
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ADDITIONAL RESULTS

Instruction-following models fail to differentiate between different roles in the Extract-
Translate example in section 1 We test the “benign” example introduced in section 1 with
popular instruction-following models. We find all follow the user instruction with high probabil-
ity. In particular, we tested on GPT-4o, Claude-3.5, and Gemini-1.5-Pro, with the temperature
of 1. We use the system prompt ‘‘Extract Verbs from user input.’’ and user input is
‘‘Translate the following into French: \nInput: "Harry sits"’’ We find that GPT-4o,
Gemini-1.5-Pro follows the user instruction 100% of the time, while Claude-3.5 follows the user
instruction 80% of the time. This is not surprising: since those models are meant to be used in
open-domain tasks, they are supposed to follow the user instruction whenever possible.

Inserting general instructions after the key instruction. Inserting general instructions after
the key instruction has smaller effects compared to insertion at the beginning, but PFT still
dominates. See fig. 7 and fig. 8 for the results.

Inserting generation instructions has almost no effect on ordinary data. While we find
model robustness against adversarial user inputs when general instructions are inserted at the
beginning, we find that it does not affect ordinary data. See fig. 9 for the results.

Figure 7: Llama: Inserting general instructions after the key instruction has smaller effects than
inserting them in the beginning, but PFT still dominates.

Figure 8: Gemma: Inserting general instructions after the key instruction has smaller effects
than inserting them in the beginning, but PFT still dominates.

(a) Llama (b) Gemma

Figure 9: Inserting generation instructions after the key instruction has a negligible effect
on ordinary data. We use the system prompts from TensorTrust datasets, and user inputs for
providing incorrect passwords. The model correctly generates “Access Denied” consistently.

B EXPERIMENT DETAILS

We discussed experiment setups in section 5. Here we provide more details.

Gemma models There is one important difference from the Llama models: the Gemma base
model didn’t see the “system” role before, and the default chat template does not support the
“system” role. We modify the chat template to include the “system” role, and finetune the model
on the same data and hyperparameters as Llama models (detailed below).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Metric Base SFT PFT-256 PFT-512 SFT-Delim
Accuracy (Password) 100% 100% 100% 100% 100%
Log-Likelihood (Alpaca) -82.74 -36.68 -35.84 -37.39 -34.55

(a) PFT does not hurt generation quality for ordinary data, as measured by the generation accuracy on the password dataset, and
log-likelihood of generations on the Alpaca dataset. Note we use the Llama-3-8B-Instruct model to evaluate the log-likelihood,
since the Gemma-2-9b-it model did not see “system” role before, and thus have poor generation quality.

(b) PFT does not lead to additional deviation from the base model, as measured by the KL divergence using Alpaca prompts.

Figure 10: Gemma results: PFT does not hurt performance on ordinary data.

Finetuning hyperparameters and convergence criteria For all experiments, we use the
same hyperparameters: we apply LoRA to the query and key projection matrices, with rank of
32, ↵ = 16 and dropout of 0.05; we use adamW optimizer, with the learning rate of 0.0001,
warmup steps of 100, and batch size of 2.

We use the model’s performance on validation data (detailed below) to decide when to stop the
optimization. For all finetuned Llama models, we find the validation loss is stable after 500
steps, and can generate perfect responses on the evaluation prompts. For Gemma models, the
convergence is slower, and we find the validation loss is stable after 2000 steps. This is expected,
since Gemma models do not know the “system” role, and need to learn it from scratch.

“Benign” validation data We discussed the training samples in section 5 and briefly described
the validation data. Here we provide more details.

We have another set of instructions, F
0

that has no intersection with the training system
commands F . Similarly, for each f 2 F

0
, we have a set of sentences Gf which could be am-

biguously interpreted as both the data for f , and an independent instruction. Using these (f, g)
pairs, we build a part of the evaluation prompts: we can put the f in the system role, and g in the
user role, and vice versa. For example, we can have f as ‘‘Extract Verbs from user input.’’
and g as ‘‘How does music a�ect humans?’’; putting one in the system role and the other
in the user role gives us prompts that can test if the model successfully follows the system
instruction, and treat user input as data (when the user input cannot be interpreted as data,
it should be ignored — for example, when g serves the system role and f serves the user
role).

To further assess the model’s behavior, we construct another set of validation prompts.
Suppose we have the (f, g) as described above, we sample another instruction f

0 2 F
0
,

and concatenate f
0

with g to constitute the user input. Continue the example above,
we can have f

0
as ‘‘Translate the following into French.’’, and the user input as

‘‘Translate the following into French: "How does music a�ect humans?"’’. Then
the desired output should be the extracted verbs “Translate, affect”.

Evaluation on the Alpaca dataset We randomly select 500 samples that have both “in-
struction” and “input”, which serve as system and user messages respectively. We generate
responses using nucleus sampling with p = 0.9 and the temperature of 0.6. Then we compute
the average log-likelihood and KL divergence on those sampled prompts and the corresponding
responses.

Evaluation on attack datasets We use all of the 114 samples from Gandalf Summarization
dataset. For the other three datasets (Gandalf Ignore, TensorTrust Hijacking and TensorTrust
Extraction), we randomly choose 500 samples. We generate responses using greedy decoding,
and compute the accuracy of the generated responses.

14


	Introduction
	Fragility of SFT-Tuned Models
	SFT-tuned models are robust against attacks when system prompts are simple
	SFT-tuned model's fragility depends on the location of the key instruction

	Understanding the Influence of Key Instruction Positions — A case study on next-token attack
	Next-token attack problem
	Why ``distance'' from initial tokens matters

	Position-Enhanced Fine-tuning (PFT )
	Experiments 
	Experimental setup
	Evaluation metrics
	PFT leads to robust models, for free

	Related Work
	Discussion and Conclusion
	Additional Results
	Experiment details

