
Under review as a conference paper at ICLR 2021

A CONNECTION BETWEEN OT AND RWOC

Theorem 1. Denote ⇧(a, b) = {S 2 Rn⇥m : S1m = a, S
>1n = b, Sij � 0} for any a 2 Rn and

b 2 Rm. Then at least one of the optimal solutions of the following problem lies in P .
minS2Rn⇥nhC(w), Si, s.t. S 2 ⇧(1n,1n). (14)

Proof. Denote the optimal solution of (14) as Z
⇤. As we mentioned earlier, this is a direct

corollary of Birkhoff–von Neumann theorem (Birkhoff, 1946; Von Neumann, 1953). Specifically,
Birkhoff–von Neumann theorem claims that the polytope ⇧(1n,1n) is the convex hull of the set
of n ⇥ n permutation matrices, and furthermore that the vertices of ⇧(1n,1n) are precisely the
permutation matrices.

On the other hand, (14) is a linear optimization problem. There would be at least one optimal
solutions lies at the vertices given the problem is feasible. As a result, there would be at least one
Z

⇤ being a permutation matrix.

B TWO PERSPECTIVES OF THE MOTIVATIONS OF BILEVEL OPTIMIZATION

B.1 FASTER CONVERGENCE

The bilevel optimization formulation has a better gradient descent iteration complexity than alter-
nating minimization. To see this, consider a quadratic function F (a1, a2) = a

>
Pa + b

>
a, where

a1 2 Rd1 , a2 2 Rd2 , a = [a>
1

, a
>
2

]> 2 R(d1+d2), P 2 R(d1+d2)⇥(d1+d2), b 2 R(d1+d2). To further
simplify the discussion, we assume P = ⇢1(d1+d2)

1>
(d1+d2)

+ (1 � ⇢)Id1+d2 , where Id1+d2 is the
identity matrix. Then we have the following proposition.

Proposition 1. Given F defined in (9), we have
�max(r2

F (a1))

�min(r2F (a1))
= 1 +

1� ⇢+ �

1� ⇢
d1⇢

d2⇢� ⇢+ �+ 1
and

�max(r2
a1a1

L(a1, a2))

�min(r2
a1a1

L(a1, a2))
= 1 +

d1⇢

1� ⇢ .

Proof. For alternating minimization, the Hessian for a1 is a submatrix of P , i.e.,
HAM = ⇢1d11

>
d1

+ (1� ⇢)Id1 ,

whose condition number is

CAM = 1 +
d1⇢

1� ⇢ .

We now compute the condition number for ROBOT. Denote

P =

P11 P12

P21 P22

�
, b =

b1

b2

�
,

where P11 2 Rd1⇥d1 , P12 2 Rd1⇥d2 , P21 2 Rd2⇥d1 , P22 2 Rd2⇥d2 , and b1 2 Rd1 , b2 2 Rd2 .
ROBOT first minimize over a2,

a
⇤
2
(a1) = arg min

a2

F (a1, a2) = �(P22 + �Id2)
�1(P21a1 + b2/2).

Substituting a
⇤
2
(a1) into F (a1, a2), we can obtain the Hessian for a1 is

HROBOT = P11 � P12(P22 + �Id2)
�1

P21.

Using Sherman–Morrison formula, we can explicitly express P
�1

22
as

P
�1

22
=

1

1� ⇢+ �
Id2 �

⇢

(1� ⇢+ �)(1� ⇢+ �+ ⇢d2)
1d21

>
d2

.

Substituting it into HROBOT,

HROBOT = P11 � P12P
�1

22
P21 = (1� ⇢)Id1 +

✓
⇢� d2⇢

2

d2⇢� ⇢+ �+ 1

◆
1d11

>
d1

.

Therefore, the condition number is

CROBOT = 1 +
1� ⇢+ �

1� ⇢
d1⇢

d2⇢� ⇢+ �+ 1
.

14

Under review as a conference paper at ICLR 2021

Note that CAM increases linearly with respect to d1. Therefore, the optimization problem inevitably
becomes ill-conditioned as dimension increase. In contrast, CROBOT can stay in the same order of
magnitude when d1 and d2 increase simultaneously.

Since the iteration complexity of gradient descent is proportional to the condition number (Bottou
et al., 2018), ROBOT needs fewer iterations to converge than AM.

C DIFFERENTIABILITY

Theorem 2. For any ✏ > 0, S
⇤
✏ (w) is differentiable, as long as the cost C(w) is differentiable with

respect to w. As a result, the objective L✏(w) = hC(w), S⇤
✏ (w)i is also differentiable.

Proof. The proof is analogous to Xie et al. (2020).

We first prove the differentiability of S
⇤
✏ (w). This part of proof mirrors the proof in Luise et al.

(2018). By Sinkhorn’s scaling theorem (Sinkhorn & Knopp, 1967),
S
⇤
✏ (w) = diag(e

⇠⇤(w)
✏)e�

C(w)
✏ diag(e

⇣⇤(w)
✏).

Therefore, since Cij(w) is differentiable, �⇤,✏ is differentiable if (⇠⇤(w), ⇣⇤(w)) is differentiable as
a function of w.

Let us set

L(⇠, ⇣; µ, ⌫, C) = ⇠
T
µ + ⇣

T
⌫ � ✏

n,mX

i,j=1

e
�Cij�⇠i�⇣j

✏ .

and recall that (⇠⇤, ⇣⇤) = arg max⇠,⇣ L(⇠, ⇣; µ, ⌫, C). The differentiability of (⇠⇤, ⇣⇤) is proved
using the Implicit Function theorem and follows from the differentiability and strict convexity in
(⇠⇤, ⇣⇤) of the function L.

Theorem 3. Denoting L✏ = hC(w), S⇤
✏ (w)i. The gradient of L✏ with respect to w is

rwL✏ =
1

✏

n,nX

i,j=1

0

@(1� Cij)S
⇤
✏,ij +

n,nX

h,`=1

Ch`S
⇤
✏,h`

d⇠
⇤
h

dCij
+

n,nX

h,`=1

Ch`S
⇤
✏,h`

d⇣
⇤
`

dCij

1

ArwCij , (15)

where

rC⇠

⇤

rC⇣
⇤

�
=

�H

�1
D

0

�
with �H

�1
D 2 R(2n�1)⇥n⇥n

,0 2 R1⇥n⇥n
,

D`ij =
1
✏

(
�`iS

⇤
✏,ij , ` = 1, · · · , n;

�`jS
⇤
✏,ij , ` = n+ 1, · · · , 2n� 1,

H
�1 = �✏

"
(diag(µ))�1 + (diag(µ))�1

S̄⇤
✏K�1

S̄⇤
✏
T
(diag(µ))�1 �(diag(µ))�1

S̄⇤
✏K�1

�K�1
S̄⇤
✏
T
(diag(µ))�1 K�1

#
,

and K = diag(⌫̄)� S̄⇤
✏
T
(diag(µ))�1

S̄⇤
✏ , ⌫̄ = ⌫1:n�1, S̄⇤

✏ = S
⇤
✏,1:n,1:n�1.

Proof. This result is straightforward combining the Sinkhorn’s scaling theorem and Theorem 3 in
Xie et al. (2020).

D ALGORITHM OF THE FORWARD PASS FOR ROBOT-ROBUST

For better numerical stability, in practice we add two more regularization terms,
S
⇤
r
(w), µ̄⇤

, ⌫̄
⇤ = arg minS2⇧(µ̄,⌫̄), µ̄,⌫̄2�n

hC(w), Si+ ✏H(S) + ✏1h(µ̄) + ✏2h(⌫̄), (16)

s.t. F(µ̄, µ) ⇢1, F(⌫̄, ⌫) ⇢2,
where h(µ̄) =

P
i µ̄i log µ̄i is the entropy function for vectors. This can avoid the entries of µ̄ and ⌫̄

shrink to zeros when updated by gradient descent. We remark that since we have entropy term H(S),
the entries of S would not be exactly zeros. Furthermore, we have µ̄ = S1 and µ̄ = S1. Therefore,
theoretically the entries of µ̄ and ⌫̄ will not be zeros. We only add the two more entropy terms for
numerical consideration. The detailed algorithm is in Algorithm 1. Although the algorithm is not
guaranteed to converge to a feasible solution, in practice it usually converges to a good solution
(Wang et al., 2015).

15

Under review as a conference paper at ICLR 2021

Algorithm 1 Solving S
⇤
r

for robust matching

Require: C 2 Rm⇥n
, µ, ⌫, K, ✏, L, ⌘

Gij = e
�Cij

✏

µ̄ = µ, ⌫̄ = ⌫

b = 1n

for l = 1, · · · , L do

a = µ̄/(Gb), b = ⌫̄/(GT
a)

µ̄ = µ̄� ⌘(e a
✏ + ✏1 ⇤ log µ̄), ⌫̄ = ⌫̄ � ⌘(e b

✏ + ✏2 ⇤ log ⌫̄)
µ̄ = max{µ̄, 0}, ⌫̄ = max{⌫̄, 0}
µ̄ = µ̄/(µ̄>1), ⌫̄ = ⌫̄/(⌫̄>1)
if kµ̄� µk2

2
> ⇢1 then

µ̄ = µ +
p
⇢1

µ̄�µ
kµ̄�µk2

end if

if k⌫̄ � ⌫k2
2

> ⇢2 then

⌫̄ = ⌫ +
p
⇢2

⌫̄�⌫
k⌫̄�⌫k2

end if

end for

S = diag(a)�G� diag(b)

E ALGORITHM OF THE BACKWARD PASS FOR ROBOT-ROBUST

Since the derivation is tedious, we first summarize the outline of the derivation, then provide the
detailed derivation.

E.1 SUMMARY

Given µ̄
⇤
, ⌫̄

⇤
, S

⇤
r
(w), we compute the Jacobian matrix dS

⇤
r
(w)/dw using implicit differentiation

and differentiable programming techinques. Specifically, the Lagrangian function of Problem (16)
is

L =hC, Si+ ✏H(S) + ✏1h(µ̄) + ✏2h(⌫̄)� ⇠>(�1m � µ)� ⇣>(�>1n � ⌫)
+ �1(µ̄

>1n � 1) + �2(⌫̄
>1m � 1) + �3(kµ̄� µk2

2
� ⇢1) + �4(k⌫̄ � ⌫k22 � ⇢2).

where ⇠ and ⇣ are dual variables. The KKT conditions (Stationarity condition) imply that the optimal
solution �⇤,✏ can be formulated using the optimal dual variables ⇠⇤ and ⇣⇤ as,

S
⇤
r

= diag(e
⇠⇤
✏)e�

C
✏ diag(e

⇣⇤
✏). (17)

By the chain rule, we have
dS

⇤
r

dw
=

dS
⇤
r

dC

dC

dw
=

✓
@S

⇤
r

@C
+
@S

⇤
r

@⇠⇤
d⇠

⇤

dC
+
@S

⇤
r

@⇣⇤
d⇣

⇤

dC

◆
dC

dw
.

Therefore, we can compute dS
⇤
r
(w)/dw if we obtain d⇠⇤

dC and d⇣⇤

dC .

Substituting (17) into the Lagrangian function, at the optimal solutions we obtain
L = L(⇠⇤, ⇣⇤, µ̄⇤

, ⌫̄
⇤
,�

⇤
1
,�

⇤
2
,�

⇤
3
,�

⇤
4
; C).

Denote r
⇤ = [(⇠⇤)>, (⇣⇤)>, (µ̄)>, (⌫̄)>,�

⇤
1
,�

⇤
2
,�

⇤
3
,�

⇤
4
]>, and �(r⇤; C) = @L(r⇤; C)/@r

⇤. At the
optimal dual variable r

⇤, the KKT condition immediately yields �(r⇤; C) ⌘ 0. By the chain rule,
we have

d�(r⇤; C)

dC
=
@�(r⇤; C)

@C
+
@�(r⇤; C)

@r⇤
dr

⇤

dC
= 0. (18)

Rerranging terms, we obtain

dr
⇤

dC
= �

✓
@�(r⇤; C)

@r⇤

◆�1
@�(r⇤; C)

@C
. (19)

Combining (17), (18), and (19), we can then obtain dS
⇤
r
(w)/dw.

16

Under review as a conference paper at ICLR 2021

E.2 DETAILS

Now we provide the detailed derivation for computing dS
⇤
r
/dw.

Since S
⇤
r

is the optimal solution of an optimization problem, we can follow the implicit function
theorem to solve for the closed-form expression of the gradient. Specifically, we adopt F(µ̄, ⌫) =P

i(µ̄i � µi)2, and rewrite the optimization problem as

min
µ̄,⌫̄,S
hC, Si+ ✏

X

ij

Sij(log Sij � 1) + ✏1

X

i

µ̄i(log µ̄i � 1) + ✏2

X

j

⌫̄j(log ⌫̄j � 1),

s.t.,
X

j

Sij = µ̄i,

X

i

Sij = ⌫̄j ,

X

i

µ̄i = 1,

X

j

⌫̄j = 1,

X

i

(µ̄i � µi)
2 ⇢1,

X

j

(⌫̄j � ⌫j)2 ⇢2.

The Language of the above problem is
L(C, S, µ̄, ⌫̄, ⇠, ⇣,�1,�2,�3,�4)

= hC, Si+ ✏

X

ij

Sij(log Sij � 1) + ✏1

X

i

µ̄i(log µ̄i � 1) + ✏2

X

j

⌫̄j(log ⌫̄j � 1)

� ⇠>(S1m � µ̄)� ⇣>(S>1n � ⌫̄)

+ �1(
X

i

µ̄i � 1) + �2(
X

j

⌫̄j � 1) + �3(
X

i

(µ̄i � µi)
2 � ⇢1) + �4(

X

j

(⌫̄j � ⌫j)2 � ⇢2).

Easy to see that the Slater’s condition holds. Denote
L⇤ = L(C, S

⇤
r
, µ̄

⇤
, ⌫̄

⇤
, ⇠

⇤
, ⇣

⇤
,�

⇤
1
,�

⇤
2
,�

⇤
3
,�

⇤
4
).

Following the KKT conditions,
dL⇤

dS
⇤
r,ij

= Cij + ✏ log S
⇤
r,ij � ⇠⇤i � ⇣⇤j = 0.

Therefore, S
⇤
r,ij = e

⇠⇤i +⇣⇤j �Cij
✏ . Then we have

dS
⇤
r

dw
= (

@S
⇤
r

@C
+
@S

⇤
r

@⇠⇤
d⇠

⇤

dC
+
@S

⇤
r

@⇣⇤
d⇣

⇤

dC
)
dC

dw
.

So all we need to do is to compute d⇠⇤

dC and d⇣⇤

dC . Denote Fij = e
⇠i+⇣j�Cij

✏ . Denote

� =
dL
d⇠

= µ̄� F1m,

 =
dL
d⇣

= ⌫̄ � F
>1n,

p =
dL
dµ̄

= ⇠ + �11n + 2�3(µ̄� µ) + ✏1 log µ̄,

q =
dL
d⌫̄

= ⇣ + �21m + 2�4(⌫̄ � ⌫) + ✏2 log ⌫̄,

�1 =
dL
d�1

= µ̄
>1n � 1,

�2 =
dL
d�2

= ⌫̄
>1m � 1,

�3 = �3(kµ̄� µk2
2
� ⇢1),

�4 = �4(k⌫̄ � ⌫k22 � ⇢2).
Denote � = [�1,�2,�3,�4], and � = [�1,�2,�3,�4]. Following the KKT conditions, we have

� = 0, = 0, p = 0, q = 0,� = 0,

17

Under review as a conference paper at ICLR 2021

at the optimal solutions. Therefore, for the optimal solutions we have
d�

dC
=
@�

@C
+
@�

@⇠⇤
d⇠

⇤

dC
+

@�

@⇣⇤
d⇣

⇤

dC
+

@�

@µ̄⇤
dµ̄

⇤

dC
+

@�

@⌫̄⇤
d⌫̄

⇤

dC
+

@�

@�⇤
d�

⇤

dC
= 0,

d

dC
=
@

@C
+
@

@⇠⇤
d⇠

⇤

dC
+
@

@⇣⇤
d⇣

⇤

dC
+

@

@µ̄⇤
dµ̄

⇤

dC
+
@

@⌫̄⇤
d⌫̄

⇤

dC
+
@

@�⇤
d�

⇤

dC
= 0,

dp

dC
=

@p

@C
+

@p

@⇠⇤
d⇠

⇤

dC
+

@p

@⇣⇤
d⇣

⇤

dC
+

@p

@µ̄⇤
dµ̄

⇤

dC
+

@p

@⌫̄⇤
d⌫̄

⇤

dC
+

@p

@�⇤
d�

⇤

dC
= 0,

dq

dC
=

@q

@C
+

@q

@⇠⇤
d⇠

⇤

dC
+

@q

@⇣⇤
d⇣

⇤

dC
+

@q

@µ̄⇤
dµ̄

⇤

dC
+

@q

@⌫̄⇤
d⌫̄

⇤

dC
+

@q

@�⇤
d�

⇤

dC
= 0

d�

dC
=
@�

@C
+
@�

@⇠⇤
d⇠

⇤

dC
+
@�

@⇣⇤
d⇣

⇤

dC
+

@�

@µ̄⇤
dµ̄

⇤

dC
+

@�

@⌫̄⇤
d⌫̄

⇤

dC
+

@�

@�⇤
d�

⇤

dC
= 0.

Therefore, we have
2

666666666664

d⇠
⇤

dC
d⇣

⇤

dC
dµ̄

⇤

dC
d⌫̄

⇤

dC
d�

⇤

dC

3

777777777775

= �

2

6666666666664

@�

@⇠⇤
@�

@⇣⇤
@�

@µ̄⇤
@�

@⌫̄⇤
@�

@�⇤
@

@⇠⇤
@

@⇣⇤
@

@µ̄⇤
@

@⌫̄⇤
@

@�⇤
@p

@⇠⇤
@p

@⇣⇤
@p

@µ̄⇤
@p

@⌫̄⇤
@p

@�⇤
@q

@⇠⇤
@q

@⇣⇤
@q

@µ̄⇤
@q

@⌫̄⇤
@q

@�⇤
@�

@⇠⇤
@�

@⇣⇤
@�

@µ̄⇤
@�

@⌫̄⇤
@�

@�⇤

3

7777777777775

�1 2

666666666664

@�

@C
@

@C
@p

@C
@q

@C
@�

@C

3

777777777775

.

After some derivation, we have
2

666666666666666666666666664

d⇠⇤

dC
d⇣⇤

dC
dµ̄⇤

dC
d⌫̄⇤

dC
d�⇤

1

dC
d�⇤

2

dC
d�⇤

3

dC
d�⇤

4

dC

3

777777777777777777777777775

= �

2

6666666666666664

�
1

✏
diag(µ̄) �

1

✏
S⇤
r In 0 0 0 0 0

�
1

✏
(S⇤

r)> �
1

✏
diag(⌫̄) 0 Im 0 0 0 0

In 0 2�3In + diag(
✏1
µ̄) 0 1n 0 2(µ̄ � µ) 0

0 Im 0 2�4Im + diag(
✏2
⌫̄) 0 1m 0 2(⌫̄ � ⌫)

0 0 1>
n 0 0 0 0 0

0 0 0 1>
m 0 0 0 0

0 0 2�3(µ̄ � µ)> 0 0 0 kµ̄ � µk22 � ⇢1 0

0 0 0 2�4(⌫̄ � ⌫)> 0 0 0 k⌫̄ � ⌫k22 � ⇢2

3

7777777777777775

�1 2

66666666666664

@�

@C
@

@C
0
0
0
0
0
0

3

77777777777775

,

and
@�h

@Cij
=

1

✏
�hiSij , 8h = 1, · · · , n, i = 1, · · · , n, j = 1, · · · , m

@ `

@Cij
=

1

✏
�`jSij , 8` = 1, · · · , m� 1, i = 1, · · · , n, j = 1, · · · , m.

To efficiently solve for the inverse in the above equations, we denote

A =

2

66664

�1

✏
diag(µ̄) �1

✏
S
⇤
r

In 0

�1

✏
(S⇤

r
)> �1

✏
diag(⌫̄) 0 Im

In 0 2�3In + diag(✏1µ̄) 0
0 Im 0 2�4Im + diag(✏2⌫̄)

3

77775
,

B1 =

1n 0 2(µ̄� µ) 0
0 1m 0 2(⌫̄ � ⌫)

�
,

C1 =

2

664

1>
n 0
0 1>

m

2�3(µ̄� µ)> 0
0 2�4(⌫̄ � ⌫)>

3

775 ,

18

Under review as a conference paper at ICLR 2021

D =

2

64

0 0 0 0
0 0 0 0
0 0 kµ̄� µk2

2
� ⇢1 0

0 0 0 k⌫̄ � ⌫k2
2
� ⇢2

3

75 .

We first A
�1 using the rules for inverting a block matrix,

A
�1 =

K �KL

�LK L + LKL

�
=:

A1 A2

A3 A4

�

where

L =

2�3In + diag(✏1µ̄) 0

0 2�4Im + diag(✏1⌫̄)

��1

, K =

✓
1

✏

diag(µ̄) S

⇤
r

(S⇤
r
)> diag(⌫̄)

�
+ L

◆�1

.

Then using the rules of inverting a block matrix again, we have
2

64
d⇠

⇤

dC
d⇣

⇤

dC

3

75 = (A1 + A2B1(D � C1A4B1)
�1

C1A3)

2

64
@�

@C
@

@C

3

75 .

Therefore, the bottleneck of computation is the inverting step in computing K. Note L is a diagonal
matrix, we can further lower the computation cost by applying the rules for inverting a block matrix
again. The value of �3 and �4 can be estimated from the fact p = 0, q = 0 . We detail the algorithm
in Algorithm 2.

Algorithm 2 Computing the gradient for w

Require: C 2 Rm⇥n
, µ, ⌫, ✏,

dC
dw

Run forward pass to get S = S
⇤
r
, µ̄, ⌫̄, ⇠, ⇣

x1 =
Pdn/2e

i=1
(µ̄i � µi), x2 =

Pn
i=dn/2e(µ̄i � µi), b1 = �

Pdn/2e
i=1

⇠i, b2 = �
Pn

i=dn/2e ⇠i

[�1,�3]> = [dn/2e, x1; n� dn/2e, x2]�1[b1, b2]>

x1 =
Pdm/2e

j=1
(⌫̄j � ⌫j), x2 =

Pm
j=dm/2e(⌫̄j � ⌫j), b1 = �

Pdm/2e
j=1

⇣j , b2 = �
Pm

j=dm/2e ⇣j

[�2,�4]> = [dm/2e, x1; m� dm/2e, x2]�1[b1, b2]>

µ̄ = µ̄ + ✏(2�31n + ✏1
µ̄)�1

, ⌫̄ = ⌫̄ + ✏(2�41m + ✏2
⌫̄)�1

⌫̄
0 = ⌫̄[: �1], S0 = S[:, : �1]

K diag(⌫̄0)� (S0)T (diag(µ̄))�1
S
0

H1 (diag(µ̄))�1 + (diag(µ̄))�1
S
0K�1(S0)>(diag(µ̄))�1

H2 �(diag(µ̄))�1
S
0K�1

H3 (H2)>

H4 K�1

Pad H2 to be [n, m] with value 0
Pad H3 to be [m, n] with value 0
Pad H4 to be [m, m] with value 0
L = diag([✏(2�31n + ✏1

µ̄)�1
, ✏(2�41m + ✏2

⌫̄)�1])

A1 = [H1, H2; H3, H4]
A2 = �A1 · L
A3 = A

>
2

A4 = L + L · A1 · L
E = A1 + A2 · B1(D � C · A4 · B)�1

C · A3, where B1, C1, D defined above
[J1, J2; J3, J4] = E, where J1 2 Rn⇥n

, J2 2 Rn⇥m
, J3 2 Rm⇥n

, J4 2 Rm⇥m

[d⇠
⇤

dC]nij [J1]niSij + [J2]njSij

[d⇣
⇤

dC]mij [J3]miSij + [J4]mjSij

Pad d⇣⇤

dC to be [m, n, m] with value 0

[dLdC]ij 1

✏ (�CijSij +
P

n,m CnmSnm[da
⇤

dC]nij +
P

n,m CnmSnm[db
⇤

dC]mij) + Sij

return
dL
dC

dC

dw

19

Under review as a conference paper at ICLR 2021

(a) `2 distance (b) KL-divergence

Figure 9: Illustration with different choice of F .

F DIFFERENT FORMS OF MARGINAL RELAXATION

In this paper we adopt F to be the Euclidean distance. This is because this choice provides an
OT plan that fits our intuition – the data points with significantly larger transportation cost should
not be considered. Figure 9 shows an illustration. Here, the input distributions are the empirical
distributions of the scalars on the left and the bottom. Notice that there are three support points in
µ that are far away from others, i.e., 10.72, 10.89, 10.96. In Figure 9 (a), the optimal solution �⇤

r

automatically ignores them, matching only the rest of the scalars. One alternative choice of F is the
Kullback–Leibler (KL) divergence (Chizat et al., 2018b), whose resulted formulation possesses an
efficient algorithm for the forward pass, and the differentiability for the backward pass. We do not
adopt it because the OT plan generated by this choice does not fit out intuition: As shown in Figure
9 (b), the OT plan tends to ignore the points that are away from the mean, even with a very small ⇢1
and ⇢2. For both figures, we adopt ✏ = 10�5.

G MORE ON EXPERIMENTS

G.1 UNLABELED SENSING

We now provide more training details for experiments in Section 4.1. Here, AM and ROBOT is
trained with batch size 500 and learning rate 10�4 for 2, 000 iterations. For the Sinkhorn algorithm
in ROBOT we set ✏ = 10�4. We run RS for 2⇥ 105 iterations with inlier threshold as 10�2. Other
settings for the hyper-parameters in the baselines follows the default settings of their corresponding
papers.

G.2 NONLINEAR REGRESSION

For the nonlinear regression experiment in Section 4.2, ROBOT and ROBOT-robust is trained
with learning rate 10�4 for 80 iterations. For n = 100, 200, 500, 1000, 2000, we set batch size
10, 30, 50, 100, 300, respectively.We set ✏ = 10�4 for the Sinkhorn algorithm in ROBOT. For Oracle
and LS, we perform ordinary regression model and ensure convergence, i.e., learning rate 5⇥ 10�2

for 100 iterations.

G.3 FLOW CYTOMETRY

We provide more details for the Flow Cytometry experiment in Section 4.3. In the FC seting,
ROBOT is trained with batch size 1260 and learning rate 10�4 for 80 iterations. In the GFC seting,
ROBOT is trained with batch size 1260 and learning rate 6⇥10�4 for 60 iterations. We set ✏ = 10�4

for the Sinkhorn algorithm in ROBOT. Other settings for the hyper-parameters in the baselines
follows the default settings of their corresponding papers. EM is initialized by AM.

20

Under review as a conference paper at ICLR 2021

G.4 MULTI-OBJECT TRACKING

For the MOT experiments in Section 4.4, the reported results of MOT17 (train) and MOT17 (dev)
is trained on MOT17 (train), and the reported results of MOT20 (train) and MOT20 (dev) is trained
on MOT20 (train). Each model is trained for 1 epoch. We adopt Adam optimizer with learning
rate= 10�5, ✏ = 10�4, and ⌘ = 10�3. To track the birth and death of the tracks, we adapt the
inference code of Xu et al. (2019b).

G.5 COMBINATION WITH RS

Table 2: Pairwise comparisons between RS alone and the com-
bination of RS and ROBOT. The relative error ratio is the ra-
tio of the relative errors of RS alone and RS+ROBOT combina-
tion. Ratios larger than 1 suggest that RS performs worse than
RS+ROBOT combination.

Proportion 25% 50% 75%

Rel. error ratio 1.04 ± 0.20 1.29 ± 0.32 1.27 ± 0.34

As suggested in Figure 2, al-
though RS cannot perform well
itself, retraining the output of RS
using our algorithms increases
the performance by a large mar-
gin. To show that combining RS
and ROBOT can achieve better
results than RS alone, we com-
pare the following two cases: i).
Subsample 2 ⇥ 105 times using
RS; ii). Subsample 105 times us-
ing RS followed by ROBOT for 50 training steps. The result is shown in Table 2. For a larger
permutation proportion, RS alone cannot perform as well as RS+ROBOT combination. Here, we
have 10 runs for each proportion. We adopt SNR= 100, d = 5 for data, and ✏ = 10�4, learning rate
10�4 for ROBOT training.

G.6 THE EFFECT OF ⇢1 AND ⇢2

We visualize S
⇤
r

computed from the robust optimal transport problem in Figure 10. The two input
distributions are Unif(0, 2) and Unif(0, 1). We can see that with large enough ⇢1 and ⇢2, Unif(0, 1)
would be aligned with the first half of Unif(0, 2).

(a) ⇢1 = 0, ⇢2 = 0 (b) ⇢1 = 0.1, ⇢2 = 0.1 (c) ⇢1 = 0.2, ⇢2 = 0.2

Figure 10: Computed S
⇤ for robust optimal transport problem.

G.7 COMPARISON OF RESIDUALS IN LINEAR REGRESSION

Settings. We generate n data points {(yi, [xi, zi])}ni=1
, where xi 2 Rd and zi 2 Re. We first

generate xi ⇠ N (0d, Id), zi ⇠ N (0e, Ie), w ⇠ N (0d+e, Id+e), and "i ⇠ N (0, ⇢
2

noise
). Then we

compute yi = f([xi, zi]; w) + "i. Next, we randomly permute the order of {zi} so that we lose the
data correspondence. Here, D1 = {(xi, yi)} and D2 = {zj} mimic two parts of data collected from
two separate platforms.

We adopt a linear model f(x; w) = x
>

w. To evaluate model performance, we use error=
P

i(byi �
yi)2/

P
i(yi � ȳ)2, where byi is the predicted label, and ȳ is the mean of {yi}.

Baselines. We use Oracle, LS, Stochastic-EM as the baselines. Notice that without a proper ini-
tialization, Stochastic-EM performs well in partially permuted cases, but not in fully shuffled cases.

21

Under review as a conference paper at ICLR 2021

For better visualization, we only include this baseline in one experiment. Furthermore, we adopt
two new baselines: Sliced-GW (Vayer et al., 2019) and Sinkhorn-GW (Xu et al., 2019a), which can
be used to align distributions and points sets.

Results. We visualize the fitting error of regression models in Figure 11. We can see that ROBOT
outperforms all the baselines except Oracle. Also, our model can beat the Oracle model when the
dimension is low or when the noise is large.

Figure 11: Linear regression. We use n = 1000, d = 2, e = 3, ⇢2
noise

= 0.1 as defaults.

22

	Introduction
	ROBOT: A Hypergradient Approach for RWOC
	Equivalent Continuous Formulation
	Conventional Wisdom: Alternating Minimization
	Smooth Bi-level Relaxation
	Solving rWOC by Hypergradient Descent

	ROBOT for Robust Correspondence
	Experiment
	Unlabeled Sensing
	Nonlinear Regression
	Flow Cytometry
	Multi-Object Tracking

	Discussion
	Connection between OT and RWOC
	Two Perspectives of the Motivations of Bilevel Optimization
	Faster Convergence

	Differentiability
	Algorithm of the Forward Pass for ROBOT-robust
	Algorithm of the Backward Pass for ROBOT-robust
	Summary
	Details

	Different forms of marginal relaxation
	More on Experiments
	Unlabeled Sensing
	Nonlinear Regression
	Flow Cytometry
	Multi-Object Tracking
	Combination with RS
	The Effect of 1 and 2
	Comparison of Residuals in Linear Regression

