
Scan and Snap: Understanding Training Dynamics
and Token Composition in 1-layer Transformer

Anonymous Author(s)
Affiliation
Address
email

Abstract
Transformer architecture has shown impressive performance in multiple research1

domains and has become the backbone of many neural network models. However,2

there is limited understanding on how it works. In particular, with a simple pre-3

dictive loss, how the representation emerges from the gradient training dynamics4

remains a mystery. In this paper, for 1-layer transformer with one self-attention5

layer plus one decoder layer, we analyze its SGD training dynamics for the task6

of next token prediction in a mathematically rigorous manner. We open the black7

box of the dynamic process of how the self-attention layer combines input tokens,8

and reveal the nature of underlying inductive bias. More specifically, with the as-9

sumption (a) no positional encoding, (b) long input sequence, and (c) the decoder10

layer learns faster than the self-attention layer, we prove that self-attention acts11

as a discriminative scanning algorithm: starting from uniform attention, it gradu-12

ally attends more to distinct key tokens for a specific next token to be predicted,13

and pays less attention to common key tokens that occur across different next to-14

kens. Among distinct tokens, it progressively drops attention weights, following15

the order of low to high co-occurrence between the key and the query token in16

the training set. Interestingly, this procedure does not lead to winner-takes-all, but17

stops due to a phase transition that is controllable by the learning rates of the two18

layers, leaving (almost) fixed token combination. We verify this scan and snap19

dynamics on synthetic and real-world data (WikiText).20

1 Introduction21

The Transformer architecture [66] has shown wide applications in multiple research domains, in-22

cluding natural language processing [20, 55, 13], computer vision [21, 43, 31], speech [71, 8], mul-23

timodality [54, 7], etc. Recently, large language models (LLMs) based on decoder-only Transformer24

architecture also demonstrate impressive performance [13, 17, 50], after fine-tuned with instruction25

data [18] or reward models [61]. Why a pre-trained model, often supervised by simple tasks such26

as predicting the next word [13, 55, 50] or fill in the blanks [20, 62, 56], can learn highly valuable27

representations for downstream tasks, remains a mystery.28

Many previous works exist to understand how Transformer works. It has been shown that Trans-29

former is a universal approximator [72], can approximate Turing machines [67, 52], and can per-30

form a diverse set of tasks, e.g., hierarchical parsing of context-free grammar [75], if its weights31

are set properly. However, it is unclear whether the weights designed to achieve specific tasks are32

at a critical point, or can be learned by SoTA optimizers (e.g., SGD, Adam [36], AdaFactor [57],33

AdamW [44]). In fact, many existing ML models, such as k-NN, Kernel SVM, or MLP, are also34

universal approximators, while their empirical performance is often way behind Transformer.35

To demystify such a behavior, it is important to understand the training dynamics of Transformer,36

i.e., how the learnable parameters change over time during training. In this paper, as a first step, we37

formally characterize the SGD training dynamics of 1-layer position-encoding-free Transformer for38
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next token prediction, a popular training paradigm used in GPT series [55, 13], in a mathematically39

rigorous manner. The 1-layer Transformer contains one softmax self-attention layer followed by one40

decoder layer which predicts the next token. Under the assumption that the sequence is long, and41

the decoder learns faster than the self-attention layer, we prove the following interesting dynamic42

behaviors of self-attention during training. Frequency Bias: it progressively pays more attention to43

key tokens that co-occur a lot with the query token, and loses attention to tokens that co-occur less.44

Discriminative Bias: it pays attention to distinct tokens that appear uniquely given the next token to45

be predicted, while loses interest to common tokens that appear across multiple next tokens. These46

two properties suggest that self-attention implicitly runs an algorithm of discriminative scanning,47

and has an inductive bias to favor unique key tokens that frequently co-occur with the query ones.48

Furthermore, while self-attention layer tends to become more sparse during training, as suggested49

by Frequency Bias, we discover that it will not collapse to one-hot, due to a phase transition in the50

training dynamics. In the end, the learning does not converge to any stationary points with zero51

gradient, but ventures into a region where the attention changes slowly (i.e., logarithmically over52

time), and appears frozen and learned. We further show that the onset of the phase transition are53

controlled by the learning rates: large learning rate gives sparse attention patterns, and given fixed54

self-attention learning rate, large decoder learning rate leads to faster phase transition and denser55

attention patterns. Finally, the SGD dynamics we characterize in this work, named scan and snap,56

is verified in both synthetic and simple real-world experiments on WikiText-103 [47].57

A few recent works also study Transformer dynamics. Compared to [40] that uses ℓ2 loss, our58

analysis focuses on cross-entropy, which is more realistic, impose no prior knowledge on possible59

attention patterns inaccessible to training, and allow tokens to be shared across topics. Compared60

to [35] that analyzes “positional attention” that is independent of input data with symmetric initial-61

ization, our analysis focus on attention on input data without symmetric assumptions.62

2 Related Works63

Expressiveness of Attention-based Models. A line of work studies the expressive power of64

attention-based models. One direction focuses on the universal approximation power [72, 11, 12,65

19, 52]. More recent works present fine-grained characterizations of the expressive power for certain66

functions in different settings, sometimes with statistical analyses [26, 27, 49, 41, 1, 29, 75, 70, 3, 9].67

Different from our work, the results in these papers are existential and do not take training dynamics68

into consideration.69

Training Dynamics of Neural Networks. Previous works analyze the training dynamics in multi-70

layer linear neural networks [4, 10], in the student-teacher setting [14, 63, 60, 30, 24, 23, 76, 42, 68],71

and infinite-width limit [34, 16, 25, 22, 2, 5, 51, 77, 39, 15, 46, 48, 28, 45], including extentions to72

attention-based models [32, 69]. For self-supervised learning, works exist to analyze linear net-73

works [64] and understand the role played by nonlinearity [65]. Focusing on attention-based mod-74

els, Zhang et al. [73] study adaptive optimization methods in attention models. Jelassi et al. [35]75

propose an idealized setting and show the vision transformer [21] trained by gradient descent can76

learn spatial structure. Li et al. [40] show that the 1-layer Transformer can learn a constrained77

topic model, in which any word belongs to one topic, with ℓ2 loss, BERT [20]-like architecture and78

additional assumptions on learned attention patterns. Snell et al. [59] study the dynamics of a single-79

head attention head to approximate the learning of a Seq2Seq architecture. While these papers also80

study the optimization dynamics of attention-based models, they focus on different settings and do81

not explain the phenomena presented in our paper.82

3 Problem Setting83

Notation. Let {uk}Mk=1 are d-dimensional embeddings, {xt} are discrete tokens. For each token, xt84

takes discrete values from 1 to M and xt := ext
∈ RM is the corresponding one-hot vector, i.e., the85

xt-th entry of xt is 1 while others are zero. uxt
is the token embedding at location t in a sequence.86

Let U = [u1, . . . ,uM ]⊤ ∈ RM×d be the embedding matrix, in which the k-th row of U is the87

embedding vector of token k. X = [x1, . . . ,xT−1]
⊤ ∈ R(T−1)×M is the data matrix encoding the88

sequence of length T − 1. XU ∈ R(T−1)×d is the sequence of embeddings for a given sequence89

τ := {x1, . . . , xT−1}. It is clear that X1M = 1T−1.90

We use X[i] to denote i-th sample in the sequence dataset. Similarly, xt[i] is the token located at t91

in i-th sample, and τ [i] is the i-th sequence. Let D be the dataset used for training.92
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Figure 1: Overall of our setting. (a) A sequence with contextual tokens {x1, . . . , xT−1} and last token xT is
fed into 1-layer transformer (self-attention plus normalization and decoding) to predict the next token xT+1. (b)
The definition of sequence classes (Sec. 3.1). A sequence class specifies the conditional probability P(l|m,n)
of the contextual tokens, given the last token xT = m and the next token xT+1 = n. For simplicity, we
consider the case that the last token is determined by the next token: xT = ψ(xT+1), while the same last token
m may correspond to multiple next tokens (i.e., ψ−1(m) is not unique).

1-Layer Transformer Architecture. Given a sequence τ = {x1, . . . , xT , xT+1}, the embedding93

after 1-layer self attention is:94

ũT =

T−1∑
t=1

btTuxt
, btT :=

exp(u⊤
xt
WQW

⊤
Kuxt′/

√
d)∑T−1

t=1 exp(u⊤
xt
WQW⊤

Kuxt′/
√
d)

(1)

Here btT is the normalized self-attention weights (
∑T−1
t=1 btT = 1). One important detail is that95

we mask the weight that the query token attends to itself, which is also being used in previous96

works (e.g., QK-shared architecture [37]). See Sec. 7 for discussions about residual connection. Let97

bT := [b1T , . . . , bT−1,T ]
⊤ ∈ RT−1 be an attention vector, then b⊤T 1 = 1 and ũT = U⊤X⊤bT .98

ℓ2-Normalization. We consider adding a normalization in ũT : ũT = U⊤LN(X⊤bT ), where99

LN(x) := x/∥x∥2. NormFormer [58] also leverages this setting. Our analysis can also be extended100

to standard LayerNorm [6], which also subtracts the mean of x. Empirically ũT or WV ũT is101

normalized (instead of X⊤bT ) and here we use an approximation to facilitate analysis.102

Objective. We maximize the likelihood of predicted (T + 1)-th token using cross entropy loss:103

max J := ED

[
u⊤
xT+1

WV ũT − log
∑
l

exp(u⊤
l WV ũT )

]
(2)

We call xT = m as the last token of the sequence, and xT+1 = n as the next token to be predicted.104

Other tokens xt (1 ≤ t ≤ T − 1) that are encoded in X are called contextual tokens. Both the105

contextual and last tokens can take values from 1 to M (i.e., m ∈ [M ]) and next token takes the106

value from 1 to K (i.e., n ∈ [K]) where K ≤M .107

3.1 Data Generation108

Next we specify a data generation model, named sequence class, for our analysis.109

Sequence Class. We regard the input data as a mixture of multiple sequence classes. Each se-110

quence class is characterized by a triple sm,n := (P(l|m,n),m, n). To generate a sequence instance111

from the class, we first set xT = m and xT+1 = n, and then generate the contextual tokens with112

conditional probability P(l|m,n). Let supp(m,n) be the subset of token l with P(l|m,n) > 0.113

In this work, we consider the case that given a next token xT+1 = n, the corresponding sequence114

always ends with a specific last token xT = m =: ψ(n). This means that we could index sequence115

class with next token xT+1 = n alone: sn := (P(l|ψ(n), n), ψ(n), n), P(l|m,n) = P(l|n) and116

supp(n) := supp(ψ(n), n).117

On the other hand, |ψ−1(m)| ≥ 2 is allowed in our analysis. Note that |ψ−1(m)| = 1 means that118

the occurrence of token m alone decides next token n to be predicted, regardless of other tokens in119

the sequence, which is a trivial case. When |ψ−1(m)| ≥ 2, the same last token m, combined with120

other token l in the sequence with non-zero probability P(l|m,n) > 0, determine the next token.121

Overlapping sequence class. Two sequence classes sn and sn′ overlap if supp(n)∩ supp(n′) ̸= ∅.122
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(Global) distinct and common tokens. Let Ω(l) := {n : P(l|n) > 0} be the subset of next tokens123

that co-occur with contextual token l. We now can identify two kinds of tokens: the distinct token124

l which has |Ω(l)| = 1 and the common token l with |Ω(l)| > 1. Intuitively, this means that there125

exists one common token l so that both P(l|n) and P(l|n′) are strictly positive, e.g., common words126

like ‘the’, ‘this’, ‘which’ that appear in many sequence classes. In Sec. 5, we will see how127

these two type of contextual tokens behave very differently when self-attention layer is involved in128

training: distinct tokens tend to be paid attention while common tokens tend to be ignored.129

3.2 Reparameterization130

Instead of studying the dynamics with respect to the parameters of token embedding U , key, value131

and query projection matrices WK , WQ and WV , we study the dynamics of two pairwise token132

relation matrices Y := UW⊤
V U

⊤ ∈ RM×M and Z := UWQW
⊤
KU

⊤/
√
d ∈ RM×M . Intuitively,133

entries of Y and Z store the “logits” of pairs of tokens. We regard the empirical parameterization134

using U , WK , WQ and WV as a specific way of parametrization of Y and Z, in order to reduce135

the number of parameters to be estimated. Previous work also leverage similar parameterization for136

self-attention layers [35, 38].137

For real-world applications, the number of tokens M can be huge (e.g., the vocabulary size M =138

50272 in OPT-175B [74]) and directly optimize Y and Z would be prohibitive. However, as we will139

show in this work, from the theoretical perspective, treating Y and Z as independent variables has140

some unique advantages.141

Lemma 1 (Dynamics of 1-layer Transformer). The gradient dynamics of Eqn. 2 with batchsize 1 is:142

Ẏ = ηY LN(X⊤bT )(xT+1 −α)⊤, Ż = ηZxT (xT+1 −α)⊤Y ⊤ P⊥
X⊤bT

∥X⊤bT ∥2
X⊤diag(bT )X (3)

Here P⊥
v := I−vv⊤/∥v∥22 projects a vector into v’s orthogonal complementary space, ηY and ηZ143

are the learning rates for the decoder layer Y and self-attention layer Z, α := [α1, . . . , αM ]⊤ ∈144

RM and αm := exp(Y ⊤LN(X⊤bT ))/1
⊤ exp(Y ⊤LN(X⊤bT )).145

We consider Y (0) = Z(0) = 0 as initial condition. This is reasonable since empirically Y and146

Z are initialized by inner product of d-dimensional vectors whose components are independently147

drawn by i.i.d Gaussian. This initial condition is also more realistic than [35] that assumes dominant148

initialization in diagonal elements. Since (xT+1−α)⊤1 = 0 and P⊥
X⊤bT

X⊤diag(bT )X1 = 0, we149

have Ẏ 1 = Ż1 = 0 and summation of rows of Z(t) and Y (t) remains zero. Since xT is a one-hot150

column vector, the update of Z = [z1, z2, . . . ,zM ]⊤ is done per row:151

żm = ηZX
⊤[i]diag(bT [i])X[i]

P⊥
X⊤[i]bT [i]

∥X⊤[i]bT [i]∥2
Y (xT+1[i]−α[i]) (4)

where m = xT [i] is the last token for sample i, zm is the m-th row of Z and żm′ = 0 for row152

m′ ̸= m = xT [i]. Note that if xT [i] = m, then bT [i] is a function of zm only (but not a function of153

zm′ for m′ ̸= m). Here we explicitly write down the current sample index i, since batchsize is 1.154

3.3 Assumptions155

To make our analysis easier, we make the following assumptions:156

Assumption 1. We consider (a) no positional encoding, (b) The input sequence is long (T → +∞)157

and (c) The decoder layer learns much faster than the self-attention layer (i.e., ηY ≫ ηZ).158

Assumption 1(a) suggests that the model is (almost) permutation-invariant. Given the next token to159

predict xT+1 = n and the last token xT = m acted as query, the remaining tokens in the sequence160

may shuffle. Assumption 1(b) indicates that the frequency of a token l appearing in the sequence161

approaches its conditional probability P(l|m,n) := P(l|xT = m,xT+1 = n).162

Given the event {xT = m,xT+1 = n}, suppose for token l, the conditional probability that it163

appears in the sequence is P(l|m,n). Then for very long sequence T → +∞, in expectation the164

number of token l appears in a sequence of length T approaches TP(l|m,n). Therefore the per-165

token self-attention weight cl|m,n is computed as:166

cl|m,n :=
TP(l|m,n) exp(zml)∑
l′ TP(l′|m,n) exp(zml′)

=
P(l|m,n) exp(zml)∑
l′ P(l′|m,n) exp(zml′)

=:
c̃l|m,n∑
l′ c̃l′|m,n

(5)
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Figure 2: Overview of the training dynamics of self-attention map. Here c̃l|m,n := P(l|m,n) exp(zl) is the
un-normalized attention score (Eqn. 5). (a) Initialization stage. zl(0) = 0 and c̃l|m,n = P(l|m,n). Distinct
tokens (Sec. 3.1) shown in blue, common tokens in yellow. (b) Common tokens (CT) are suppressed (żl < 0,
Theorem 2). (c) Winners-take-all stage. Distinct tokens (DT) with large initial value c̃l|m,n(0) start to dominate
the attention map (Sec. 5, Theorem 3). (d) One passing the phase transition time step t ≥ t0 = O(K lnM/ηY ),
attention appears (almost) frozen (Sec. 6) and token composition is fixed in the self-attention layer.

Here zml is zm’s l-th entry and c̃l|m,n := P(l|m,n) exp(zml) is un-normalized attention score.167

Lemma 2. Given the event {xT = m,xT+1 = n}, when T → +∞, we have168

X⊤bT → cm,n, X⊤diag(bT )X → diag(cm,n) (6)

where cm,n = [c1|m,n, c2|m,n, . . . , cM |m,n]
⊤ ∈ RM . Note that c⊤m,n1 = 1.169

By the data generation process (Sec. 3.1), given the next token xT+1 = n, the last token xT = m is170

uniquely determined. In the following, we just use cn to represent cm,n (and similar for c̃n).171

4 Dynamics of Y172

We first study the dynamics of Y . From Assumption 1(c), Y learns much faster and we can treat the173

lower layer output (i.e., X⊤bT ) as constant. From Lemma 2, when the sequence is long, we know174

given the next token xT+1 = n, X⊤bT becomes fixed. Therefore, the dynamics of Y becomes:175

Ẏ = ηY fn(en −αn)
⊤, αn =

exp(Y ⊤fn)

1⊤ exp(Y ⊤fn)
(7)

Here fn := X⊤bT

∥X⊤bT ∥2
→ cn

∥cn∥2
∈ RM . Obviously ∥fn∥2 = 1 and fn ≥ 0. Define176

F = [f1, . . . ,fK ]. Since the vocabulary size M typically is a huge number, and different sequence177

classes can cover diverse subset of vocabulary, we study the weak correlation case:178

Assumption 2 (Weak Correlations). We assume M ≫ K2 and {fn}Kn=1 satisfies F⊤F = I + E,179

where the eigenvalues of E ∈ RK satisfies |λ1| < 1
K and |λi(E)| ≥ 6√

M
,∀i ∈ [K].180

Assumption 2 means that fn share some weak correlations and it immediately leads to the fact that181

F⊤F is invertible and F is column full-rank. Note that the critical point Y ∗ of Eqn. 7 should satisfy182

that for any given xT+1 = n, we need α = en. But such Y ∗ must contain infinity entries due to183

the property of the exponential function in α and we can not achieve Y ∗ in finite steps. To analyze184

Eqn. 7, we leverage a reparameterized version of the dynamics, by setting W = [w1, . . . ,wK ]⊤ :=185

F⊤Y ∈ RK×M and compute gradient update on top of W instead of Y :186

Lemma 3. Given xT+1 = n, the dynamics of W is (here αj = exp(wj)/1
⊤ exp(wj)):187

ẇj = ηY I(j = n)(en −αn) (8)

While we cannot run gradient update on W directly, it can be achieved by modifying the gradient of188

Y to be Ẏ = ηY (fn − FE′en)(en −αn)
⊤. If λ1 is small, the modification is small as well.189

Lemma 3 shows that for every fixed n, only the corresponding row of W is updated, which makes190

the analysis much easier. We now can calculate the backpropagated gradient used in Eqn. 3.191

Theorem 1. If Assumption 2 holds, the initial condition Y (0) = 0, M ≫ 100, ηY satisfies192

M−0.99 ≪ ηY < 1, and each sequence class appears uniformly during training, then after193
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t ≫ K2 steps of batch size 1 update, given event xT+1[i] = n, the backpropagated gradient194

g[i] := Y (xT+1[i]−α[i]) takes the following form:195

g[i] = γ

ιnfn −
∑
n′ ̸=n

βnn′fn′

 (9)

Here the coefficients ιn(t), βnn′(t) and γ(t) are defined in Appendix with the following properties:196

• (a) ξn(t) := γ(t)
∑
n ̸=n′ βnn′(t)f⊤

n (t)fn′(t) > 0 for any n ∈ [K] and any t;197

• (b) The speed control coefficient γ(t) > 0 satisfies γ(t) = O(ηY t/K) when t ≤ ln(M)·K
ηY

198

and γ(t) = O
(
K ln(ηY t/K)

ηY t

)
when t ≥ 2(1+δ′) ln(M)·K

ηY
with δ′ = Θ( ln lnM

lnM ).199

In the appendix, we analyze the original dynamics (Eqn. 7) when all off-diagonal elements of E are200

identical, and Theorem 1 still holds but with a smaller effective learning rate η′Y .201

5 The dynamics of Self-attention202

Now we analyze the dynamics of self-attention logits Z, given the dynamics of upper layer Y .203

Lemma 4 (Self-attention dynamics). With Assumption 1(b) (i.e., T → +∞), Eqn. 4 becomes:204

żm = ηZγ
∑

n∈ψ−1(m)

diag(fn)
∑
n′ ̸=n

βnn′(fnf
⊤
n − I)fn′ , (10)

Now we study the dynamics of two types of contextual tokens (Sec. 3.1), namely distinct tokens205

(DT) which appear only for a single next token (i.e., |Ω(l)| = 1 with Ω(l) := {n : P(l|n) > 0}),206

and common tokens (CT) that appear across multiple next tokens (|Ω(l)| > 1). We show their fates207

are very different: over training, distinct tokens gain attention but common ones lose it. For brevity,208

we omit the subscript m in zm and use zl to represent zml.209

Theorem 2 (Fates of contextual tokens). Let GCT be the set of common tokens (CT), and GDT (n)210

be the set of distinct tokens (DT) that belong to next token n. Then if Assumption 2 holds, under the211

self-attention dynamics (Eqn. 10), we have:212

• (a) for any distinct token l ∈ GDT (n), żl > 0;213

• (b) if |GCT | = 1, then for the single common token l ∈ GCT , żl < 0.214

Now we know DTs grow and a single CT will shrink. For multiple CTs to shrink, the condition can215

be a bit involved (see Appendix). The following theorem further shows that the growth rates of DTs216

critically depend on their initial conditions:217

Theorem 3 (Growth of distinct tokens). For a next token n and its two distinct tokens l and l′, the218

dynamics of the relative gain rl/l′|n(t) := f2nl(t)/f
2
nl′(t)−1 = c̃2l|n(t)/c̃

2
l′|n(t)−1 has the following219

analytic form:220

rl/l′|n(t) = rl/l′|n(0)e
2(zl(t)−zl(0)) =: rl/l′|n(0)χl(t) (11)

where χl(t) := e2(zl(t)−zl(0)) is the growth factor of token l. If there exist a dominant token l0 such221

that the initial condition satisfies rl0/l|n(0) > 0 for all its distinct token l ̸= l0, and all of its common222

tokens l satisfy żl < 0. Then both zl0(t) and fnl0(t) are monotonously increasing over t, and223

e2f
2
nl0

(0)Bn(t) ≤ χl0(t) ≤ e2Bn(t) (12)

hereBn(t) := ηZ
∫ t
0
ξn(t

′)dt′. Intuitively, largerBn gives larger rl0/l|n and sparser attention map.224

Self-attention as an algorithm of token scanning. From Eqn. 11, we could see that self-attention225

performs token scanning. To see that, consider the simplest initialization that z(0) = 0, which means226

that rl0/l|n(0) =
(

P(l0|m,n)
P(l|m,n)

)2
− 1. Therefore, distinct token l with low conditional probability227

P(l|m,n) will have rl0/l|n(0) ≫ 0, According Eqn. 12, this leads to quickly growing ratio rl0/l|n(t),228

which means that the corresponding component fnl will be quickly dwarfed by the dominating229
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component fnl0 . On the other hand, token with high conditional probability P(l|m,n) will have230

smaller rl0/l|n(0), and the ratio rl0/l|n(t) grows slower, costing longer time for l0 to dominate l.231

Initial value as prior information. From the theorems, it is clear that the initial value rl/l′|n(0) :=232 (
P(l|m,n) exp(zl(0))
P(l′|m,n) exp(zl′ (0))

)2
− 1 critically determines the fate of the dynamics. Two tokens l and l′ with233

comparable conditional probability P(l|m,n) and P(l′|m,n) can be suppressed in either way, de-234

pending on their initial logits zl(0) and zl′(0). In the empirical implementation, the initial value235

of the logits are determined by the inner products of independently initialized high-dimensional236

vectors, which fluctuate around zero.237

The concept of “initial value as prior” can explain many empirical design choices. Under this per-238

spective, multi-head self-attention [66] leverages multiple heads to create multiple “trials” of such239

initialization, which could enable more diverse token combination (e.g., a combination of 1st, 3rd,240

5th tokens, rather than a combination of 1st, 2nd, 3rd tokens).241

6 The Moment of Snapping: When Token Combination is fixed242

Theorem 3 suggests two possible fates of the self-attention weights: if ξn(t) decays slowly (e.g.,243

ξn(t) ≥ 1/t), then all contextual tokens except for the dominant one will drop (i.e., vnl → 0)244

following the ranking order of their conditional probability P(l|m,n). Eventually, winner-takes-all245

happens. Conversely, if ξn(t) drops so fast that Bn(t) grows very slowly, or even has an upper limit,246

then the self-attention patterns are “snapped” and token combination is learned and fixed.247

The conclusion is not obvious, since ξn(t) depends on the decay rate of γ(t) and βnn′(t), which248

in turns depends on the inner product f⊤
n (t)fn′(t), which is related to the logit zl of the common249

token l that also decays over time.250

Here we perform a qualitative estimation when there is only a single common token l. We assume251

all normalization terms in fn are approximately constant, denoted as ρ0, which means that f⊤
n fn′ ≈252

exp(2zl)/ρ
2
0 and βnn′ ≈ E′

nn′ ≈ f⊤
n fn′ ≈ exp(2zl)/ρ

2
0 as well, and 1 − f⊤

n fn′ ≈ 1 due to the253

fact that common token components are small, and will continue to shrink during training.254

Under these approximations, its dynamics (Eqn. 10) can be written as follows:255

żl = ηZγ(t)
∑

n∈ψ−1(m)

fnl
∑
n′ ̸=n

βnn′(f2nl − 1)fnl′ ≈ −Kρ−4
0 ηZγ(t)e

4zl , ξn(t) ≈ Kρ−4
0 γ(t)e4zl

(13)
Surprisingly, we now find a phase transition by combining the rate change of γ(t) in Theorem 1:256

Theorem 4 (Phase Transition in Training). If the dynamics of the single common token zl satisfies257

żl = −Kρ−4ηZγ(t)e
4zl and ξn(t) = Kρ−4γ(t)e4zl , then we have:258

Bn(t) =


1
4 ln

(
ρ40/K + 2(M−1)2

KM2 ηY ηZt
2
)

t < t′0 := K lnM
ηY

1
4 ln

(
ρ40/K + 2K(M−1)2

M2
ηZ
ηY

ln2(MηY t/K)
)

t ≥ t0 := 2(1+o(1))K lnM
ηY

(14)

As a result, there exists a phase transition during training:259

• Attention scanning. At the beginning of the training, γ(t) = O(ηY t/K) and Bn(t) ≈260
1
4 lnK

−1(ρ40+2ηY ηZt
2) = O(ln t). This means that the growth factor for dominant token261

l0 is (sub-)linear: χl0(t) ≥ e2f
2
nl0

(0)Bn(t) ≈ [K−1(ρ40 + 2ηY ηZt
2)]0.5f

2
nl0

(0), and the262

attention on less co-occurred token drops gradually.263

• Attention snapping. When t ≥ t0 := 2(1 + δ′)K lnM/ηY with δ′ = Θ( ln lnM
lnM ), γ(t) =264

O
(
K ln(ηY t/K)

ηY t

)
and Bn(t) = O(ln ln t). Therefore, while Bn(t) still grows to infinite,265

the growth factor χl0(t) = O(ln t) grows at a much slower logarithmic rate.266

This gives a few insights about the training process: (a) larger learning rate ηY of the decoder Y267

leads to shorter phase transition time t0 ≈ 2K lnM/ηY , (b) scaling up both learning rate (ηY and268

ηZ) leads to larger Bn(t) when t → +∞, and thus sparser attention maps, and (c) given fixed ηZ ,269

small learning rate ηY leads to larger Bn(t) when t ≥ t0, and thus sparser attention map. Fig. 3270

shows numerical simulation results of the growth rate χl(t). Here we set K = 10 and M = 1000,271

and we find smaller ηY given fixed ηZ indeed leads to later transition and larger Bn(t) (and χl(t)).272
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Figure 4: Visualization of cn (n = 1, 2) in the training dynamics of 1-layer Transformer using SGD on
Syn-Small setting. Top row for last token n = 1 and bottom row for last token n = 2. Left: SGD training
with ηY = ηZ = 1. Attention pattern cn becomes sparse and concentrated on highest P(l|n) (rightmost)
for each sequence class (Theorem 3). Right: SGD training with ηY = 10 and ηZ = 1. With larger ηY ,
convergence becomes faster but the final attention maps are less sparse (Sec. 6).

7 Discussion and Limitations273
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Figure 3: Growth factor χl(t) (Theorem 3)
over time with fixed ηZ = 0.5 and changing
ηY . Each solid line is χl(t) and the dotted
line with the same color corresponds to the
transition time t0 for a given ηY .

Positional encoding. While our main analysis does not274

touch positional encoding, it can be added easily follow-275

ing the relative encoding schemes that adds a linear bias276

when computing self attention (E.g., T5 [56], ALiBi [53],277

MusicTransformer [33]). More specifically, the added278

linear bias exp(zml + z0) = exp(zml) exp(z0) corre-279

sponds to a prior of the contextual token to be learned280

in the self-attention layer.281

Residue connection. Residue connection can be added282

in the formulation, i.e., ûT = LN(LN(ũT ) + uxT
),283

where ũT is defined in Eqn. 1, and ûT is used in-284

stead in the objective (Eqn. 2). In this case, the βnn′285

in Theorem 1 now is approximately βnn′ ∼ v⊤
n vn′ +286

I(ψ(n) = ψ(n′)), which is much larger for sequence287

classes n and n′ that share the same last token xT than288

otherwise. In this case, Theorem 1 now gives g[i] =289

γ
(
ιnvn −

∑
n ̸=n′∈ψ−1(ψ(n)) βnn′vn′

)
for xT+1[i] = n.290

Due to the additional constraint n′ ∈ ψ−1(ψ(n)) (i.e., n and n′ shares the same last token), we291

can define local distinct and common token to be within the sequence class subset ψ−1(m) and292

Lemma 2 now applies within each subset. Empirically this makes more sense, since the last token293

xT = m1 orm2 alone can already separate different subsets ψ−1(m1) and ψ−1(m2) and there294

should not be any interactions across the subsets. Here we just present the most straightforward295

analysis and leave this extension for future work.296

8 Experiments297

We conduct experiments on both synthetic and real-world dataset to verify our theoretical findings.298

Syn-Small. Following Sec. 3.1, we constructK = 2 sequence classes with vocabulary sizeM = 30.299

The first 10 tokens (0-9) are shared between classes, while the second and third 10 tokens (10-19 and300

20-29) are distinct for class 1 and class 2, respectively. The conditional probability P(l|n) for token301

10-19 is monotonously increasing (same for 20-29). The 1-layer Transformer is parameterized with302

Y and Z (Sec. 3.2), is trained with initial condition Y (0) = Z(0) = 0 plus SGD (with momentum303

0.9) using a batchsize 128 and sequence length T = 128 until convergence.304

Fig. 4 shows the simulation results that the attention indeed becomes sparse during training, and305

increasing ηY leads to faster convergence but less sparse attention. Both are consistent with our306

theoretical predictions (Theorem 3 and Sec. 6). Interestingly, if we use Adam optimizer instead,307

self-attention with different learning rate ηY = ηZ picks different subsets of distinct tokens to focus308

on, showing tune-able inductive bias (Fig. 5). We leave analysis on Adam for future work.309

Syn-Medium. To further verify our theoretical finding, we now scale up K to create Syn-Medium310

and compute how attention sparsity for distinct tokens (in terms of entropy) changes with the learn-311

ing rates (Fig. 6). We can see indeed the entropy goes down (i.e., attention becomes sparser) with312
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Figure 5: Visualization of (part of) cn for sequence class n = 1 in the training dynamics using Adam [36] on
Syn-Small setting. From left to right: ηV = ηZ = 0.1, 0.5, 1. With different learning rate Adam seems to
steer self-attention towards different subset of distinct tokens, showing tune-able inductive bias.

larger ηZ , and goes up (i.e., attention becomes less sparse) by fixing ηZ and increasing ηY passing313

the threshold ηY /ηZ ≈ 2, consistent with Sec. 6. Note that the threshold is due to the fact that our314

theory is built on Assumption 1(c), which requires ηY to be reasonably larger than ηZ .315
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Figure 6: Average entropy of cn on distinct tokens versus learning rate ratio ηY /ηZ when number of next
tokens K increases. Each data point is averaged over 10 seeds and standard derivation of the mean is shown.
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Figure 7: Attention patterns in the lowest self-attention layer for 1-layer (top) and 3-layer (bottom) Trans-
former trained on WikiText2 using SGD (learning rate is 5). Attention becomes sparse over training.

Real-world Dataset. We also test our finding on WikiText [47] using both 1-layer and multi-layer316

Transformers with regular parameterization that computes Y and Z with embedding U . In both317

cases, attention of the first layer freeze (and become sparse) at some point (Fig. 7), even if the318

learning rate remains the same throughout training. More results are in the Appendix.319

9 Conclusion and Future Work320

In this paper, we formally characterize SGD training dynamics of 1-layer Transformer, and find that321

the dynamics corresponds to a scan and snap procedure that progressively puts more attention to322

key tokens that are distinct and frequently co-occur with the query token in the training set. To our323

best knowledge, we are the first to analyze the attention dynamics and reveal its inductive bias on324

data input, and potentially open a new door to understand how Transformer works.325

Many future works follow. According to our theory, large dataset suppresses spurious tokens that are326

perceived as distinct in a small dataset but are actual common ones. Our finding may help suppress327

such tokens (and spurious correlations) with prior knowledge, without a large amount of data.328
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A Proof of Section 3531

Lemma 1 (Dynamics of 1-layer Transformer). The gradient dynamics of Eqn. 2 with batchsize 1 is:532

Ẏ = ηY LN(X⊤bT )(xT+1 −α)⊤, Ż = ηZxT (xT+1 −α)⊤Y ⊤ P⊥
X⊤bT

∥X⊤bT ∥2
X⊤diag(bT )X (3)

Here P⊥
v := I−vv⊤/∥v∥22 projects a vector into v’s orthogonal complementary space, ηY and ηZ533

are the learning rates for the decoder layer Y and self-attention layer Z, α := [α1, . . . , αM ]⊤ ∈534

RM and αm := exp(Y ⊤LN(X⊤bT ))/1
⊤ exp(Y ⊤LN(X⊤bT )).535

Proof. With the reparameterization of Y and Z, the loss function is the following:536

J(Y,Z) = ED
[
x⊤
T+1Y

⊤LN(X⊤bT )− log(1⊤ exp(Y ⊤X⊤LN(bT )))
]

(15)

and537

αm =
exp(e⊤mY

⊤LN(X⊤bT ))

1⊤ exp(Y ⊤LN(X⊤bT ))
(16)

Therefore, taking matrix differentials, we have:538

dJ = (xT+1 −α)⊤d(Y ⊤LN(X⊤b)) = (xT+1 −α)⊤

(
dY ⊤LN(X⊤b) + Y ⊤ P⊥

X⊤b

∥X⊤b∥
X⊤db

)
(17)

since in general we have d(exp(a)/1⊤ exp(a)) = Lda withL := diag(b)−bb⊤, let a := XZ⊤xT539

and we have:540

dJ = (xT+1 −α)⊤

(
dY ⊤LN(X⊤b) + Y ⊤ P⊥

X⊤b

∥X⊤b∥
X⊤Ld(XZ⊤xT )

)
(18)

= (xT+1 −α)⊤

(
dY ⊤LN(X⊤b) + Y ⊤ P⊥

X⊤b

∥X⊤b∥
X⊤LXdZ⊤xT

)
(19)

Finally notice that P⊥
X⊤bX

⊤L = P⊥
X⊤bX

⊤diag(b) due to the fact that P⊥
v v = 0 and the conclusion541

follows.542

Lemma 2. Given the event {xT = m,xT+1 = n}, when T → +∞, we have543

X⊤bT → cm,n, X⊤diag(bT )X → diag(cm,n) (6)

where cm,n = [c1|m,n, c2|m,n, . . . , cM |m,n]
⊤ ∈ RM . Note that c⊤m,n1 = 1.544

Proof. Let p = [exp(zm1), . . . , exp(zmM )]⊤ ∈ RM , pxt
:= exp(zmxt

), and pX :=545

[exp(zmx1
), . . . , exp(zmxT−1)]

⊤, then for any T we have546

X⊤bT =

T−1∑
t=1

btTxt =

T−1∑
t=1

pxt
xt∑

t′ pxt′

=
X⊤pX

1⊤X⊤pX
(20)

Combining Lemma 18 and the definition of cl|m,n (Eqn. 5), we have that when T → +∞,547

X⊤bT →
M∑
l=1

P(l|m,n) exp(zml)el∑
l′ P(l′|m,n) exp(zml′)

= cm,n (21)

Similarly:548

X⊤diag(bT )X =
X⊤diag(pX)X

1⊤X⊤pX
(22)

Let T → +∞, then we also get549

X⊤diag(bT )X → diag(cm,n) (23)

550

15



B Proof of Section 4551

B.1 Notation552

For convenience, we introduce the following notations for this section:553

• Denote E′ := (I + E)−1 − I .554

• Apply orthogonal diagonalization on E and obtain E = U⊤DU where U :=555

[u1, ...,uK ] ∈ OK×K , D = diag(λ1, ..., λK) and |λ1| ≥ ... ≥ |λK | ≥ 0.556

• Denote F ′ := [F, F ◦] ∈ RM×M where F ◦ ∈ RM×(M−K) is some matrix such that557

rank(F ′) =M . This is possible since {fi}i∈[K] are linear-independent.558

• Denote W ′ := (F ′)⊤Y = [F, F ◦]⊤Y = [W⊤, Y ⊤F ◦]⊤ = [w1, . . . ,wK ,wK+1, . . . ,559

wM ]⊤ ∈ RM×M .560

• Denote ζn := M
M−1 (en − 1

M 1) ∈ RM .561

• Denote q1 := ζ⊤
i ζi = 1 + 1

M−1 , q0 := ζ⊤
j ζi = − M

(M−1)2 where i, j ∈ [M ], i ̸= j.562

• Denote h to be a continuous function that satisfies h(0) = 0 and ḣ = ηY · (M − 1 +563

exp(Mh))−1. Details in Lemma 6.564

• Denote ω1 to be the constant defined in Lemma 8 that satisfies ω1 = Θ( ln ln(M)
ln(M) ).565

• Denote Nn :=
∑N
i=1 I[xT+1 = n] to be the number of times the event xT+1 = n happens.566

• Denote N̄ := ⌈N/K⌉ to be the average value of Nn when P(n) ≡ 1/K and ∆ :=567

⌈
√
N ln( 1δ )⌉ to be the radius of confidence interval centered on N̄ with confidence 1 − δ.568

Here ∆/N̄ ≍ K√
N

√
ln( 1δ ) ≪ 1 since N ≫ K2. Details in Lemma 10 and Remark 4.569

• Denote W̄ ′(N) := [w̄1(N), ..., w̄K(N),0, ...,0]⊤ ∈ RM×M , where w̄n(N) := (M −570

1)h(N̄)ζn, ∀n ∈ [K].571

B.2 Proof of Lemma 3572

We assume ∪m∈[M ]ψ
−1(m) = [K] for convenience, but we claim that our proof can be easily573

generalized into the case where Ω ̸= [K] by reordering the subscript of the vectors. First, we prove574

the dynamics equation of the reparameterized dynamics of Y .575

Lemma 3. Given xT+1 = n, the dynamics of W is (here αj = exp(wj)/1
⊤ exp(wj)):576

ẇj = ηY I(j = n)(en −αn) (8)

While we cannot run gradient update on W directly, it can be achieved by modifying the gradient of577

Y to be Ẏ = ηY (fn − FE′en)(en −αn)
⊤. If λ1 is small, the modification is small as well.578

Proof. We let F ′ := [F, F ◦] ∈ RM×M where rank(F ′) = M , this is possible since {fn}n∈[K]579

are linear-independent. And we further define W ′ := (F ′)⊤Y = [F, F ◦]⊤Y = [W⊤, Y ⊤F ◦]⊤ =580

[w1, . . . ,wK ,wK+1, . . . ,wM ]⊤ ∈ RM×M . When given xT+1 = n, the first term of the differen-581

tial of loss function J is:582

tr

(
dY ⊤ X⊤bT

∥X⊤bT ∥2
(xT+1 −α)⊤

)
= tr(dY ⊤F ′(F ′)−1fn(xT+1 −α)⊤)

= tr(d(W ′)⊤en(xT+1 −α)⊤)

(24)

So Ẇ ′ = en(xT+1 − α)⊤. This nice property will limit W to independently update its n-th row583

for any xT+1 = n ∈ [K], and the last M −K rows of W ′ are not updated. Similarly for α we have584

α =
exp(UWV ũT )

1⊤ exp(UWV ũT )
=

exp(Y ⊤fn)

1⊤ exp(Y ⊤fn)
=

exp(Y ⊤F ′(F ′)−1fn)

1⊤ exp(Y ⊤F ′(F ′)−1fn)
=

exp(wn)

1⊤ exp(wn)
(25)

We get Eqn. 8 by combining the above results.585
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If we don’t run gradient update on W directly, we can run a modified gradient update on Y :586

Ẏ = ηY (fn − FE′en)(en −αn)
⊤ (26)

This will lead to (note that F does not change over time due to Assumption 1 (c)):587

Ẇ = F⊤Ẏ = ηY F
⊤(fn − FE′en)(en −αn)

⊤ (27)

= ηY
[
F⊤fn − F⊤F (I − (I + E)−1)en

]
(en −αn)

⊤ (28)

= ηY
(
F⊤fn − F⊤Fen + en

)
(en −αn)

⊤ (29)

= ηY en(en −αn)
⊤ (30)

By Lemma 17, we know that if λ1 is small, so does maxi∈[K] |λi(E′)| and thus the modification is588

small as well. In Lemma 5 Remark 1, we will show that the additional term −FE′en effectively589

reduces the learning rate, if all off-diagonal elements of E are the same.590

Lemma 3 shows that we can transfer the problem into solving K independent and similar non-linear591

ODE. And we then show that such a problem can be well solved by following Lemma. Recall that592

ζn := M
M−1 (en − 1

M 1) ∈ RM , we have:593

Lemma 5. Assume Y is initialized to be a zero matrix, Z is fixed, and the learning rate of Y is ηY .594

Then if event xT+1 = n always holds at s step (s ≥ 1) we have595

wn(s) = (M − 1)h∗(s)ζn (31)
596

αnj(s) =


exp(Mh∗(s− 1))

(M − 1) + exp(Mh∗(s− 1))
, j = n

1

(M − 1) + exp(Mh∗(s− 1))
, j ̸= n

(32)

And thus en −αn(s) =
M−1

M−1+exp(Mh∗(s−1))ζn. Here h∗(s) satisfies:597

h∗(s) =

h
∗(s− 1) +

ηY
(M − 1) + exp(Mh∗(s− 1))

, s ≥ 1

0 , s = 0
(33)

Proof. We prove this Lemma by induction.598

Step 1: Note that Y is initialized to be a zero matrix, then wi(0) = 0,∀i ∈ [K]. So we have599

αn(1) =
1

M
, ∀j ∈ [K] (34)

ẇnj(1) =


1− 1

M
, j = n

− 1

M
, j ̸= n

(35)

wnj(1) =


ηY (1−

1

M
), j = n

− ηY
M
, j ̸= n

(36)

It’s easy to check that these equations match that of Lemma 5.600
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Step s: Assume the equations of Lemma 5 hold for step s− 1. Then at the s step, we have601

αnj(s) =


exp((M − 1)h∗(s− 1))

exp((M − 1)h∗(s− 1)) + (M − 1) exp(−h∗(s− 1))
=

exp(Mh∗(s− 1))

exp(Mh∗(s− 1)) + (M − 1)
, j = n

exp(−h∗(s− 1))

exp((M − 1)h∗(s− 1)) + (M − 1) exp(−h∗(s− 1))
=

1

exp(Mh∗(s− 1)) + (M − 1)
, j ̸= n

(37)

ẇnj(s) =


M − 1

exp(Mh∗(s− 1)) + (M − 1)
, j = n

− 1

exp(Mh∗(s− 1)) + (M − 1)
, j ̸= n

(38)

wnj(s) =


(M − 1) · ( ηY

exp(Mh∗(s− 1)) + (M − 1)
+ h∗(s− 1)) =(M − 1)h∗(s), j = n

− (
ηY

exp(Mh∗(s− 1)) + (M − 1)
+ h∗(s− 1)) =− h∗(s), j ̸= n

(39)

And the equations of Lemma 5 also hold for step s. So we finish the proof.602

Remark 1. If we following the original dynamics (Eqn. 7), then it corresponds to the W dynamics603

as follows:604

Ẇ = ηY (en + (I + E)E′en)(en −αn)
⊤ = ηY F

⊤fn(en −αn)
⊤ (40)

When all off-diagonal elements of E are identical, i.e., f⊤
n fn′ = ρ for n ̸= n′, then 0 ≤ ρ ≤ 1 and605

we have606

ẇn = ηY (en −αn)
⊤ (41)

ẇj = ηY ρ(en −αn)
⊤, j ̸= n (42)

So if different sequence classes are sampled uniformly, then by similar induction argument, we will607

have608

wn(N) = (M − 1)h∗(N/K)

ζn + ρ
∑
n′ ̸=n

ζn′

 = (1− ρ)(M − 1)h∗(N/K)ζn (43)

where the last equation is due to the fact that
∑
n ζn = M

M−1

∑
n

(
en − 1

M 1
)
= M

M−1 (1−1) = 0.609

This means that
∑
n′ ̸=n ζn′ = −ζn. Therefore, the effective learning rate is η′Y := (1−ρ)ηY ≤ ηY .610

B.3 Property of h∗(s) and its continuous counterpart.611

Before further investigation on Y , we need to get some basic properties of h∗, in particular, how fast612

it grows over time. First, if we consider the continuous version of h∗, namely h, then we can directly613

obtain the equation that h needs to satisfy by integrating the corresponding differential equation.614

Lemma 6. If we consider the continuous version of h∗(s), namely h, as the following ODE:615

dh

dt
=

ηY
(M − 1) + exp(Mh)

(44)

and assume h(0) = 0, then we have616

exp(Mh(t)) + (M − 1)Mh(t) =MηY t+ 1 (45)

617

Then we will show that the h is actually almost the same as the original step function h∗.618

Lemma 7. For h and h∗ we have:619

• (a) For any s ∈ N, 0 ≤ h∗(s) − h(s) ≤ 2ηY
M . Then there exists some constant c = Θ(1)620

such that for any s ≤ ln(M)/ηY , h(s+ c) ≥ h∗(s) ≥ h(s).621

• (b) h∗(s)− h(s) → 0 when s→ +∞.622
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Proof. (a) First we show that h∗(s) ≥ h(s) for all s ∈ N, and the convex packet function of h∗ can623

almost control the upper bound of h. Define h◦ : R+ → R+ as follows:624

h◦(t) := (t− ⌊t⌋) · [h∗(⌈t⌉)− h∗(⌊t⌋)] + h∗(⌊t⌋), ∀t ∈ R+ (46)

Here ⌈·⌉ and ⌊·⌋ mean ceil function and floor function, respectively. It’s clear that h◦ is a strictly625

monotonically increasing function, and for any s ∈ N, h◦(s) = h∗(s), while for any t /∈ N,626

(t, h◦(t)) lies on the line connecting point (⌊t⌋, h∗(⌊t⌋)) and point (⌈t⌉, h∗(⌈t⌉)). To prevent ambi-627

guity, we let ḣ◦(t) to be the left limit of h◦, i.e., ḣ◦(t) = limt′→t− ḣ
◦(t′).628

We claim h(t) ≤ h◦(t), ∀t ∈ R+. We prove it by induction. First when t = 0, we have h◦(0) =629

h∗(0) = h(0) = 0. Then we assume h(t′) ≤ h◦(t′) hold for time t′ ≤ t ∈ N and prove that630

h(t′) ≤ h◦(t′) hold for t′ ∈ (t, t + 1]. If this is not true, then from the continuity of h◦ and h, we631

know it must exist t′′ ∈ (t, t+1] such that h(t′′) ≥ h◦(t′′) and ḣ(t′′) > ḣ◦(t′′). The later condition632

results that ηY [M − 1 + exp(Mh(t′′))]−1 > ηY [M − 1 + exp(Mh∗(⌊t′′⌋))]−1. So633

h(t′′) < h∗(⌊t′′⌋) = h◦(⌊t′′⌋) ≤ h◦(t′′) (47)

This contradicts the hypothesis h(t′′) ≥ h◦(t′′). So h(t′) ≤ h◦(t′) hold for t′ ∈ (t, t + 1] and thus634

for all t ∈ R+. Hence for any s ∈ N, we have h(s) ≤ h◦(s) = h∗(s). Actually, we can use the635

similar method to prove that h(s) < h∗(s) for any s ∈ N+.636

Then we show h∗(s)−h(s) ≤ 2ηY /M by proving that for any s ∈ N+, h(s) must meet at least one637

of the following two conditions:638

(i) h(s) ∈ [h∗(s− 1), h∗(s)].639

(ii) h∗(s)− h(s) < h∗(s− 1)− h(s− 1).640

If (i) doesn’t hold, then we have for any t ∈ [s−1, s), h(t) ≤ h(s) < h∗(s−1) = h◦(s−1), which641

results that ḣ(t) > ḣ◦(t) for all t ∈ [s− 1, s). Therefore, h∗(s)−h∗(s− 1) = h◦(s)−h◦(s− 1) <642

h(s)− h(s− 1) and thus h(s) meets condition (ii). It’s clear that h(0) and h(1) meet (i).643

These two conditions mean that the gap between h∗ and h will not grow if h(s) is smaller than644

h∗(s − 1). Then for all h(s) that meet (i), we have h∗(s) − h(s) ≤ h∗(s) − h∗(s − 1) ≤ h∗(1) −645

h∗(0) = ηY /M from Eqn. 33. And for any s ≥ 2, every time h(s) transfer from (i) to (ii) exactly at646

s, which means that h(s− 1) meets (i) and thus no smaller than h∗(s− 2), we get h∗(s)− h(s) ≤647

h∗(s)− h(s− 1) ≤ h∗(s)− h∗(s− 2) ≤ h∗(2)− h∗(0) ≤ 2ηY /M .648

Finally from Eqn. 53 in Lemma 9, when s ≤ lnM
ηY

, we get h(s) = Θ(ηY t/M) and thus there exist649

some constant c = Θ(1) such that h(s+ c) ≥ h(s) + 2ηY /M ≥ h∗(s) ≥ h(s).650

(b) Assume that there exist ϵ ∈ (0, 2ηY /M ] such that h∗(s) − h(s) ≥ ϵ for all s ∈ N. Since h is651

unbounded, then ḣ(t) → 0 when t → ∞ from Eqn. 33, so there exist some s′0 ∈ N such that when652

s ≥ s′0, h(s+1)−h(s) ≤ ϵ+ln(1/2)/M . Also, from Lemma 9 we know that exists s′′0 = (3+δ) ln(M)
ηY

653

where δ > 0, δ = Θ(1) such that when s ≥ s′′0 , exp(Mh(s)) > 2(M − 1). Since s → ∞, we just654

consider the case that s = ⌊t⌋ ≥ s0 := max(s′0, s
′′
0). Then denote ∆1 := 2(M−1)

exp(Mh(s)) < 1, we have:655

ḣ◦(t)− ḣ(t) =
ηY

M − 1 + exp(Mh∗(s))
− ηY
M − 1 + exp(Mh(t))

≤ ηY
M − 1 + exp(M(h(s) + ϵ))

− ηY
M − 1 + exp(Mh(s+ 1))

= − ηY exp(Mh(s)) · [exp(Mϵ)− exp(Mh(s+ 1)−Mh(s))]

[M − 1 + exp(M(h(s) + ϵ))] · [M − 1 + exp(Mh(s+ 1))]

≤ − ηY exp(Mh(s)) · exp(Mϵ)

2[M − 1 + exp(M(h(s) + ϵ))] · [M − 1 + 1
2 exp(M(h(s) + ϵ))]

≤ − ηY exp(Mϵ)

(1 + ∆1)2 exp(Mh(s)) exp(4ηY )
, (s ≥ s0 = max(s′0, s

′′
0))

≤ − exp(Mϵ)

4 exp(4ηY )M
· 1
t
=: −C

t

(48)
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Figure 8: Numerical simulation of h∗ and h with changing ηY . The stepped folded line represents h∗ and the
smooth curve represents h. The gap between h∗ and h is bounded and goes to zero when time grows.

Here C = exp(Mϵ)
4 exp(4ηY )M > 0 and for the last inequality, we use the fact that t ≥ s′0 >

3 lnM
ηY

and thus656

h(s) ≤ h(t) = O( ln(MηY t)
M ) from Lemma 9. So we get657

[h◦(t)− h(t)]− [h◦(s0)− h(s0)] ≤ −
∫ ∞

t′=s0

Cdt

t
→ −∞ (49)

This contradicts h◦(t) − h(t) ≥ 0! So the original assumption doesn’t hold, which means that658

h∗(s)− h(s) → 0 when s→ ∞.659

Remark 2. By some qualitative estimation, we claim that if ηY = O(1), then there exists some660

constant c = O(lnM) such that h(s) ≤ h∗(s) ≤ h(s + c) for all s > s1 := 2 ln(1+ω1)
ηY

where661

ω1 = Θ(ln lnM/ lnM) is defined in Lemma 8. Denote δh(t) := h◦(t)− h(t), when δh(t) ≪ h(t),662

we have ˙δh(t) = ḣ◦(t) − ḣ(t) ≍ −ηYM · δh(t) · exp(−Mh(t)) ≍ −δh(t)/t by computing the663

second-order derivative of δh, and thus h◦(t)−h(t) ≍ 2ηY s0/(Mt) = O(lnM/(Mt)). Combining664

this with the fact that h(t) = Θ(ln(MηY t)/M) when t > s1, we prove our claim. The results of665

Lemma 7 and Remark 2 are also confirmed by the numerical simulation results as Fig. 8.666

So from Lemma 7 and Remark 2, we just assume ηY < 1 and replace h∗ with h in the latter parts667

for convenience. Then we further investigate the properties of Eqn. 45.668

Lemma 8. There exists ωi, 0 < ωi ≪ 1, i = 2, 3, such that for h ∈ J1 := [ 1
M2−ω0

, (1+ω1) ln(M)
M ],669

we have exp(Mh(t)) ≤ (M − 1)Mh(t). And for h /∈ J1, we have exp(Mh(t)) > (M − 1)Mh(t).670

Here ω1 = Θ( ln ln(M)
ln(M) ), and if M ≫ 100, we have ω0 ≲ ( 1

M0.99 lnM ) ≪ 0.01.671

Proof. It’s obvious that exp(Mh(t)) − (M − 1)Mh(t) has two zero points in R+. Let h(t) =672

M−(2−ω0), we get673

ω0 =
1

lnM
(ln(

M

M − 1
) +

1

M1−ω0
) = O(

1

M0.99 ln(M)
) (50)

For another zero point, let ω1 ∈ (0, 1) to be some constant such that h(t) = (1+ω1) ln(M)
M satisfies674

exp(Mh) = (M − 1)Mh , then we get675

Mω1 = (1 + ω1) ln(M)
(M − 1)

M
= c′ · ln(M)

(M − 1)

M

⇒ ω1 = Θ(
ln ln(M)

ln(M)
)

(51)

where c′ ∈ (0.5, 2) is some universal constant.676

Remark 3. From Lemma 8, if we assume M ≫ 100, then ω0 ≪ 0.01, and if we assume ηY ≫677
1

M1−ω0
> 1

M0.99 , then h(1) ≳ ηY
M ≫ 1

M2−ω0
and function exp(Mh(t))− (M − 1)Mh(t) has only678

one zero point (1+ω1) lnM
M in [1,∞). For convenience, we just assume M ≫ 100 and 1 > ηY ≫679

1
M0.99 and thus focus on the unique zero point (1+ω1) lnM

M of h in the latter parts.680
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We can then show the properties of speed control coefficient γ(t) := (M−1)2h(t/K)
(M−1)+exp(Mh(t/K)) as below.681

Lemma 9. We have two stage for h and γ:682

• When t ≤ K ln(M)
ηY

, we have exp(Mh(t/K)) ≤ min(M − 1, (M − 1)Mh(t/K)), h =683

O(ηY t/(MK)) and γ(t) = O(ηY t/K).684

• When t ≥ 2(1+ω1)K ln(M)
ηY

where ω1 = Θ( ln lnM
lnM ) is defined in Lemma 8, we have685

exp(Mh(t/K)) ≥ max(M − 1, (M − 1)Mh(t/K)), h = O( 1
M ln(MηY t/K)) and686

γ(t) = O(K ln(MηY t/K)
ηY t

).687

Proof. For convenience, we just let K = 1. And the proof for K ̸= 1 is similar. We denote688

∆1(h) :=
exp(Mh)
M−1 and ∆2(h) :=

exp(Mh)
(M−1)Mh .689

Step 1: t ≤ ln(M)
ηY

. If h ≥ ln(M−1)
M , from Eqn. 45 we have:690

t ≥ M − 2 + (M − 1) ln(M − 1)

MηY
>

ln(M)

ηY
(52)

So when t ≤ ln(M)
ηY

we have h < ln(M−1)
M , and thus exp(Mh(t)) ≤ min(M − 1, (M − 1)Mh(t)),691

i.e., ∆1,∆2 ≤ 1. Then from Eqn. 45 we get692

h =
MηY t+ 1

(1 + ∆2)M(M − 1)
= O(

1

M
ηY t) (53)

693

γ =
(M − 1)h

1 + ∆1
=

MηY t+ 1

(1 + ∆1)(1 + ∆2)M
= O(ηY t) (54)

Step 2: t > 2(1+ω1) ln(M)
ηY

where ω1 = Θ( ln ln(M)
ln(M) ). So now h > ln(M−1)

M and thus ∆1 > 1694

from Eqn. 52. Then if exp(Mh) ≤ M(M − 1)h, i.e. ∆2 ≤ 1, from Lemma 8 we have h =695
MηY t+1

(1+∆2)M(M−1) ≤
(1+ω1) ln(M)

M . Therefore,696

t ≤ 1

ηY
((1 + ω1)(1 + ∆2)

M − 1

M
lnM − 1

M
) <

2(1 + ω1) ln(M)

ηY
. (55)

Contradiction! So when t ≥ 2(1+ω1) ln(M)
ηY

, we have ∆2 > 1. Then from Eqn. 45 we get:697

h =
1

M
ln

(
MηY t+ 1

1 +∆−1
2

)
= O(

1

M
ln(MηY t)) (56)

698

γ =
M − 1

M

(M − 1) ln(MηY t+1

1+∆−1
2

)

(1 + ∆−1
1 )(MηY t+1

1+∆−1
2

)
= O

(
ln(MηY t)

ηY t

)
(57)

699

B.4 The dynamics under multiple uniformly sampled sequence classes700

We then generalize our analysis of W to the case where xT+1 can be any value in [K] rather than701

fixing xT+1 = n with the key observation that the row vectors of W ′ can be independently updated.702

Before formalizing this result, we first conduct the concentration inequality of the sampling number703

for each next-token case. Let Nn :=
∑N
i=1 I[xT+1 = n] to be the number of times the event704

xT+1 = n happens, then we have:705

Lemma 10. For δ ∈ (0, 1), with probability at least 1− δ we have706

|Nn − ⌈NP(n)⌉| ≤
√
N

2
ln(

2

δ
) + 1 <

√
N ln(

2

δ
) (58)
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Proof. From Hoeffding’s inequality, we have707

P
(∣∣∣Nn

N
− P(n)

∣∣∣ > t

)
≤ 2 exp(−2Nt2) (59)

Let t =
√

1
2N ln( 2δ ) and we can get the results by direct calculation.708

Remark 4. From Lemma 10, if we consider the uniform sampling case where P(n) ≡ 1
K , then709

NP(n) = N/K ≫
√
N . So Nn are all concentrated around NP(n). Recall the definition of710

N̄ = ⌈N/K⌉ and ∆ = ⌈
√
N ln( 1δ )⌉, with probability at least 1− δ we have:711

|Nn − N̄ | ≲ ∆ ≪ N̄ (60)

We then further investigate the concentration of h(Nn):712

Lemma 11. For δ ∈ (0, 1), with probability at least 1− δ we have713

|h(Nn)− h(N̄)| ≲ h(N̄) · ∆
N̄

(61)

714

| 1

M − 1 + exp(Mh(Nn))
− 1

M − 1 + exp(Mh(N̄))
|

≲
1

M − 1 + exp(Mh(N̄))
· σ′

(62)

where σ′ > 0 is some constant such that σ′ ≤ 1
3ηY∆ ≪ ln(M). And if N ≥ 2K(1+ω1) lnM

ηY
where715

ω1 is defined in Lemma 8, then σ′ ≲ ∆
N̄

≪ 1.716

Proof. First, we note that h has a decreasing gradient, so h(x) ≥ ḣ(x)×x and h(x1+x2)−h(x1) ≤717

ḣ(x1)× x2 for any x1, x2 ≥ 0. So with probability at least 1− δ, we have:718

|h(Nn)− h(N̄)| ≤ h(N̄)− h(N̄ −∆) ≤ ḣ(N̄ −∆)×∆ ≤ h(N̄)∆

N̄ −∆
≍ h(N̄) · ∆

N̄
(63)

For the second inequality, without loss of generality, we let Nn > N̄ . Denote g(s) := (M − 1 +719

exp(Mh(s)))−1 and note that:720

dg

ds
=

M exp(Mh(s))

(M − 1 + exp(Mh(s)))2
· dh
ds

=
1

M − 1 + exp(Mh(s))
· ηYM exp(Mh(s))

(M − 1 + exp(Mh(s)))2

≤ 1

M − 1 + exp(Mh(s))
· M

(M − 1)
· ηY
4

(64)

the last equality holds only when h(s) = ln(M−1)
M . So from |g(N̄ + ∆) − g(Nn)| ≤721

maxs∈[Nn,Nn+∆] ġ(s) ·∆, we get:722

| 1

M − 1 + exp(Mh(N̄ +∆))
− 1

M − 1 + exp(Mh(N̄))
| ≤ 1

M − 1 + exp(Mh(N̄))
· 1
3
ηY∆

(65)
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If N̄ < 2(1+ω1) ln(M)
ηY

+ ∆ with ω1 = Θ( ln lnM
lnM ) defined in Lemma 8, we have σ′ ≤ ηY∆/3 ≪723

ηY N̄ ≲ ln(M). If N̄ ≥ 2(1+ω1) ln(M)
ηY

+∆, we utilize the Eqn.45 and obtain:724

| 1

M − 1 + exp(Mh(N̄ +∆))
− 1

M − 1 + exp(Mh(N̄))
|

=
1

M − 1 + exp(Mh(N̄))
· | exp(Mh(N̄ +∆))− exp(Mh(N̄))|

M − 1 + exp(Mh(N̄ +∆))

≤ 1

M − 1 + exp(Mh(N̄))
· MηY∆

M − 1 + exp(Mh(N̄ +∆))
, (Eqn. 45)

≤ 1

M − 1 + exp(Mh(N̄))
· MηY∆

M + 1
2 ·MηY (N̄ +∆)

, (Lemma 9, Nn ≥ 2(1 + ω1) ln(M)

ηY
+∆)

≲
1

M − 1 + exp(Mh(N̄))
· ∆
N̄

So σ′ ≤ ∆/N̄ . When Nn < N̄ , with probability at least 1− δ we have Nn ≳ N̄ −∆, and similar725

inequalities also hold for such cases, so we finish the proof.726

Recall that ζn ∈ RM is defined as ζn = M
M−1 (en − 1

M 1). And we have q1 := ζ⊤
i ζi = 1 +727

1
M−1 , q0 := ζ⊤

j ζi = − M
(M−1)2 for all i, j ∈ [M ] where i ̸= j. For convenience, we denote728

W̄ ′(N) := [w̄1(N), ..., w̄K(N),0, ...,0]⊤ ∈ RM×M , where w̄n(N) := (M − 1)h(⌈N/K⌉)ζn =729

(M − 1)h(N̄)ζn. So using these concentration inequalities, we get:730

Lemma 12. Assume the assumptions in Lemma 5 hold but we uniformly sample the training data.731

Then if the total number of epochs N satisfies N ≫ K2, we have Y = (F ′)−⊤(I + Θ′)W̄ ′(N)732

where Θ′ := diag(θ1, . . . , θK , 0, . . . , 0) ∈ RM×M and with probability at least 1 − δ we have733

|θi| ≲ K√
N

√
ln(Kδ ),∀i ∈ [K].734

Proof. From Lemma 5 and the first inequality of Lemma 11, we know that735

wn(N) = (M − 1)h(Nn)ζn (66)
= (M − 1)h(N̄)ζn + (M − 1)(h(Nn)− h(N̄))ζn (67)
= (1 + θn) · (M − 1)h(N̄)ζn (68)
= (1 + θn)w̄n(N) (69)

where for any δ ∈ (0, 1), with probability at least 1 − δ we have |θi| ≲ K√
N

√
ln(Kδ ),∀n ∈ [K].736

Therefore, W ′(N) = [w1(N), . . . ,wK(N),0, . . . ,0]⊤ = (I + Θ′)W̄ ′(N), then from W ′ =737

(F ′)⊤Y , we finish the proof.738

Then, we can give out the exact solution of Y by pointing out the properties of F ◦ and F ′ from the739

observation that each row of Y should be the linear combination of vectors in {f⊤
n }n∈[K]:740

Theorem 5. If Assumption 2 holds and Y (0) = 0. Furthermore, we assume the training data is741

uniformly sampled and the total number of epochs N satisfies N ≫ K2 . Then the solution of742

Eqn. 26 will be:743

Y = (F †)⊤(I +Θ)W̄ (N) = F (I − E′)(I +Θ)W̄ (N) (70)

Here Θ := diag(θ1, . . . , θK) and for any δ ∈ (0, 1), with probability at least 1 − δ we have |θi| ≲744

K√
N

√
ln(Kδ ),∀i ∈ [K].745

Proof. Let qi, i ∈ [M ] be the i-th row vector of (F ′)−1, then we have q⊤
j fi = I[i = j]. From746

Lemma 12 we get Y = (F ′)−⊤(I +Θ′)W̄ ′(N). And from Eqn. 26, we know all the columns of Y747

are the linear combination of fn, n ∈ [K]. Note that W̄ (N) has only top K rows to be non-zero,748

so we need to constrain that all the top K columns of (F ′)−⊤, i.e., qi, i ∈ [K], to be the linear749

combination of fn, n ∈ [K], which means that q1, . . . , qK must be the basis of Ξ := span(fj ; j ∈750

23



[K]) and thus qK+1, . . . , qM are the basis of Ξ′ := span(fj ;K ≤ j ≤ M). Therefore, we get751

Ξ ⊥ Ξ′, and thus [q1, . . . , qK ] can only be (F †)⊤. So the proof is done.752

753

Actually, we see that the result of Theorem 5 matches the modified gradient update on Y (Eqn. 26).754

And we show that using such reparameterization dynamics, we can still approach the critical point755

of Eqn. 7 in the rate of O( 1
N ):756

Corollary 1. Assume assumptions in Theorem 5 hold, M ≫ 100 and ηY satisfies M−0.99 ≪ ηY <757

1. Then ∀n ∈ [K], we have758

(xT+1 −αn) =
M − 1

(M − 1) + exp(Mh(Nn))
ζn

=
M − 1

(M − 1) + exp(Mh(N̄))
· (1 + σ) · ζn

(71)

where σ > −1 and for any δ ∈ (0, 1), with probability at least 1− δ we have |σ| ≲ ηY

√
N ln( 1δ ),759

and when N ≫ K(
√
N ln( 1δ ) +

2(1+ω1) lnM
ηY

) with ω1 defined in Lemma 8, |σ| ≲ K√
N

√
ln( 1δ ).760

Further, to let ∥xT+1 − αn∥2 ≤ ϵ with probability at least 1 − δ for any n ∈ [K] and ϵ ≪ 1, we761

need the total number of training epochs to be at most O( K
ϵηY

log(Mϵ )).762

Proof. Note that xT+1 = en, then we just need to combine Lemma 5 and the second inequality of763

Lemma 11, to get Eqn. 71. Denote Sn to be the number of training epochs that are needed to let764

∥xT+1 −αn∥2 ≍ ϵ, then we have765

h(Sn) ≍
1

M
ln(

M

ϵ
) (72)

But note that h(t+ 1)− h(t) ≥ ηY
M−1+exp(Mh(Sn))

≍ ηY ϵ
M−1 ,∀t ∈ [0, S − 1] from Eqn. 71, we have766

Sn ≲
h(Sn)

ηY ϵ/(M − 1)
≍ 1

ϵηY
ln(

M

ϵ
) (73)

Note that ϵ≪ 1 and we have N ≫ K2, then we have S =
∑
n Sn ≲ K

ϵηY
ln(Mϵ ).767

B.5 Proof of Theorem 1768

Finally, we turn to prove Theorem 1. Obviously, all the diagonal elements of E are zero and all769

the off-diagonal elements of E are non-negative since cl|m,n ≥ 0. Note that E is a real symmetric770

matrix, then it can be orthogonal diagonalization by E = U⊤DU where U := [u1, ...,uK ] ∈771

OK×K , D = diag(λ1, ..., λK) and |λ1| ≥ ... ≥ |λK | ≥ 0. Then we can get the following properties772

of E and E′:773

Lemma 13. maxi,j∈[K](|Eij |) ≤ |λ1|.774

Proof. We have:775

|Eij | = u⊤
i Duj ≤ |λ1| · ∥ui∥2∥uj∥2, ∀i, j ∈ [K] (74)

776

Lemma 14. If E ∈ RK satisfies |λ1| ≤ λ < 1, then (I +E) is invertible and (I +E)−1 = I −E′777

,where E′ satisfies E′ = U⊤D′U and D′ = diag(λ′1, ..., λ
′
K) and λ′i =

λi

1+λi
,∀i ∈ [K].778
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Proof. Since U is orthonormal and |λi| ≤ λ < 1, we have En = U⊤DnU → O. Then from the779

property of the Neumann series, we get I + E is invertible and780

(I + E)−1 = I +

∞∑
n=1

(−1)nEn (75)

= I + U⊤(

∞∑
n=1

(−Dn)U (76)

= I − U⊤D′U =: I − E′ (77)

Here we define D′ = diag(λ′1, ..., λ
′
K) and use the fact that

∑∞
n=1(−λi)n = − λi

1+λi
781

Lemma 15. If |λ1| ≤ λ < 1, then maxi∈[K] |λi(E′)| ≤ 1
1−λ |λ1| ≤

λ
1−λ .782

Proof. We have783

max
i∈[K]

|λi(E′)| = max
i∈[K]

| − λi
1 + λi

| ≤
maxi∈[K] |λi|

1−maxi∈[K] |λi|
≤ 1

1− λ
|λ1| (78)

784

Lemma 16. Assume that Assumption 2 holds, then all the diagonal elements of E′ are non-785

positive,i.e., E′
ii ≤ 0,∀i ∈ [K]. Further, if there exist any k ̸= i ∈ [K] such that Eki > 0,786

then E′
ii < 0.787

Proof. Note that Eii =
∑K
k=1 λku

2
ik = 0 (here uik is the k-th component of eigenvector ui) and788

|λk| < 1, we have789

E′
ii =

K∑
k=1

λk
1 + λk

u2ik =

K∑
k=1

λku
2
ik −

K∑
k=1

λ2k
1 + λk

u2ik = −
K∑
k=1

λ2k
1 + λk

u2ik ≤ 0 (79)

When E′
ii = 0, then λ := (λ1, . . . , λK) must don’t have overlapping entries with respect to ui,790

which results that Eij :=
∑K
k=1 λkuikujk = 0 holds for any j ∈ [K]. So we prove the results.791

792

Lemma 17. If λ1 < 1, then |E′
nn′ − Enn′ | ≤ |λ1|2(1− |λ1|)−1.793

Proof. From Lemma 14 we have:794

|E′
nn′ − Enn′ | = |

K∑
k=1

λkunkun′k −
K∑
k=1

λk
1 + λk

unkun′k|

= |
K∑
k=1

λ2k
1 + λk

unkun′k|

≤ |λ1|2

1− |λ1|

K∑
k=1

|unk||un′k|

≤ |λ1|2

1− |λ1|

√√√√(

K∑
k=1

|unk|2)(
K∑
k=1

|un′k|2) =
|λ1|2

1− |λ1|

(80)

795

Finally we can prove our main theorem in Sec. 4.796
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Theorem 1. If Assumption 2 holds, the initial condition Y (0) = 0, M ≫ 100, ηY satisfies797

M−0.99 ≪ ηY < 1, and each sequence class appears uniformly during training, then after798

t ≫ K2 steps of batch size 1 update, given event xT+1[i] = n, the backpropagated gradient799

g[i] := Y (xT+1[i]−α[i]) takes the following form:800

g[i] = γ

ιnfn −
∑
n′ ̸=n

βnn′fn′

 (9)

Here the coefficients ιn(t), βnn′(t) and γ(t) are defined in Appendix with the following properties:801

• (a) ξn(t) := γ(t)
∑
n ̸=n′ βnn′(t)f⊤

n (t)fn′(t) > 0 for any n ∈ [K] and any t;802

• (b) The speed control coefficient γ(t) > 0 satisfies γ(t) = O(ηY t/K) when t ≤ ln(M)·K
ηY

803

and γ(t) = O
(
K ln(ηY t/K)

ηY t

)
when t ≥ 2(1+δ′) ln(M)·K

ηY
with δ′ = Θ( ln lnM

lnM ).804

Proof. Note that if Assumption 2 holds, then F † = (I − E′)F⊤. Recall q1 := 1 + 1
M−1 ≈ 1 and805

q0 := − M
(M−1)2 ≈ 0. Then given xT+1[i] = n, we get:806

g[i] := Y (xT+1[i]−α[i]) (81)
= F (I − E′)(I +Θ)W̄ (N)(xT+1[i]−α[i]), (Theorem 5) (82)

= (1 + σ)γ ∗ F (I − E′)(I +Θ)[q0, . . . , q1, . . . , q0]
⊤, (Lemma 5,Corollary 1)(83)

= γ

ιnfn −
∑

n′ ̸=n,n′∈[K]

βnn′fn′

 (84)

where807

γ(t) :=
(M − 1)2h(⌈t/K⌉)

(M − 1) + exp(Mh(⌈t/K⌉))
> 0 (85)

ιn := (1 + σ)[q1 · (1 + θn)(1− E′
nn)− q0

∑
k ̸=n,k∈[K]

(1 + θk)E
′
kn] (86)

= (1 + σ)[(1− E′
nn) · (1 + δ1) + δ2] (87)

βnn′ := (1 + σ)[q1 · (1 + θn)E
′
nn′ + q0((1 + θn′) +

∑
k ̸=n,k∈[K]

(1 + θk)E
′
kn′))] (88)

= (1 + σ)[E′
nn′ · (1 + δ1) + δ3] (89)

Here σ is defined in Cor. 1 and satisfies −1 < σ ≪ lnM . |δ1| ≲ K√
N

√
ln( 1δ ) +

1
M ≪ 1 and808

|δ2|, |δ3| ≤ M
(M−1)2 × 2(1 + 3|δ1|) < 3

M . Here we use the fact that |θ|, |θi| ≲ K√
N

√
ln( 1δ ),809 ∑

k∈[K] λkujkujn′ = Ekn′ and the fact from Lemma 15:810

|E′
kn| ≤ max

i∈[K]
|λi(E′)| ≤ 1

1− 1/K
|λ1| ≤

1

K − 1
(90)

(a) Now let’s prove that ξn(t) > 0. First from (I + E)(I − E′) = I we have E − E′ − EE′ = O.811

Then use the symmetry of E and E′, we get812

(EE′)nn =
∑
k=1

EnkE
′
kn =

∑
k=1

EnkE
′
nk =

∑
k=1

EnkE
′
nk =

∑
k ̸=n

EnkE
′
nk + EnnE

′
nn (91)

Note that F⊤F = I + E, we have Enn′ = f⊤
n fn′ ,∀n′ ̸= n and Enn = 0. Then813

(E − E′ − EE′)nn = Onn = 0 ⇒
∑
k ̸=n

EnkE
′
nk = −E′

nn (92)
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Note that |λi(E)| > 0,∀i ∈ [K] in Assumption 2 implies that Eki > 0 holds for some k ̸= i ∈ [K].814

Then from (1) of Lemma 16 we get
∑
k ̸=nE

′
nn′f⊤

n fn′ > 0.815

From Theorem 1 we have βnn′ = (1+ σ)[E′
nn′ · (1+ δ1) + δ3]. Note that 0 < 1+ σ ≪ ln(M), we816

have:817

∑
n′ ̸=n

βnn′f⊤
n fn′ = (1 + σ)[

∑
n′ ̸=n

[E′
nn′(1 + δ1) + δ3]Enn′ ]

= (1 + σ)[−(1 + δ1)E
′
nn + δ3

∑
n′ ̸=n

Enn′ ]

= (1 + σ)[(1 + δ1)

K∑
k=1

λ2k
1 + λk

u2nk + δ3
∑
n′ ̸=n

Enn′ ] (Eqn. 79)

≥ (1 + σ)[
1 + δ1
1− |λ1|

(min
i

|λi(E)|2)− 3

M
·K|λ1|], (Eqn. 90, |δ3| <

3

M
)

> (1 + σ)[
1

2
(min

i
|λi(E)|2)− 3

M
·K|λ1|], (|δ1| ≪ 1, |λ1| <

1

K
≪ 1)

> 0, (Assumption 2)
(93)

(b) We directly use Lemma 9, then we finish the proof.818

C Proof of Section 5819

Lemma 4 (Self-attention dynamics). With Assumption 1(b) (i.e., T → +∞), Eqn. 4 becomes:820

żm = ηZγ
∑

n∈ψ−1(m)

diag(fn)
∑
n′ ̸=n

βnn′(fnf
⊤
n − I)fn′ , (10)

Proof. Taking long sequence limit (T → +∞), and summing over all possible choices of next token821

xT+1 = n, plugging in the backpropagated gradient (Eqn. 9) into the dynamics of Z with last token822

m (Eqn. 4), we arrive at the following:823

żm = ηZ
∑

n∈ψ−1(m)

diag(cn)
P⊥
fn

∥cn∥2
Y (xT+1[i]−α[i]) (94)

= −ηZγ
∑

n∈ψ−1(m)

diag(fn)P
⊥
fn

∑
n′ ̸=n

βnn′fn′ (95)

= ηZγ
∑

n∈ψ−1(m)

diag(fn)(fnf
⊤
n − I)

∑
n′ ̸=n

βnn′fn′ (96)

Note here we leverage the property that P⊥
f f = 0 and P⊥

cn
= P⊥

fn
.824

Theorem 2 (Fates of contextual tokens). Let GCT be the set of common tokens (CT), and GDT (n)825

be the set of distinct tokens (DT) that belong to next token n. Then if Assumption 2 holds, under the826

self-attention dynamics (Eqn. 10), we have:827

• (a) for any distinct token l ∈ GDT (n), żl > 0;828

• (b) if |GCT | = 1, then for the single common token l ∈ GCT , żl < 0.829

Proof. For any token l, we have:830

żl = ηZγ
∑

n∈ψ−1(m)

fnl
∑
n′ ̸=n

βnn′
[
(f⊤
n fn′)fnl − fn′l

]
(97)
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Distinct token. For a token l distinct to n, by definition, for any n′ ̸= n, P(l|m,n′) = 0 and831

fn′l(t) ∝ P(l|m,n′) exp(zl) ≡ 0. Therefore, we have:832

żl = ηZγf
2
nl

∑
n′ ̸=n

βnn′f⊤
n fn′ = ηZf

2
nlξn > 0 (98)

Note that żl ≥ 0 is achieved by ξn > 0 from Theorem 1.833

Common token. If n and n′ does not overlap then diag(fn)(fnf
⊤
n − I)fn′ = −diag(fn)fn′ = 0.834

When n and n′ overlaps, letGCT (n, n′) := {l : P(l|n)P(l|n′) > 0} be the subset of common tokens835

shared between n and n′, since |GCT | = 1 and ∅ ≠ GCT (n, n
′) ⊆ GCT :=

⋃
n ̸=n′ GCT (n, n

′), we836

have |GCT (n, n′)| = 1 and l ∈ GCT (n, n
′), i.e., the common token l is the unique overlap. Then837

we have:838

fnl
[
(f⊤
n fn′)fnl − fn′l

]
= (f⊤

n fn′)f2nl − f⊤
n fn′ = −(1− f2nl)(f

⊤
n fn′) (99)

So we have:839

żl = −ηZγ
∑

n∈ψ−1(m)

(1− f2nl)
∑
n′ ̸=n

βnn′f⊤
n fn′ = −ηZ

∑
n∈ψ−1(m)

(1− f2nl)ξn ≤ 0 (100)

Since ξn(t) > 0, the only condition that żl = 0 is that f2nl = 1. However, since at least one such840

n has another distinct token l′, and thus fnl′ > 0, by normalization condition, fnl < 1 and thus841

żl < 0.842

843

Note that for multiple common tokens, things can be quite involved. Here we prove a case when the844

symmetric condition holds.845

Corollary 2 (Multiple CTs, symmetric case). If Assumption 2 holds and assume846

• (1) Symmetry. For any two next tokens n ̸= n′, there exists a one-to-one mapping ϕ that847

maps token l ∈ GDT (n) to l′ ∈ GDT (n
′) so that P(l|n) = P(ϕ(l)|n′);848

• (2) Global common tokens with shared conditional probability: i.e., the global common849

token set GCT satisfies the following condition: for any l ∈ GCT , P(l|n) = ρl, which is850

independent of next token n;851

• (3) The initial condition Z(0) = 0.852

Then for any common token l ∈ G∗
CT , żl < 0.853

Proof. We want to prove the following induction hypothesis: for any t (a) zl(t) = zϕ(l)(t) for n854

and n′, where n (and n′) are the next tokens that the distinct token l (and l′) belongs to, and (b) the855

normalization term o2n(t) :=
∑
l c̃

2
l|n(t) = o2(t), i.e., it does not depend on n.856

We prove by induction on infinitesimal steps δt. First when t = 0, both conditions hold due to the857

initial condition Z(0) = 0. Then we assume that both conditions hold for time t, then by symmetry,858

we know that for any n1 and any distinct l1 ∈ GDT (n1),859

żl1(t) = ηZγf
2
n1l1

∑
n′ ̸=n1

βn1n′f⊤
n1
fn′ = ηZγf

2
n2l2

∑
n′ ̸=n2

βn2n′f⊤
n2
fn′ = żl2(t) (101)

where l2 = ϕ(l1) is the image of the distinct token l1. This is because (1) f⊤
n1
fn′ =860 ∑

l∈G∗
CT

ρ2l exp(2zl(t))/o
2(t) is independent of n1 and n′ by inductive hypothesis, therefore, β861

is also independent of its subscripts. And (2) f2n1l1
:= c̃2l1|n1

/o2(t) = c̃2l2|n2
/o2(t) = f2n2l2

.862

Therefore, żl1(t) = żl2(t), which means that zl1(t
′) = zl2(t

′) for t′ = t+ δt.863
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Let GCT (n1, n2) := {l : P(l|n1)P(l|n2) > 0} be the subset of common tokens shared between n1864

and n2, then for their associated n1 and n2, obviously GCT (n1, n2) ⊆ GCT and we have:865

on1
(t′) =

∑
l

c̃2l|n1
(t′) =

∑
l

P2(l|n1) exp(2zl(t′)) (102)

=
∑

l1∈GDT (n1)

P2(l1|n1) exp(2zl1(t′)) +
∑

l∈GCT (n1,n2)

P2(l|n1) exp(2zl(t′)) (103)

=
∑

l1∈GDT (n1)

P2(ϕ(l1)|n2) exp(2zϕ(l1)(t
′)) +

∑
l∈GCT (n1,n2)

ρ2l exp(2zl(t
′)) (104)

=
∑

l2∈GDT (n2)

P2(l2|n2) exp(2zl2(t′)) +
∑

l∈GCT (n1,n2)

P2(l|n2) exp(2zl(t′)) (105)

= on2(t
′) (106)

So we prove the induction hypothesis holds for t′ = t+ δt. Let δt→ 0 and we prove it for all t.866

Now we check the dynamics of common token l ∈ GCT . First we have for any n ̸= n′, f2nl(t) =867

c̃2l|n(t)/o
2(t) = ρ2l exp(2zl(t))/o

2(t) = c̃2l|n′(t)/o2(t) = f2n′l(t) and thus fnl(t) = fn′l(t) :=868

fl(t) > 0, therefore:869

fnl
[
(f⊤
n fn′)fnl − fn′l

]
= −f2l (1− f⊤

n fn′) < 0 (107)

On the other hand, from the proof on induction hypothesis, we know all off-diagonal elements of E870

are the same and are positive. Then all all the off-diagonal elements of E′ are also the same and are871

positive. Following Theorem 1, we know βnn′ > 0 and is independent of the subscripts. Therefore,872

żl < 0.873

Theorem 3 (Growth of distinct tokens). For a next token n and its two distinct tokens l and l′, the874

dynamics of the relative gain rl/l′|n(t) := f2nl(t)/f
2
nl′(t)−1 = c̃2l|n(t)/c̃

2
l′|n(t)−1 has the following875

analytic form:876

rl/l′|n(t) = rl/l′|n(0)e
2(zl(t)−zl(0)) =: rl/l′|n(0)χl(t) (11)

where χl(t) := e2(zl(t)−zl(0)) is the growth factor of token l. If there exist a dominant token l0 such877

that the initial condition satisfies rl0/l|n(0) > 0 for all its distinct token l ̸= l0, and all of its common878

tokens l satisfy żl < 0. Then both zl0(t) and fnl0(t) are monotonously increasing over t, and879

e2f
2
nl0

(0)Bn(t) ≤ χl0(t) ≤ e2Bn(t) (12)

hereBn(t) := ηZ
∫ t
0
ξn(t

′)dt′. Intuitively, largerBn gives larger rl0/l|n and sparser attention map.880

Proof. First of all, for tokens l and l′ that are both distinct for a specific next token n, from Eqn. 98,881

it is clear that882

żl
żl′

= rl/l′|n(t) + 1 = (rl/l′|n(0) + 1)
e2(zl(t)−zl(0))

e2(zl′ (t)−zl′ (0))
(108)

This means that883

e−2(zl−zl(0))żl = (rl/l′|n(0) + 1)e−2(zl′−zl′ (0))żl′ (109)
Integrate both side over time t and we get:884

e−2(zl(t)−zl(0)) − 1 = (rl/l′|n(0) + 1)
[
e−2(zl′ (t)−zl′ (0)) − 1

]
(110)

From this we can get the close-form relationship between rl/l′|n(t) and zl(t):885

rl/l′|n(t) = rl/l′|n(0)e
2(zl(t)−zl(0)) (111)

Now let l be the dominating distinct token l0, then ṙl0/l′|n = rl0/l′|n(0)e
2(zl0 (t)−zl0 (0))żl0 > 0 for886

any token l′ that is distinct to n, and ṙl0/l′|n > 0 for any common token l′, since żl′ < 0. Therefore,887

we have:888

d

dt
(f2nl0) =

d

dt

(
1

M +
∑
l′ ̸=l0 rl′/l0|n

)
> 0 (112)
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Therefore, f2nl0(t) is monotonously increasing. Combined with the fact f2nl0(t) ≤ 1 due to normal-889

ization condition ∥fn∥2 = 1, we have:890

ξn(t) ≥
1

ηZ
żl0 = f2nl0(t)ξn(t) ≥ f2nl0(0)ξn(t) (113)

Integrate over time and we have:891

B(t) ≥
∫ t

0

żl0(t
′)dt′ = zl0(t)− zl0(0) ≥ f2nl0(0)B(t) (114)

where B(t) := ηZ
∫ t
0
ξn(t

′)dt′. Plugging that into Eqn. 111, and we have:892

e2f
2
nl0

(0)B(t) ≤ χl0(t) ≤ e2B(t) (115)

893

D Estimation in Sec. 6894

Theorem 4 (Phase Transition in Training). If the dynamics of the single common token zl satisfies895

żl = −Kρ−4ηZγ(t)e
4zl and ξn(t) = Kρ−4γ(t)e4zl , then we have:896

Bn(t) =


1
4 ln

(
ρ40/K + 2(M−1)2

KM2 ηY ηZt
2
)

t < t′0 := K lnM
ηY

1
4 ln

(
ρ40/K + 2K(M−1)2

M2
ηZ
ηY

ln2(MηY t/K)
)

t ≥ t0 := 2(1+o(1))K lnM
ηY

(14)

As a result, there exists a phase transition during training:897

• Attention scanning. At the beginning of the training, γ(t) = O(ηY t/K) and Bn(t) ≈898
1
4 lnK

−1(ρ40+2ηY ηZt
2) = O(ln t). This means that the growth factor for dominant token899

l0 is (sub-)linear: χl0(t) ≥ e2f
2
nl0

(0)Bn(t) ≈ [K−1(ρ40 + 2ηY ηZt
2)]0.5f

2
nl0

(0), and the900

attention on less co-occurred token drops gradually.901

• Attention snapping. When t ≥ t0 := 2(1 + δ′)K lnM/ηY with δ′ = Θ( ln lnM
lnM ), γ(t) =902

O
(
K ln(ηY t/K)

ηY t

)
and Bn(t) = O(ln ln t). Therefore, while Bn(t) still grows to infinite,903

the growth factor χl0(t) = O(ln t) grows at a much slower logarithmic rate.904

Proof. We start from the two following assumptions:905

żl = −Kρ−4
0 ηZγ(t) exp(4zl) (116)

ξn(t) = Kρ−4
0 γ(t) exp(4zl) (117)

Given that, we can derive the dynamics of zl(t) and ξn(t):906

exp(−4zl)żl = −Kρ−4
0 ηZγ(t) (118)

d exp(−4zl) = 4Kρ−4
0 ηZγ(t)dt (119)

exp(−4zl) = 4Kρ−4
0 ηZ

∫ t

0

γ(t′)dt′ + 1 (use zl(0) = 0) (120)

Let Γ(t) := ηZ
∫ t
0
γ(t′)dt′, then Γ(0) = 0 and dΓ(t) = ηZγ(t)dt. Therefore, we have907

ξn(t) = Kρ−4
0 γ(t) exp(4zl) =

γ(t)

ρ40/K + 4Γ(t)
(121)

and thus Bn(t) := ηZ
∫ t
0
ξn(t

′)dt′ can be integrated analytically, regardless of the specific form of908

γ(t):909

Bn(t) = ηZ

∫ t

0

γ(t′)dt′

ρ40/K + 4Γ(t)
=

∫ t

0

dΓ

ρ40/K + 4Γ
=

1

4
ln(ρ40/K + 4Γ(t)) (122)
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Figure 9: Numerical simulation of Bn(t) with changing ηZ and fixed ν = ηZ/ηY . The dotted line denotes
the transition time t0, and Bn(t0) marked with the solid dot is independent of ηZ .

Recall that γ(t) = (M−1)2h(t/K)
M−1+exp(Mh(t/K)) (Theorem 1). Note that h (if treated in continuous time910

step) is strictly monotonically increasing and satisfies h(0) = 0,dh(t/K) = ηY (M − 1 +911

exp(Mh(t/K)))−1dt/K (Lemma 6 and Lemma 7), we can let γ(h) := (M−1)2h
M−1+exp(Mh) and get:912

Γ(t) := ηZ

∫ t

t=0

γ(t′)dt′ (123)

= ηZK

∫ h(t/K)

h(0)

γ(h′) · M − 1 + exp(Mh′)

ηY
· dh′ (124)

=
ηZ
ηY

K(M − 1)2
∫ h(t/K)

h(0)

h′dh′ (125)

=
ηZ
ηY

· K(M − 1)2

2
h2(t/K) (126)

Therefore, Bn(t) has a close form with respect to h:913

Bn(t) =
1

4
ln

(
ρ40/K + 2

ηZ
ηY

K(M − 1)2h2(t/K)

)
(127)

(1) When t < t′0 := K ln(M)/ηY , from Lemma 9 we have h(t/K) = (1+ o(1)) · ηY t/(MK). We914

neglect the o(1) term and denote ν := ηY /ηZ , then we have when t ≤ t′0:915

Bn(t) =
1

4
ln

(
ρ40/K +

2(M − 1)2

νKM2
η2Y t

2

)
(128)

And Bn(t′0) =
1
4 ln

(
ρ40/K + 2K(M − 1)2M−2ν−1 ln2(M)

)
.916

(2) Similarly, when t > t0 := 2(1 + ω1)K lnM/ηY with ω1 = Θ(ln lnM/ lnM) is defined in917

Lemma 8, from Lemma 9 we have h(t/K) = (1 + o(1)) ln(MηY t/K)/M . We neglect the o(1)918

term and get when t > t0:919

Bn(t) =
1

4
ln

(
ρ40/K +

2K(M − 1)2

νM2
ln2(MηY t/K)

)
(129)

From this we know Bn(t0) = 1
4 ln(ρ

4
0/K + 2K(M − 1)2M−2ν−1 ln2(2(1 + ω1)M lnM)). It’s920

interesting to find that Bn(t0) just depends on K,M and ν, and thus fixing ν and changing ηZ will921

not influence the value of Bn(t0), which means that the main difference between Bn is arises at the922

stage t > t0. This matches the results in Fig. 9.923

(3) Finally, we estimate Bn(t) when t is large. When ν is fixed and t ≫ (MηY )
−1 exp(1/

√
2ν),924

we have925

Bn(t) = (1 + o(1)) · [ 1
2
ln ln(MηY t/K) +

1

4
ln(2K(M − 1)2M−2ν−1)] (130)

= Θ(ln ln(
MηZνt

K
)− ln(

ν

K
)) (131)
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Figure 10: Average self-attention map entropy over the validation sets in 1-layer transformer after training,
when the learning rate ηY and ηZ changes. Note that higher learning rate η leads to higher Bn(t) and thus low
entropy (i.e., more sparsity), which is consistent with our theoretical finding (Sec. 6). All the experiments are
repeated in 5 random seeds. Error bar with 1-std is shown in the figure.

Therefore, from Eqn. 131 we get:926

(a) Fix ν, larger ηZ result in larger Bn(t) and sparser attention map.927

(b) Fix ηZ , larger ν (i.e., larger ηY ) result in smaller Bn(t) and denser attention map since ln ln(x)928

is much slower than ln(x).929

These match our experimental results in the main paper (Fig. 6).930

E Experiments931

We use WikiText [47] dataset to verify our theoretical findings. This includes two datasets, Wiki-932

Text2 and WikiText103. We train both on 1-layer transformer with SGD optimizer. Instead of using933

reparameterization Y and Z (Sec. 3.2), we choose to keep the original parameterization with token934

embedding U and train with a unified learning rate η until convergence. Fig. 10 shows that the av-935

eraged entropy of the self-attention map evaluated in the validation set indeed drops with when the936

learning rate η becomes larger.937

Note that in the original parameterization, it is not clear how to set ηY and ηZ properly and we leave938

it for future work.939

F Technical Lemma940

Lemma 18. Let h = [h1, h2, . . . , hM ]⊤ ∈ RM is some M -dimensional vector, hX :=941

[hx1 , ..., hxT−1
]⊤ ∈ RT−1 is a vector selected by input sequence X , then given event xT =942

m,xT+1 = n, there exists some qm,n = [q1|m,n, q2|m,n, . . . , qM |m,n]
⊤ ∈ RM so that q ≥ 0943

and944

1

T − 1
X⊤hX =

M∑
l=1

ql|m,nhlel = qm,n ◦ h (132)

1

T − 1
X⊤diag(hX)X =

M∑
l=1

ql|m,nhlele
⊤
l = diag(qm,n ◦ h) (133)

where ql|m,n satisfies
∑M
l=1 ql|m,n = 1. And with probability at least 1− δ we have945

max

(
0,P(l|m,n)−

√
ln(2/δ)

2(T − 1)

)
≤ ql|m,n ≤ P(l|m,n) +

√
ln(2/δ)

2(T − 1)
(134)

And thus ql|m,n → P(l|m,n) when T → +∞.946
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Proof. Given that xT = m and xT+1 = n, then we have947

1

T − 1
X⊤hX =

1

T − 1

T−1∑
t=1

hxt
xt =

M∑
l=1

(
1

T − 1

T−1∑
t=1

I[xt = l]

)
hlel =:

M∑
l=1

ql|m,nhlel (135)

And similar equations hold for 1
T−1X

⊤diag(hX)X . Then we consider the case that the previous948

tokens are generated by conditional probability P(l|m,n) as the data generation part, so I[xt =949

l],∀t ∈ [T −1] are i.i.d. Bernoulli random variables with probability P(l|m,n) and Tql|m,n satisfies950

binomial distribution. By Hoeffding inequality, we get951

P(|ql|m,n − P(l|m,n)| ≥ t) ≤ 2 exp(−2(T − 1)t2) (136)

Then we get the results by direct calculation.952
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