific weaknesses. For example, the first slice for “teddy bears” suggests that ResNet18 struggles
with distinguishing “white” and “not holding item” teddy bears with “polar bears”. Similarly, the
third and fourth slices shows the potential dependency of CLIP and BLIP on colors in classifying
bears. For pose estimation, we identify 11357, 5159, 2259, and 2053 error slices for the tiny, small,
medium, and large RTMPose models respectively, with common errors arising when people are
lying down, wearing black clothes, or crossing their legs. For object detection, we identify 4808,
2918, 2258, and 2014 error slices for YOLOv8, RTMDet-X, ViTDet-L, and CO-DINO respectively.
Figure 7 presents low- and high-IoU slices for cars and pedestrians.
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teddy, teddy bear brown bear, bruin, Ursus arctos

Slice Info:
object color: white
is object holding an item: no
image sharpness: sharp

Data Count: 12
Model: ResNet18
Average Accuracy: 0.33
Main Error Prediction: Polar 
Bear

Slice Info:
object texture: fuzzy
is object wearing a hat: yes
object quantity: multiple

Data Count: 15
Model: CLIP
Average Accuracy: 0.73
Main Error Prediction: Polar 
Bear, Brown bear

Slice Info:
fur texture: smooth
fur color: dark brown
camera distance: medium

Data Count: 11
Model: CLIP
Average Accuracy: 0.45
Main Error Prediction: Black 
Bear

Slice Info:
fur color: light brown
is object standing: no
is rocky terrain present: yes

Data Count: 11
Model: BLIP
Average Accuracy: 0.45
Main Error Prediction: Polar 
Bear

Figure 6: Identified slices of the image classification task by HiBug2.

Slice Info:
environment type: residential
camera angle: front
image noise: low

Data Count: 38
Average IoU: 

Slice Info:
is facing camera: yes
is standing: yes 
blurriness: low

Data Count: 39
Average IoU:

Hard Case Easy Case

Slice Info:
vehicle type: not visible
background clutter: high
image exposure: underexposed

Data Count: 24
Average IoU: 

Slice Info:
limb visibility: not visible
pose complexity: not visible
contrast: high

Data Count: 41
Average IoU:

YOLOv8 RTM ViT DINO

0.12 0.23 0.33 0.34

Car Pedestrian Car Pedestrian

YOLOv8 RTM ViT DINO

0.06 0.10 0.14 0.28

YOLOv8 RTM ViT DINO

0.92 0.88 0.88 0.87

YOLOv8 RTM ViT DINO

0.78 0.75 0.75 0.75

Figure 7: Identified slices of the object detection task by HiBug2.

Interestingly, we observe a clear trend in the object detection task: across both hard and easy cases,
all models demonstrate consistent performance patterns. To validate this observation, we compute
the overlap of the top 10% slices (i.e., slices with the lowest 10% average IoU) among the four
object detection models. The average overlap is 86%, indicating that these models share similar
failure patterns, likely due to inherent task difficulties in object detection. Similarly, the average
overlap among the pose models is 73%. In contrast, the top 10% error slices for the three classifi-
cation models overlap by only 31%, suggesting that classification failures are more influenced by
data distribution issues. These experiments highlight the effectiveness of our method in identify-
ing and analyzing error slices across diverse tasks, offering valuable insights for improving model
performance. More visualizations of the identified error slices are presented in Appendix A.4.

5.4 PREDICTIONS OF UNSEEN SLICES

In this experiment, we use ResNet18, RTMPose-Tiny, and YOLOv8 respectively for the image clas-
sification, pose estimation, and object detection tasks. We begin by obtaining the predicted error
slices using both the tag substitution and instruction-based methods across all the three tasks. These
methods generate 100, 20, and 40 slices respectively for image classification, pose estimation, and
object detection (with 20 slices per class; pose estimation having only the person class). Subse-
quently, we compute the model’s performance on the predicted slices.

The results presented in Table 1 demonstrate that the model’s average performance on these pre-
dicted error slices is significantly lower than its overall performance. This highlights the effective-
ness of our approach in predicting extra errors slices, which is particularly valuable when the valida-
tion set available for model debugging is limited in size. Meanwhile, the results further demonstrate
the high quality of our generated attributes and tags, particularly in describing potential model errors.
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Table 1: Model performance degradation on the predicted error slices by the two proposed methods

Method Image Classification Pose Estimation Object Detection
Tag Substitution -7.6% -34.5% -64.6%
Instruction-Based -18.4% -27.2% -18.0%

Table 2: Comparisons of model improvements with data slices determined by HiBug2, HiBug, and
random selection. The values are averaged over five runs.

Method Image Classification Pose Estimation Object Detection
HiBug2 (ours) 0.839 (+7.6%) 0.839 (+2.1%) 0.683 (+4.9%)
HiBug 0.832 (+6.3%) 0.831 (+1.1%) 0.673 (+3.4%)
Random 0.817 (+4.7%) 0.829 (+0.9%) 0.655 (+0.6%)
Original 0.780 0.822 0.651
Number of extra data 0.5K (10%) 1.24K (5%) 0.5K (fine-tuning)

5.5 MODEL REPAIR

In this section, we evaluate the model repair capabilities across the three previously discussed tasks,
focusing on querying new data based on the identified error slices for model improvement. For each
task, we construct a query set from which additional data is selected, and the model is evaluated
on a hold-out test set, both distinct from the validation set used for identifying error slices. We
compare HiBug2 with HiBug (Chen et al., 2024), which is also an automated method, as well as
random data selection. For a fair comparison, we implement the same data selection strategy for
both HiBug2 and HiBug, prioritizing data that corresponds to slices with the lowest average model
performance. The model we repair for the three tasks are respectively ResNet18, RTMPose-Tiny,
and RTMDet-X. Implementation details can be found in Appendix A.5.

We summarize the model’s improvements in terms of accuracy, keypoint average precision (AP),
and object mean average precision (mAP) for the three tasks in Table 2. HiBug2 consistently out-
performs other methods; notably, it enhances model performance when random data selection yields
only marginal improvements. This underscores its effectiveness in model repair.

6 DISCUSSION

Our experiments demonstrate that HiBug2 significantly advances error slice discovery. It improves
both coherence and coverage of identified data slices, which leads to a more interpretable and in-
sightful error analysis process. Meanwhile, the efficient slice enumeration algorithm allows for rapid
discovery of slices across multiple attributes, enabling a more granular analysis of model errors.

However, there are some limitations associated with HiBug2. Attribute and tag generation leverages
GPT that may occasionally produce errors. A primary concern might be the impact of incorrect tag
assignments. Though such errors may slightly affect the coherence of error slices, they are unlikely
to influence overall identification, as a few misclassified data points do not alter the average perfor-
mance of a slice. We further discuss several potential issues and the scalability of HiBug2 in Ap-
pendix A.8. Moreover, we observe that existing slice discovery methods follow diverse workflows,
complicating direct and equitable comparisons. Future work can focus on developing a standardized
and widely applicable benchmark to facilitate fair evaluations and drive progress in this area.

7 CONCLUSION

In this paper, we introduce HiBug2, a comprehensive framework for efficient and interpretable error
slice discovery aimed at enhancing model debugging and repair. By leveraging task-specific at-
tribute generation, efficient slice enumeration, and prediction of unseen error slices, HiBug2 signif-
icantly improves coherence and coverage of identified slices across diverse tasks, including image
classification, pose estimation, and object detection. Our extensive experiments demonstrate that
HiBug2 not only outperforms existing methods in terms of error slice discovery and model repair
but also provides deeper insights into model failures. We believe HiBug2’s capabilities can drive
broader adoption of slice-based debugging techniques in both academic and industrial settings.
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A APPENDIX

A.1 SCALABILITY AND ROBUSTNESS OF HIBUG2

We address potential concerns regarding the scalability and robustness of HiBug2, particularly fo-
cusing on the attribute and tag generation process. We hope that this discussion provides additional
clarity and insight into the scalability and robustness of HiBug2. We will also add alternative ver-
sions of HiBug2 with reliance on other multi-modal models, such as LLaVA (Liu et al., 2024) and
QWen-VL (Bai et al., 2023), in the future.

A.1.1 ENSURING CORRECT ATTRIBUTE AND TAG GENERATION:

Although our method leverages GPT (OpenAI, 2023) for generating attributes and tags, we imple-
ment several mechanisms to ensure correctness. First, we have designed an extensive set of rules to
validate the generated outputs and handling exception scenarios. For example, during dataset-wide
tagging, we verify that the names of the generated attributes and tags align with the predefined cat-
egories and that each tag belongs to the appropriate tag set. Additionally, we introduce the tag “not
visible” for attributes related to elements that may not be present in every image, such as background
features, thereby enhancing flexibility and accuracy in handling various scenarios.

Second, we employ self-correction loops to refine the generation process. For instance, during
attribute generation, we instruct GPT to validate the generated attributes, ensuring there is no con-
ceptual overlap or inappropriate attributes for the objects of interest at hand.

Finally, our prompting strategy incorporates a few-shot approach, featuring carefully curated ex-
amples (distinct from the cases in our experiments). We have observed that this few-shot strategy
significantly improves performance. During our experiments, we encountered minimal issues re-
garding the correctness of the outputs.

A.1.2 INFLUENCES OF TAGGING BIASES:

The tagging process is analogous to a multi-label classification task. Although GPT-4 generally
performs well, occasional tagging errors may occur. These errors might slightly affect the coherence
of certain error slices, but they are unlikely to impact the overall identification process. Since slice
identification is rooted in statistical analysis, the presence of a few misclassified data points typically
does not alter the average performance of a slice.

A.1.3 HANDLING UNNECESSARY ATTRIBUTES:

It is difficult to assess the necessity of specific attributes prior to the error slice discovery phase.
HiBug2 generates a substantially larger set of attributes than existing methods, some of which may
not directly align with human recognition. However, only after analysis can the utility of these
attributes be determined. For instance, in our classification analysis using BLIP, an attribute such as
“is man-made object presented” may initially appear irrelevant. Yet, error slice discovery reveals that
BLIP tends to misclassify black bears as sloth bears when man-made objects, such as the iron fence
of the zoo, is present in the image. Furthermore, we have developed a post-processing algorithm
that effectively removes unnecessary attributes during the error slice discovery stage, ensuring that
only the relevant attributes are retained for slice analysis.

A.1.4 GENERALIZATION TO DIFFERENT TASKS AND DATASETS:

Extending HiBug2 to other tasks primarily involves adjusting the attribute and tag generation pro-
cess, particularly the task-specific prompts used for generating relevant attributes. We provide
prompt templates for easy task extension, allowing users to extend our method by simply modi-
fying task descriptions. For different datasets within the same task, the primary variation lies in the
change of the main object. Through additional experiments on the full ImageNet and COCO de-
tection datasets (not included in the paper), we observe that HiBug2 generalizes well across a wide
range of objects, demonstrating its scalability and flexibility for various tasks and datasets.
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A.1.5 TIME COST OF HIBUG2.

The most time-consuming part of HiBug2 is the process of tag assignment for all the images in
the dataset, which typically accounts for over 95% of the total time, with larger datasets increasing
this proportion. It operates with O(N), where N is the number of images in a dataset, because
GPT-4V generate all attributes for one image in one step. In our experiments, a single query takes
around 6 seconds. We implement parallel processing to accelerate these processes, since the tag
assignments for different data are independent. For a dataset of 10,000 images, if we use 50 threads
to accelerate the labeling process, it typically takes around 30 minutes to run HiBug2. It is also
worth noting that attribute and tag generation and slice enumeration only need to be performed
once for a dataset. When iteratively improving the performance of a model, only the first round
requires labeling and slice enumeration. Subsequent iterations only require the post-processing
steps described in Section 4.1.4, which takes only a few seconds.

A.1.6 THE DIFFICULTIES IN EVALUATION.

Unlike other fields, we cannot find a standardized evaluation process for error slice discovery meth-
ods. Studies often design custom-built datasets and conduct limited comparisons. We identify two
key challenges:

1. Differences in workflow. Even when methods aim for similar goals, as mentioned in sec-
tion2.1, some methods rely heavily on human analysis with LLM-assisted slice discovery,
while others cluster data before human labeling. Approaches like ours and HiBug, however,
label the data first and then discover slices based on attribute clustering. These workflow
differences make it challenging to establish suitable baselines for evaluating each compo-
nent of the method.

2. Error slices have no ground truths. Error slices require shared human-understandable at-
tributes, but even for the same group of data, different individuals may define and label
attributes in vastly different ways(Johnson et al., 2023).

A.1.7 ARE ERROR SLICES DISTINCT BUGS?

Table 3: Model performance on different kinds of data before and after fixing one error slice.

Data type Match Overlap Non-overlap
Before 0.500 0.840 0.829
After 0.875 0.862 0.791

In this paper, error slices are defined based on the combination of tags, and therefore, slices may
overlap in some tags. While error slices are distinct in terms of their tag combinations, they do not
necessarily correspond to distinct bugs. Fixing one error slice may improve the model’s performance
on other related error slices as well.

To test this, we designed a simple experiment to check the impact of fixing one error slice on others.
For the ResNet model used in the classification task described in the main paper, we chose an error
slice corresponding to class teddy bear, defined as (object color: white, object pose: sitting). We
then queried the data matching this error slice (20 images) from a hold-out dataset. We fine-tuned
the model on this data for 20 epochs and evaluated its accuracy on the validation set. We collected
the model’s accuracy on three types of data: (1) Data matching the selected error slice. (2) Data
belonging to error slices that overlap with the selected slice (e.g., (object color: white, xxx), (xxx,
object pose: sitting)). (3) Data belonging to error slices that does not overlap with the selected slice.

The results in Table 3 reveal a significant improvement in the model’s performance on the fixed error
slice. Interestingly, performance on overlapping error slices also improved, suggesting a potential
relationship between these slices and shared model weaknesses. However, performance on non-
overlapping data decreased slightly, likely due to overfitting to the specific distribution of the fine-
tuning data. This experiment suggests that while error slices are defined by distinct tag combinations,
they are not distinct bugs.
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A.2 GENERATED ATTRIBUTES AND TAGS BY HIBUG2 AND THE BASELINE METHODS

Table 4: The full list of attributes and tags generated by the baseline HiBug for the pose estimation
task. For tag sets containing more than five tags, the remaining tags are omitted with ellipses

Attributes Tags
hair color gray, white, red, black, ...
eye color red, blue, black, brown, ...
clothing coat, jacket, underwear, ...

facial expression smiling, excitement, sad, ...
height 1 foot, 5’8, 3 feet, ...
posture laying down, squatting, running, ...

age young, teens, 12, ...
accessories no, earrings, yes, ...
skin tone light and dark, gray, Asian, ...

surroundings field, kitchen, garage, ...

We present a full list of attributes and tags generated by HiBug2 and HiBug for pose estimation in
Table 4 and Table 5. The attributes generated by HiBug primarily focus on the main object, often
neglecting task-specific requirements and potential errors. Furthermore, the tags frequently lack
semantic consistency; for example, the tags associated with the attribute “age” include overlapping
terms such as “young”, “teen”, and “12”. Similarly, the tags for “skin tone” combine both race and
color categories, resulting in semantic ambiguity. This inconsistency can adversely affect the data
slicing process, leading to images with similar semantics being assigned to different slices (e.g.,
slice “teen” versus slice “young”). In contrast, the attributes and tags generated by HiBug2 are
specifically tailored to tasks and errors, ensuring semantic consistency. This makes HiBug2 more
effective for model debugging and refinement.

A.3 DETAILED EXPERIMENTAL SETUP OF SLICE IDENTIFICATION

For image classification, we combine the original training and validation sets of ImageNet. Our error
slice identification focuses on the last 850 images per class, while the first 500 images are used to
train ResNet-18. CLIP (ViT-H-14) and BLIP are public models that have not been explicitly trained
on ImageNet. For these models, we perform zero-shot classification by comparing image features
with text features representing class names.

For pose estimation, our pose dataset contains 47,057 images (24,832 from COCO, with the remain-
der from a private source), primarily used for rehabilitation training in hospitals to recognize patient
movements and assess whether exercises meet required standards. In our experiments, models are
pre-trained on the COCO portion. For error slice discovery, we use 7,057 images from the private
portion as the validation set. For model repair, we select 1,241 images from the private portion.

For object detection, YOLOv8 is trained on the first 5000 images of the KITTI training set. The
other models are pretrained on COCO and are set to focus only on car and pedestrian predictions.
The remaining 2481 images from the dataset are used for error slice identification.

A.4 MORE CASES OF THE IDENTIFIED ERROR SLICES

We present additional visualizations of the identified error slices, along with some noteworthy ob-
servations in Figure 8, Figure 10 and Figure 12. For instance, in Figure 8, we observe that BLIP (Li
et al., 2022a) struggles to correctly classify most black bears whose fur color closely resembles
brown. This suggests that the model’s predictions may rely heavily on color rather than on biologi-
cal features such as ear shape, body size, or the curvature of the bear’s back. This poses significant
challenges for researchers developing animal classification applications based on BLIP.

We also provide the error slices identified by HiBug for comparison in Figure 9 and Figure 11.
Notably, the vanilla HiBug focuses only on error slices defined by a single attribute. To enable slices
with multiple attributes, we applied our slice enumeration algorithm to HiBug. We observe that
the quality of attributes and tags significantly impacts the identified error slices. HiBug’s attributes
focus solely on the main object, and tags for certain attributes, such as ’eyes’ in Figure 9, show
inconsistencies (e.g., ’round’ for shape and ’black’ for color). These limitations can negatively
affect the user experience in practical applications.
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Table 5: The full list of attributes and tags generated by HiBug2 for the pose estimation task. For
tag sets containing more than five tags, the remaining tags are omitted with ellipses

Main Object
Attributes Tags
is arm crossing yes, no
pose complexity simple, medium, complex, not visible
clothes color red, blue, green, yellow, ...
is standing on one leg yes, no
is carrying something yes, no
is on all fours yes, no
pose sitting, jumping, lying down, ...
head orientation front, back, sideways, ...
size large, medium, small
object orientation upright, sideways, inverted, ...
is sitting yes, no
is using props yes, no
leg position together, apart, crossed, ...
limb visibility both arms visible, one arm visible, ...
is crouching yes, no
is partially occluded yes, no
clothes type casual, formal, sportswear ...
facial expression smiling, frowning, neutral, ...
is holding hands behind back yes, no
is leg crossing yes, no
clothes fit tight, loose, fitted, not visible

Background
Attributes Tags
is sky presented yes, no
clutter high, medium, low
is natural habitat presented yes, no
background style urban, rural, natural, artificial, indoors
indoor lighting bright, dim, natural, ...
is dynamic yes, no
is containing other people yes, no
is background similar in color to main object yes, no
background color red, blue, green, ...
is containing reflective surfaces yes, no
is indoor yes, no
weather sunny, cloudy, rainy, ...,
time of day morning, afternoon, evening, ...

Global
Attributes Tags
overall color temperature warm, neutral, cool
image saturation high, medium, low
resolution high, medium, low
camera angle level, high angle, low angle...
noise level high, medium, low
brightness high, medium, low
camera distance from main object close-up, medium shot, wide shot
sharpness sharp, medium, blurry
overall tone warm, cool, neutral
image orientation portrait, landscape
is blurred yes, no
contrast high, medium, low

A.5 DETAILED EXPERIMENTAL SETUP OF THE MODEL REPAIR

In the main paper, we select two model repair scenarios: data-augmented training (i.e., with the
original training data) and model fine-tuning (i.e., without the original training data), across three
different tasks to verify the model repair capability of HiBug2.

For image classification, the ResNet18 model we repair is initially trained on the first 500 images
per class from ImageNet (Deng et al., 2009). We utilize different image search engines to obtain a
new set of 5,000 images from the web, manually ensuring no overlap with the validation set used
for debugging. We then select 250 images from this set to serve as the test set, while the remaining
images are designated as the query set. Both HiBug2 and HiBug, along with random selection,
choose a total of 500 images (100 images per class). For pose estimation, the query and test sets are
derived from an industrial private dataset, with an overall setup similar to the image classification
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task. For object detection, we employ RTMDet-X (Lyu et al., 2022) pretrained on the COCO dataset
and fine-tuned on 1,000 images from the KITTI (Geiger et al., 2012) training set as the baseline
model. We further select another 500 images from the KITTI (Geiger et al., 2012) training set for
our experiment of model repair using the selection methods above and conduct a second-stage fine-
tuning of the model. In this task, error slices are related to objects. For an image containing multiple
objects, the average model performance regarding all objects are calculated and jointly determines
the priority of the images in selection.

A.6 USER STUDY

Table 6: User studies and comparisons between HiBug2 and the existing baseline HiBug

Method Coherence Coverage Utility User Experience
HiBug2 (ours) 4 4 4 4
HiBug 0 0 0 0

We conduct a user study to evaluate the model debugging capabilities of HiBug2 in comparison to
HiBug (Chen et al., 2024). The study involves 4 participants, all of whom are machine learning
and computer vision practitioners. Participants were presented with the methods, a classification
model, and the dataset, and they used these methods to identify error slices. We quantify the user
preferences based on four criteria: (1) slice coherence, (2) slice attribute coverage, (3) slice insight,
and (4) overall user experience.

Models and data. The user study is conducted only on image classification tasks for better sim-
plicity and objective clarity. We use a ResNet18 model with pretrained accuracy 71.2% on the bear
species of ImageNet presented in the main paper.

Metrics. Given the dataset of bear species, the model, and the error slice discovery methods, the
participants were asked to select a preferred method according to the following four criteria:

• Slice coherence, assessing whether the images within a slice exhibit consistent visual at-
tributes and tags, and whether these attributes and tags accurately represent the selected
data samples.

• Slice attribute coverage, evaluating whether the attributes captured in the slices compre-
hensively describe the majority of failure scenarios in the dataset.

• Slice insight, measuring the practical value of a slice for debugging and improving model
performance. This includes evaluating the interpretability of a slice (i.e., whether the at-
tributes and tags align with participants’ expectations of failure scenarios) and its contribu-
tion to model repair (i.e., whether incorporating samples from the slice leads to potential
performance improvements).

• Overall user experience, gauging user satisfaction with the UI design, clarity of the re-
sults, and system runtime.

Results. As shown in Table 6, all of the participants prefer HiBug2 across all metrics, showing
significant improvements in debugging compared to HiBug.

A.7 PSEUDO-CODE OF THE EFFICIENT SLICE ENUMERATION ALGORITHM AND BASELINES

We present the slice enumerations algorithms used in Section5.2 of the main paper. The naive algo-
rithm (Algorithm 1) refers to the brute-force method mentioned in Section4.1.3. It simply lists all
possible data slices and then searches for matching data for each slice. For the tree-structured base-
line (Algorithm 2), compared with DebugAgent (Algorithm 3), this approach lacks the pruning and
the intersection discussed in Section 4.1.4. Compared to the naive approach, the tree-structured base-
line progressively increases the number of attributes included in each data slice during the search.
For example, when searching for all possible data slices for a combination of three attributes, the
algorithm first searches for slices with one attribute, then with two attributes, and finally with three
attributes. When searching for matches for a three-attribute combination, the search is restricted to
the matching data from the parent node, improving search efficiency.
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Algorithm 1 Naive Slice Enumeration
Require: Attribute set A = {a1, a2, . . . , an}, tag sets for each attribute T = {T1, T2, . . . , Tn}, tag

annotations for all data L, data count threshold M , maximum attribute combination depth D
Ensure: Informative slice set S

Sfull ← GetAllCombinations(A, T,D) ▷ Generate all attribute-tag combinations up to
depth D
S ← {} ▷ Initialize the final slice set
for each slice s ∈ Sfull do
s[DATA]← SearchMatchData(L, s) ▷ Find matching data for this slice
if |s[DATA]| ≥M then

S ← S ∪ {s} ▷ Add valid slice to the final set
end if

end for
return S ▷ Return the informative slice set

Algorithm 2 Tree-Structured Slice Enumeration
Require: Attribute set A = {a1, a2, . . . , an}, tag sets for each attribute T = {T1, T2, . . . , Tn}, tag

annotations for all data L, data count threshold M , maximum tree depth D
Ensure: Informative slice set S

S ← {} ▷ Initialize the final slice set
S0 ← {} ▷ Initialize the slice set for depth 0
for d = 1 to D do
Sd ← ExpandSlices(Sd−1, A, T ) ▷ Generate slices by adding an attribute at each depth
for each slice s ∈ Sd do
s[DATA]← SearchMatchData(s[PARENT][DATA], L)

end for
end for
for d = 1 to D do

for each slice s ∈ Sd do
if |s[DATA]| < M then

Remove s from Sd

end if
end for
S ← S ∪ Sd ▷ Add valid slices to the final set

end for
return S ▷ Return the informative slice set

Algorithm 3 Efficient slice enumeration given the attribute and tag sets
Require: Attribute set A = {a1, a2, . . . , an}, tag sets for each attribute T = {T1, T2, . . . , Tn}, tag

annotations for all data L, data count threshold M for slice pruning, maximum tree depth D
Ensure: Informative slice set S

S ← {} ▷ Initialize the final slice set
S0 ← {} ▷ Initialize the slice set for depth 0
for d = 1 to D do
Sd ← MatchPairIntersection(Sd−1, A, T )
for each slice s ∈ Sd do
s[DATA]← SearchMatchData(s[PARENT][DATA], L)
if |s[DATA]| < M then

Remove s from Sd

end if
end for
S ← S ∪ Sd ▷ Add valid slices to the final set

end for
return S ▷ Return the informative slice set
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A.8 PROMPTS IN HIBUG2

For better understanding HiBug2, we provides three important prompts in HiBug2. The few-shot
examples are omitted. For all the prompts in HiBug2, please refer to our code.

Extracting attributes by a comparative approach. This approach is introduced in Section 3.2.1,
it extracts attributes that varied in images of a dataset.

You are a dedicated assistant for spotting the differences between two images and summarizing them into
common visual attributes.
1. Inputs Provided:

- Two images featuring the same main object class.

- The class of main objects.

- A JSON form with keys: ”main object”, ”background”, and ”global”. Each key contains a list of visual
attributes.
2. Tasks:
- Analyze the visual differences between the two images and propose new visual attributes that highlight
these differences.

- Add these new attributes to the corresponding list in the JSON form:

1.”main object”: Attributes related to the main object itself (e.g., ”object color”, ”object size”, ”object
clothes”).

2.”background”: Attributes related to the background scene (e.g., ”background color”, ”is sky presented”,
”natural habitat”).

3.”global”: Attributes related to the overall image quality (e.g., ”brightness”, ”contrast”).

- When you refer the main object class name in attributes, such as ”teddy bear color”, write it as ”object
color”.
- Ensure that each attribute is concise, specific, and clearly describes a visual feature relevant to the main
object class and the category. For example, ”object color” is valid, but ”overall appearance” is too vague.

- Avoid generating attributes that overlap significantly with each other. Each attribute should describe a
distinct feature.

- If an attribute’s value is expected to be ”yes” or ”no”, prepend the attribute name with ”is ”. For example,
”trees presence” should be written as ”is trees presented”.

- Attribute names should clearly reflect the type of value that should be filled in, when an image is given.
Avoid vague or general names. e.g., if the difference is whether trees in the image, use ”is trees presented”
instead of just ”trees”. If the difference is the color of trees, use ”trees color”.

- Visual attributes should be concise, specific, and clearly describe a visual feature. For example, ”object
background” and ”overall appearance” is too vague.

- Only propose attributes that clearly differentiate the two images. Avoid generating redundant or insignifi-
cant attributes.
3. Outputs:

- Provide the updated JSON object with keys ”main object”, ”background”, and ”global”, each containing
a list of visual attributes. Ensure the attributes are unique and relevant.

- Your output should include the form only.

Generating an initial list of potential and unbiased tags. This approach is introduced in Sec-
tion 3.2.2, it establish the semantic scope and granularity for tags of each attribute.

You are a dedicated assistant for finding all possible tags corresponding to specific visual attributes in
images.

Each time, the users will provide you with the following information:

- The main object of the images.

- A JSON form with keys ”main object,” ”background,” and ”global,” where each value is a list of visual
attributes. Each visual attribute belongs to its corresponding key.

Your task is to list all possible tags for each visual attribute and output a JSON form:

1. Categories:
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- Attributes under ”main object” relate specifically to the given main object, attributes under ”background”
relate to the background scene, and attributes under ”global” relate to the overall image quality.

2. Tag Generation:

*Basic Tag List Creation*:

- For each visual attribute, provide a comprehensive list of possible tags. Each tag should represent a
distinct and commonly observable feature related to that attribute.

- Tags should be short, concise, and easily understandable.

*Handling Different Attributes*:

- For attribute start with ”is ”, such as ”is tree presented”. The tag list is [”yes”, ”no”].

- For attribute not start with ”is ”, the tag list enumerates the possible situations or categories, rather than
a yes/no judgment.

*Categorization for Vast Tag Options*:

- If an attribute has a vast or infinite number of possible tags (e.g., ”background types”), categorize these
tags into meaningful groups and list the category names (e.g., ”indoor,” ”outdoor”).

*Contextual Appropriateness*:

- Ensure the tags are contextually appropriate for the main object. For instance, if the main object is ”fish,”
the attribute ”background type” should include tags like ”coral reef,” but not ”sky.”

*Avoiding Redundancy and Overlap*:

- Avoid redundancy in tags. Each tag should be unique within its list and clearly distinguishable from others
(e.g., avoid both ”big” and ”large” in the same list).

- Avoid generating attributes that overlap significantly with others. e.g., for attribute ”object color”, avoid
both specific colors (like ”red” or ”blue”) and ”multicolor” in the same list.

*Completeness of Tag Lists*:

- Aim to make the list of tags as complete as possible. Any commonly seen image of the main object should
be able to match at least one tag for each attribute.

- Propose at least two tags for each attribute, ensuring a variety of relevant options.

*Handling Exceptions*:

- The main object appear at least partially in the image, while the presence of background objects may vary.

- If an attribute pertains to a background object or a specific component of the main object, include ”not
visible” in the tag list to account for cases where that element might not be visible.

3. Outputs:

- Present the results in the same JSON format as the input. The output should be a dictionary with keys
”main object,” ”background,” and ”global,” where the values are dictionaries. In these dictionaries, each
visual attribute name is a key, and the corresponding value is a list of tags.

- Keep the name of attributes from the input form unchanged. For example, if the name of an attribute is
”object size”, you should keep its name ”object size” unchanged in the output form.

- Your output should include the JSON form only.

Predicting unseen error slices for classification task. This approach is introduced in Section 4.2, it
instructs GPT to predict potential error slices that blur boundaries between closely related categories.
It is used for classification task only.

You are a dedicated assistant for predicting attribute-tag combinations that will make data from one class
resemble another class, thereby confusing existing image classification neural network models.

Each time, the users will provide you with the following information:

- The class of the main object.

- The target class for confusion.

- A json form that records all attributes and tags involved. For each object class, the attributes and tags can
be categorized as ‘main object‘, ‘background‘ and ‘global‘. Each attribute corresponds to multiple tags.
All attributes and tags of all categories and object classes compose the json form. - Visual attributes in
”main object” are related to the given main object. Visual attributes in ”background” are related to the
background scene. Visual attributes in ”global” are related to the image quality.
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- A positive integer.

Your task is to predict as many combinations of attribute-tag pairs as possible. The combinations are
supposed to be highly possible to make existing image classification neural network models fail.

- Your output is a form. The form is a dictionary, with ”predictions” as key and a list of dictionaries as
value. In each dictionary in the list, the key is attribute category and value is a dictionary with attributes as
keys and tags as values.

- You need to predict as many combinations as possible.

- You need to use the given attributes and tags, and not create new ones.

- For each predicted attribute, you need to assign one and only one tag.

- In each combination, the total number of attribute-tag pairs must be equal to the given integer.

- In the predicted combinations, there can be multiple attributes of the same category.

- You need to consider the class of the main object and the target class for confusion. You should ensure
that the predicted combinations are highly possible to make existing models confuse main object class with
target object class. For example, the predicted combinations might make the main object looks like the
target class.

- You output the form only. No explanation in your output.
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CLIP

sloth bear

Slice Info:
fur color: brown

Data Count: 38
Average Accuracy: 0.30

ResNet18

BLIP

Slice Info:
background texture: grassy

Data Count: 11
Average Accuracy: 0.36

polar bearblack bear

Slice Info:
is vegetation presented: no
background terrain: muddy

Data Count: 17
Average Accuracy: 0.47

black bear

Slice Info:
object color: white
object accessories: none
Is object wearing clothes: no

Data Count: 11
Average Accuracy: 0.72

Slice Info:
natural habitat: snow

Data Count: 12
Average Accuracy: 0.58

brown bearteddy bear

Slice Info:
Terrain type: rocky

Data Count: 159
Average Accuracy: 0.58

sloth bear

Slice Info:
fur color: dark brown

Data Count: 12
Average Accuracy: 0.66

Slice Info:
fur color: brown

Data Count: 38
Average Accuracy: 0.05

black bearbrown bear

Slice Info:
object color: black
fur texture: smooth
object size: large

Data Count: 12
Average Accuracy: 0.25

Figure 8: Identified slices of the image classification task by HiBug2.

brown bear

Slice Info:
eyes: black
paws: white

Data Count: 21
Average Accuracy: 0.57

ResNet18
(HiBug) Slice Info:

paws: claws
claws: claws

Data Count: 44
Average Accuracy: 0.68

brown bearbrown bear

Slice Info:
eyes: round
posture: sitting

Data Count: 17
Average Accuracy: 0.47

Figure 9: Identified slices of the classification task by baseline method HiBug.
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RTMDet-X

Slice Info:
is road presented: no

Data Count: 439
Average Accuracy: 0.41

Yolov8
Slice Info:
is partially occluded: yes
is paved ground presented: no

Data Count: 81
Average Accuracy: 0.14

PedestrianCar

Slice Info:
is road presented: no

Data Count: 439
Average Accuracy: 0.50

Slice Info:
is partially occluded: yes
is paved ground presented: no

Data Count: 81
Average Accuracy: 0.28

Slice Info:
is road presented: no

Data Count: 439
Average Accuracy: 0.51

Slice Info:
is partially occluded: yes
is paved ground presented: no

Data Count: 81
Average Accuracy: 0.32

ViTDet-L

Slice Info:
is road presented: no

Data Count: 439
Average Accuracy: 0.53

Slice Info:
is partially occluded: yes
is paved ground presented: no

Data Count: 81
Average Accuracy: 0.35

CO-DINO

Figure 10: Identified slices of the object detection task by HiBug2.

Slice Info:
color: white
wheels: wheels are black
interior: back of seat

Data Count: 40
Average Accuracy: 0.54

YoloV8
(HiBug) Slice Info:

make: honda
model: honda civic
license_plate: blurry

Data Count: 46
Average Accuracy: 0.53

CarCar Car

Slice Info:
taillights: red stripes
make: honda
wheels: white

Data Count: 27
Average Accuracy: 0.48

Figure 11: Identified slices of the object detection task by baseline method HiBug.
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Slice Info:
object orientation: sideways
leg position: together
is background similar in color to main object: yes

Data Count: 15
Average Accuracy: 0.57

Slice Info:
pose complexity: complex
leg position: bent
camera angle: sideways

Data Count: 15
Average Accuracy: 0.64

Slice Info:
pose complexity: complex
leg position: bent
facial expression: not visible

Data Count: 18
Average Accuracy: 0.61

Slice Info:
pose: raised arm
clothes type: casual
brightness: medium

Data Count: 11
Average Accuracy: 0.58

RTMPose-Large

RTMPose-Medium

Slice Info:
pose: lying down
head orientation: up
leg position: one leg up

Data Count: 13
Average Accuracy: 0.54

Slice Info:
pose: lying down
camera angle: level

Data Count: 33
Average Accuracy: 0.56

RTMPose-Small

Slice Info:
pose: lying down
object orientation: sideways
leg position: together

Data Count: 58
Average Accuracy: 0.37

Slice Info:
is standing on one leg: yes
camera angle: tilted
image orientation: landscape

Data Count: 12
Average Accuracy: 0.28

RTMPose-Tiny

Figure 12: Identified slices of the pose estimation task by HiBug2.
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