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ABSTRACT

Large-scale graph machine learning is challenging as the complexity of learning
models scales with the graph size. Subsampling the graph is a viable alternative,
but sampling on graphs is nontrivial as graphs are non-Euclidean. Existing graph
sampling techniques require not only computing the spectra of large matrices but
also repeating these computations when the graph changes, e.g., grows. In this pa-
per, we introduce a signal sampling theory for a type of graph limit—the graphon.
We prove a Poincaré inequality for graphon signals and show that complements of
node subsets satisfying this inequality are unique sampling sets for Paley-Wiener
spaces of graphon signals. Exploiting connections with spectral clustering and
Gaussian elimination, we prove that such sampling sets are consistent in the sense
that unique sampling sets on a convergent graph sequence converge to unique
sampling sets on the graphon. We then propose a related graphon signal sampling
algorithm for large graphs, and demonstrate its good empirical performance on
graph machine learning tasks.

1 INTRODUCTION

Graphs are ubiquitous data structures in modern data science and machine learning. Examples range
from social networks (Kempe et al., 2003; Barabási et al., 2000) and recommender systems (Ying
et al., 2018) to drug interactions (Zitnik et al., 2018) and protein folding (Jumper et al., 2021), in
which the graph can have tens of thousands to millions of nodes and edges (Takac & Zábovský,
2012). The ability to sense systems at this scale presents unprecedented opportunities for scientific
and technological advancement. However, it also poses challenges, as traditional algorithms and
models may need to scale more efficiently to large graphs, including neural graph learning methods.

However, the large size of modern graphs does not necessarily indicate the degree of complexity of
the problem. In fact, many graph-based problems have low intrinsic dimensions. For instance, the
‘small-world phenomenon’ (Kleinberg, 2000) observes that any two entities in a network are likely
connected by a short sequence of intermediate nodes. Another example are power-law graphs, where
there are few highly connected influencers and many scattered nodes (Barabási et al., 2000).

At a high level, this paper studies how to exploit these simplicities in large graphs to design scalable
algorithms with theoretical guarantees. In particular, we combine two ideas: graph limits, which
are used to approximate large, random graphs; and sampling theory, which studies the problem of
representing (graph) signals using the smallest possible subset of data points (nodes), with the least
possible loss of information. We then illustrate how to use the resulting sampling techniques to
compress graphs for GNN training and to compute faster, subsampled positional encodings.

Graphons and graph limits. Leveraging continuous limits to analyze large discrete data is help-
ful because limits often reveal the intrinsic dimension of the data. E.g., in Euclidean domain, the
Fourier transform (FT) of a continuous signal is easier to analyze than the FT of its discrete coun-
terpart, which is periodic and may exhibit aliasing. We propose to study the graph signal sampling
problem on a graph limit called graphon. Graphons can be thought of as undirected graphs with an
uncountable number of nodes, and are both random graph models and limits of large dense graphs
(Borgs et al., 2008; Lovász, 2012).
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(Graph) signal sampling. Sampling theory is a long-standing line of work with deep roots in
signal processing. Traditionally, sampling seeks to answer the fundamental question: if one can
only observe discrete samples of an analog (continuous) signal, under what conditions can the analog
signal be perfectly reconstructed? On a graph on n nodes, signals are vectors x ∈ Rn that map each
node to some value. The graph signal sampling problem is then defined as follows.

Problem 1. For some signal space X of interest, find subsets S of nodes such that if x,x′ ∈ X and
xi = x′i for all i ∈ S then xj = x′j for all other nodes. Thus, such a set can uniquely represent any
signals in X and is called a uniqueness set for X .

Problem 1 was first studied by Pesenson (2008), who introduced Paley-Wiener (PW) spaces for
graph signals, defined graph uniqueness sets, and derived a Poincaré inequality for discrete graph
signals that allows recovering such uniqueness sets. These definitions are reviewed in Section 2.
Graph signal sampling theory subsequently found applications in the field of graph signal processing
(GSP) (Shuman et al., 2013; Ortega et al., 2018), with Chen et al. (2015) describing how sampling
sets can be obtained via column-wise Gaussian elimination of the eigenvector matrix.

Current limitations. Though widely used, Chen et al. (2015)’s approach requires expensive spectral
computations. Several methods, briefly discussed in Section 1.1, have been proposed to circumvent
these computations; however, these approaches still present stringent tradeoffs between complexity
and quality of approximation on very large graphs. Perhaps more limiting, the discrete sampling sets
yielded by these methods are no longer applicable if the graph changes, as often happens in large
real-world network problems, e.g., an influx of new users in a social network.

Contributions. To address the abovementioned issues, we propose sampling uniqueness sets on
the limit graphon. By solving a single sampling problem at the graph limit (graphon), we obtain
a uniqueness set that generalizes to any large finite graphs in a sequence converging to the limit
graphon. We provide both theoretical guarantees and experiments to verify this generalization in
downstream graph-based tasks. In summary, our contributions are:

1. Motivated by Pesenson (2008), we formulate signal sampling over a graphon and study traditional
sampling theory notions such as Paley-Wiener spaces and uniqueness sets1 in a Euclidean setting
of L2([0, 1]) while still incorporating graph structure into the sampling procedure.

2. We prove a Poincaré inequality for graphons and relate bandlimitedness in graphon signal space
to optimal sampling sets1. This generalizes previous results on finite graphs and rigorously an-
swers a reconstruction question. Unlike other results for graphon signal processing in the litera-
ture, we do not require any continuity or smoothness assumption on the graphon.

3. We uncover a connection between graphon sampling and kernel spectral clustering and design a
Gaussian-elimination-based algorithm to sample from the graphon uniqueness set with provable
consistency, using an argument from (Schiebinger et al., 2015).

4. We empirically evaluate our sampling method on two tasks: (1) transferability: training a GNN
on subsampled graphs and testing on the full graph; (2) accelerating the computation of positional
encodings for GNNs by restricting them to a sampled subset of nodes.

1.1 RELATED WORK

Graphons in machine learning. In machine learning, graphons have been used for network model
estimation (Borgs et al., 2015), hierarchical clustering (Eldridge et al., 2016) and to study the the-
oretical properties of graph neural networks (GNNs) on large graphs. Specifically, Ruiz et al.
(2020b) have shown that graph convolutions converge to graphon convolutions, further proving a
non-asymptotic result that implies that GNNs are transferable across graphon-sampled graphs (Ruiz
et al., 2020a). Similar studies have been done using graphops (Le & Jegelka, 2023), which are very
general graph limits that range from graphons to very sparse graphs. Graphons have also been used
to show convergence of GNN training on increasing graph sequences (Cervino et al., 2023), to prove
PAC-Bayes bounds for GNN learning (Maskey et al., 2022), and to study the learning dynamics of
wide large-graph NNs (Krishnagopal & Ruiz, 2023).

1Similar sampling theory was also concurrently developed by Parada-Mayorga & Ribeiro (2024).
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Graph signal sampling. Graph signal sampling has been studied at length in GSP. Chen et al.
(2015) describe how sampling sets can be obtained via column-wise Gaussian elimination of the
eigenvector matrix and derive conditions for perfect reconstruction. Noting that this approach re-
quires expensive spectral computations, several methods were proposed to avoid them. E.g., Anis
et al. (2016) calculate eigenvalue and eigenvector approximations using power iteration; Marques
et al. (2015) compute n signal aggregations at a single node i to construct an n-dimensional local
signal from which K elements are sampled; and Chamon & Ribeiro (2017) do greedy sampling and
provide near optimal guarantees when the interpolation error is approximately supermodular.

Connections with other sampling techniques. The sampling algorithm we propose is based on a
greedy iterative procedure that attempts to find the signal with the lowest total variation on the com-
plement of the current sampling set S, and adds the node corresponding to the largest component in
this signal to S. This heuristic is derived by trying to maximize the largest eigenvalue of the normal-
ized Laplacian restricted to S (see (Anis et al., 2016, Section IV.C) for a detailed discussion). Thus,
our algorithm has close connections with E-optimal design, which minimizes the largest eigenvalue
of the pseudo-inverse of the sampled matrix (Pukelsheim, 2006), and with dual volume sampling
(Avron & Boutsidis, 2013; Li et al., 2017), which provides approximation guarantees for E-optimal
sampling. This type of objective also appears in effective resistance/leverage scores sampling (Ma
et al., 2014; Rudi et al., 2018), which is used for graph sparsification (Spielman & Srivastava, 2008).

Recent work by Parada-Mayorga & Ribeiro (2024), concurrent with ours, also generalized PW
spaces and uniqueness sets to graphons. Similarly, they proved a Poincaré inequality and proposed a
sampling algorithm for graphon signals. Their main results quantitatively compare the Poincaré con-
stant across different graphon-signal spaces, implying convergence of this constant for a convergent
graph sequence, unlike our work, which analyzes consistency of sampling via spectral clustering.

2 PRELIMINARIES

2.1 GRAPH SIGNAL PROCESSING

Setup. We consider graphs G = (V, E) with n nodes and edges E ⊆ V × V . We write a graph’s
adjacency matrix as A ∈ Rn×n; its degree matrix as D = diag(A1); and its Laplacian matrix as
D−A. We also consider the normalized adjacency and Laplacian matrices Ā = (D†)1/2A(D†)1/2

and L̄ = I − Ā (where ·† is the pseudoinverse), with eigendecomposition L̄ = VΛVT and eigen-
values λ1 ≤ . . . ≤ λn. We further consider node signals x ∈ Rn, which assign data value xi to
node i; e.g., in a social network, xi may represent the political affiliation of person i.

Total variation and graph frequencies. The total variation of a graph signal is defined as TV(x) =
xT L̄x (Anis et al., 2016; Sandryhaila & Moura, 2014). This allows interpreting the eigenvalues λi
as the graph’s essential frequencies, with oscillation modes given by the eigenvectors vi = [V]:i.

Graph FT and Paley-Wiener spaces. We may analyze signals on the graph frequency domain via
the graph Fourier transform (GFT). The GFT x̂ of x is its projection onto the Laplacian eigenbasis
x̂ = VTx (Sandryhaila & Moura, 2014). The GFT further allows defining bandlimited graph
signals, or, more formally, Paley-Wiener (PW) spaces. On G, the PW space with cutoff frequency
λ is defined as PWλ(G) = {x s.t. [x̂]i = 0 for all λi > λ} (Anis et al., 2016; Pesenson, 2008).

Uniqueness sets. When X is a PW space PWλ(G) with λ ≤ λK for some K < n, there exists
a subset of at most K nodes that perfectly determine any signal in X called uniqueness set. The
following theorem from (Anis et al., 2016) gives conditions under which a proposed subset S is a
uniqueness set for PWλ(G).

Theorem 1 (Uniqueness sets for PWλ(G)). Let S ⊆ V . Let VK ∈ Rn×K denote the first K
columns of the eigenvector matrix V and ΨS ∈ RK×K be the submatrix of V with rows indexed by
S. If rankΨS = K, then S is a uniqueness set for PWλ(G) for all λ ≤ λK(G). If λK ≤ λ < λK+1

then rankΨS = K is also necessary.

In addition to providing a sufficient condition to verify if a set is a uniqueness set for some PW space,
this theorem suggests a two-step strategy for obtaining such sets: first compute VK , and then design
a sampling method that outputs S such that rankΨS = K. However, these sampling strategies,
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e.g., the one suggested by Thm. 1, can be limiting on large graphs as they require computing the
eigendecomposition of a large matrix.

2.2 GRAPHON SIGNAL PROCESSING

Graphons and graphon signals. A graphon is a symmetric, bounded, measurable function W :
Ω × Ω → [0, 1], where Ω is a general measurable space (Borgs & Chayes, 2017). We assume that
there exists an invertible map β : Ω → [0, 1] and w.l.o.g.,we can also write W : [0, 1]2 → [0, 1].
Graphons are only defined up to a bijective measure-preserving map, similar to how finite graphs
are defined up to node permutations. Graphons are limits of graph sequences {Gn} in the so-called
homomorphism density sense (Borgs et al., 2008), and can also be seen as random graph models
where nodes ui, uj are sampled from Ω and edges (ui, uj) ∼ Bernoulli(W(ui, uj)). Graphons can
also be motivated via infinite exchangeable graphs (Hoover, 1979; Aldous, 1981).

Graphon signals are functions X : [0, 1] → R. They represent data on the “nodes” of a graphon,
i.e., X(u) is the value of the signal at node u ∈ [0, 1] (Ruiz et al., 2021). Since two graphons that
differ on a set of Lebesgue measure 0 are identified, so are graphon signals. We restrict attention to
finite-energy signals X ∈ L2([0, 1]).

Graphon Laplacian and FT. Given a graphon W, its degree function is d(v) =
∫ 1

0
W(u, v)du.

Define the normalized graphon W̄(u, v) = W(u, v)/
√

d(u)d(v) if d(u),d(v) ̸= 0 and 0 other-
wise. Given a graphon signal X , we define the normalized graphon Laplacian:

L̄X = X −
∫ 1

0

W̄(u, ·)X(u)du. (1)

The spectrum of L̄ consists of at most countably many nonnegative eigenvalues with finite multiplic-
ity in [0, 2]. Its essential spectrum consists of at most one point {1}, and this is also the only possible
accumulation point. We enumerate the eigenvalues as 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ 2. The corresponding
set of eigenfunctions {φi}i∈Z\{0} forms an orthonormal basis of L2([0, 1]); see App. B.

We define the graphon Fourier transform (WFT) of signal X as the projection

X̂(λi) =

∫ 1

0

X(u)φi(u)du (2)

for all i. Note that this is different from the WFT defined in (Ruiz et al., 2020b), which corresponds
to projections onto the eigenbasis of a different but related linear operator.

3 SAMPLING THEORY FOR GRAPHONS

We generalize the graph sampling problem studied in Pesenson (2008) to a graphon sampling prob-
lem. The sampling procedure returns a (Lebesgue) measurable subset U ⊆ [0, 1]. Intuitively, we
would like to choose a set U such that sampling from U gives us the most information about the
whole signal over [0, 1]. These are called uniqueness sets. Similar to finite graphs, when the graphon
signals have limited bandwidth, there exist nontrivial (other than U = [0, 1]) uniqueness sets. Find-
ing these sets is the main focus of the sampling theory for graphons that we develop here.

For an arbitrary bandwidth cutoff λ > 0, we use the normalized graphon Laplacian (1) with eigen-
values 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λ−2 ≤ λ−1 ≤ 2. First, we define the Paley-Wiener space:
Definition 1 (Graphon signal PWλ(W) space). The Paley-Wiener space associated with λ ∈ [0, 1]
and graphon W, denoted PWλ(W), is the space of graphon signals X : [0, 1] → R such that
X̂(λi) = 0 for all λi > λ, where X̂ is the projection operator defined in Eq. (2).

The definition of PWλ(W) depends on the underlying limit graphon through the projection oper-
ator (2), in particular the positions of its Laplacian eigenvalues. When λ ≥ λ−1, PWλ is all of
L2([0, 1]) as the definition above is vacuously satisfied. Decreasing λ induces some constraints on
what functions are allowed in PWλ. At λ = 0, PW0 = {0} contains only the trivial function.

For any signal space H ⊆ L2([0, 1]), we further define graphon uniqueness sets:
Definition 2 (Graphon uniqueness set). A measurable U ⊆ [0, 1] is a uniqueness set for the signal
space H ⊆ L2([0, 1]) if, for anyX,Y ∈ H,

∫
U
|X(u)−Y (u)|2du = 0 implies ∥X−Y ∥2L2([0,1]) = 0.
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Since U = [0, 1] is a trivial uniqueness set for any H ⊆ L2([0, 1]), we are mainly interested in the
interplay between the bandwidth cutoff λ in PWλ(W), and its corresponding non-trivial uniqueness
sets. More precisely, we study the question:
Problem 2. Assume that a graphon signal comes from PWλ(W) for some λ and W. Is there an
algorithm that outputs a uniqueness set U(λ,W)?

We answer this question in the positive and provide two approaches. First, by generalizing results
by Pesenson (2008) for finite graphs, we give a graphon Poincaré inequality (Thm. 2) for nontrivial
measurable subsets of [0, 1]. Then, in Thm. 3, we show that if a set S satisfies the Poincaré inequal-
ity with constant Λ > 0 then the complement U = [0, 1]\S is a uniqueness set for PW1/Λ(W)
(Thm. 3). Thus, we can find uniqueness set U by first finding an S that satisfies the Poincaré in-
equality with constant 1/λ.

The second approach is more direct: the analogous question for finite graphs admits a straightfor-
ward answer using Gaussian elimination (see the discussion underneath Thm. 1). However, in the
limit of infinitely many nodes, it does not make sense to perform Gaussian elimination as is. Instead,
we form a sequence of graphs {Gn} that converges to the prescribed graphon W. We then prove,
using techniques from (Schiebinger et al., 2015), that performing Gaussian elimination with proper
pivoting for Gn recovers sets that converge to a uniqueness set for PWλ(W) (Prop. 5). Finally, we
implement and analyze this approach empirically in Section 6.

4 MAIN RESULTS

4.1 POINCARÉ INEQUALITY AND BANDWIDTH OF UNIQUENESS SET

We start with the first approach to Problem 2, proving a Poincaré inequality for subsets S ⊂ [0, 1]
and showing that this Poincaré inequality implies uniqueness of [0, 1]\S at some bandwidth.

First, we need some definitions. These definitions generalize Pesenson (2008)’s observation that
for finite graphs, any strict subset T of the vertex set satisfies a Poincaré inequality with con-
stant determined by spectral properties of another graph Γ(T ). Intuitively, Γ(T ) is designed to
capture the non-Euclidean geometry induced by nodes in T and their neighbors. We now want
to construct an analogous Γ(S) in the graphon case. Fix an arbitrary graphon W and measur-
able subset S ⊂ [0, 1]. Define the neighborhood N (S) of S as the measurable set N (S) :={
v ∈ [0, 1]\S :

∫
S
W(u, v)du > 0

}
.

To define Γ(S), make a copy of S by letting S′ be a set disjoint from [0, 1] such that there is a
measure-preserving bijection θ : S′ → S. Let S̃ := S ∪ N (S) and S̃′ := S′ ∪ N (S). Observe that
one can extend θ : S̃′ → S̃ by mapping elements of N (S) to itself. We will define a graphon on the
extended domain D = S̃ ∪ S′:

Γ(S) : D2 → [0, 1] : (u, v) 7→


W(u, v) if u ∈ S̃ and v ∈ S̃

W(θ(u), θ(v)) if u ∈ S̃′ and v ∈ S̃′

0 otherwise.
(3)

Spectral properties of Γ(S) determine the constant in our Poincaré inequality: a class of important
results in functional analysis that control the action of the functional (normalized Laplacian) by the
(non-Euclidean) geometry of the underlying space (here, a graph).
Theorem 2 (Graphon Poincaré inequality ). Let S ⊊ [0, 1] such that N (S) has positive Lebesgue
measure. Denote by λ1 the smallest nonzero eigenvalue of the scaled normalized Laplacian operator
applied to Γ(S). Then for every X ∈ L2([0, 1]) supported only on S, ∥X∥L2 ≤ 1

λ1
∥LX∥L2 .

The proof of this theorem is in App. C and generalizes that in (Pesenson, 2008). Next, we prove that
if we can find a set S that satisfies a Poincaré inequality with constant Λ, then its complement is a
uniqueness set for any PWλ(W) with λ < 1/Λ.
Theorem 3. Let S be a proper subset of [0, 1] satisfying the Poincaré inequality

∥X∥L2 ≤ Λ∥LX∥L2 (4)
for all X ∈ L2([0, 1]) supported only on S. Then, U = [0, 1]\S is a uniqueness set for any
PWλ(W) with λ < 1/Λ.
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The proof of this result is in App. C, providing an answer to Problem 2: given a bandwidth limit λ,
one can find a uniqueness set U by searching through measurable sets S and computing the smallest
nonzero eigenvalue λ1 of Γ(S). If λ < λ1 then U = [0, 1]\S is a uniqueness set. This approach is
inefficient as we may need to check every S. Next, we investigate a more efficient approach.

4.2 GAUSSIAN ELIMINATION AND CONVERGENCE OF UNIQUENESS SETS

Our second approach to Problem 2 relies on approximating the graphon with a sequence of graphs
{Gn} which has the graphon as its limit, and solving Problem 2 in one of these graphs. While
attempting to solve the graphon sampling problem on a finite graph may appear tautological, our
goal is to exploit the countable (and often finite) rank of the graphon to make the problem tractable.

To establish the connection between the continuous sampling sets in a graphon and its finite rank
K, we partition the graphon sampling set into K elements and view each element as representing a
mixture component or “cluster”. This leads to a connection to mixture models and spectral cluster-
ing, which we exploit in two ways. First, to quantify the quality of the graphon sampling sets via
a “difficulty” function borrowed from (Schiebinger et al., 2015) relating to the separability of the
mixture components. Second, similar to consistency of kernelized spectral clustering, to prove that
in convergent graph sequences, graph sampling sets converge to graphon sampling sets.

Graphons are equivalent to mixture models of random graphs. To make the above connection
rigorous, the first step is to show we can view the graphon as a mixture model of random graphs.
Definition 3 (Mixture model for random graphs). Let Ω ⊂ Rd be a compact space and P(Ω)
the space of probability measures on Ω. For some number of components K, components {Pi ∈
P(Ω)}Ki=1, weights {wi ≥ 0}Ki=1 that sum to 1, and a bounded, symmetric, measurable kernel
k : Ω × Ω → [0, 1], a mixture model for random graphs K(Ω,P,k) samples nodes from some
mixture distribution; then sample edges using B - the Bernoulli distribution over the kernel k:

ωw ∼ P :=
∑K

i=1
wiPi, for 1 ≤ w ≤ n, (u, v) ∼ B(k(ωu, ωv)), for 1 ≤ u, v ≤ n. (5)

Historically, some authors (Borgs & Chayes, 2017) have defined graphons as in Def. 3, where P is
not necessarily a mixture. Under mild conditions on P, we assert that our simpler definition of a
graphon is still equivalent to a random graph model. We leave the proof to App. D.
Proposition 1. Assume the CDF of P is strictly monotone. Then, the mixture model K(Ω,P,k)
(Def. 3) is equivalent to the random graph model W([0, 1],U,W) where W : [0, 1]2 → [0, 1] is a
graphon given by W = k ◦ β and β : [0, 1] → Ω is the inverse of the CDF of P.

Recall that Problem 2 prescribes a bandwidth λ, and requires finding a uniqueness set for graphon
signals with the prescribed bandwidth. Let K be the number of eigenvalues of W which are smaller
than λ (i.e., K = sup{k | λk < λ}). The following result shows that K is precisely the number of
elements or samples that we need to add to the graphon uniqueness set.
Proposition 2. There exists a set of functions {fi}Ki=1, called frames, such that for any graphon
signal X ∈ PWλ(W) there is a unique reconstruction of X from samples {⟨fi, X⟩}Ki=1.

To see why this result is possible, recall that if X ∈ PWλ(W) for some λ < λK+1 then X is a
linear combination of K eigenfunctions {φi}Ki=1 corresponding to {λi}Ki=1. Therefore, it suffices to
calculate K coefficients c = (ci)

K
i=1 by forming a full rank system (if one exists), which can then

be solved via Gaussian elimination: ⟨f1,φ1⟩ ⟨f1,φ2⟩ ... ⟨f1,φK⟩
⟨f2,φ1⟩ ⟨f2,φ2⟩ ... ⟨f2,φK⟩

...
... ...

...
⟨fK ,φ1⟩ ⟨fK ,φ2⟩ ... ⟨fK ,φK⟩

 c =

 ⟨f1,X⟩
⟨f2,X⟩

...
⟨fK ,X⟩


The next result tells us that different choices of mixture components and k result in frames with
different approximation quality. Specifically, the approximation quality is a function of how well-
separated the components in P are with respect to k and is measured quantitatively by a difficulty
function ϕ(P,K) (Schiebinger et al., 2015). E.g., if there are repeated components in the mixture,
or a bimodal component, we expect ϕ to be high.
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Proposition 3. When W is viewed as a mixture model of random graphs K(Ω,P,k) with K com-
ponents {Pi}Ki=1 the square-root kernelized density {qi :=

√∫
Ω
k(Ω, ·)dPi(Ω)}Ki=1 is a good frame

approximation. Quantitatively, let Φ be the subspace spanned by the eigenfunctions of W corre-
sponding to {λi}Ki=1, and Q the subspace spanned by the {qi}Ki=1. Then:

∥ΠΦ −ΠQ∥HS ≤ 16
√
12 + bϕ(P,k), (6)

where ∥.∥HS is the Hilbert-Schmidt norm, Π is the projection operator, and the difficulty function ϕ
and the boundedness parameter b are as in (Schiebinger et al., 2015) and App. F1.

Next, we connect the square-root kernelized density qi back to graphon uniqueness sets. The follow-
ing result shows that when the qi’s align with eigenfunctions of W, there is a clear correspondence
between the uniqueness set and the mixture components. The proof is in App. D.
Theorem 4. Fix a small ϵ > 0. Assuming that ∥qi − φi∥L2(Pi) < ϵ for all i ∈ [K]; and that there
exists a set of disjoint measurable subsets {Ai ⊂ [0, 1]}Ki=1 such that EITHER:

• the kernelized density pi :=
∫
X k(ω, ·)dPi(ω) is concentrated around an interval Ai ⊂ [0, 1] in

the sense that pi(Ai)−K2ϵ2 >
∑

i′ ̸=i pi(Ai′)/(K − 1)2 for each i ∈ [K], OR

• for each i ∈ [K], the likelihood ratio statistic is large: pi(Ai)−K2ϵ2∑
k ̸=i pk(Ai)

> 1/(K − 1)2,

then the set U =
⋃K

i=1Ai is a uniqueness set for PWλ(W) for any λ ∈ (λK , λK+1).

Put together, the above results culminate in a method to find uniqueness sets by recovering the
mixture components. However, this is still cumbersome to implement due to the continuous nature of
graphons. Next we explore an efficient approach to find approximate uniqueness sets for a graphon
by finding uniqueness sets for a finite graph sampled from (and thus converging to2) the graphon.

Gaussian elimination (GE) on (approximations) of graphon eigenfunctions returns uniqueness
sets for finite sampled graphs. We now derive a scheme to sample points ω from a uniqueness set
U with high probability. Assume that from W = K, we sample n points to collect a dataset {ωi}ni=1.
From a graphon perspective, these points are nodes in a finite graph Gn of size n where the edges
are sampled with probability given by W. From a mixture model perspective, the points ωi ∈ Ω
are associated with a latent variable {zi ∈ [K]}ni=1 that indicates the component the sample came
from. By building on a result by Schiebinger et al. (2015) on the geometry of spectral clustering, we
can unify these two perspectives: running a variant of GE over the Laplacian eigenvectors of a large
enough Gn returns a sample from each mixture component with high probability.

Theorem 5. For any t > c0
√
ϕn(δ)w

−3
min, GE over the Laplacian eigenvectors of Gn recovers K

samples distributed according to each of the mixture components Pi, 1 ≤ i ≤ K, with probability
at least(

1− 8K2 exp− c2nδ
4

δ2 + Smax + C

)
(1− α)K(N − nmin)

K

(N − (1 + α)nmin)K
, with nmin = min

m∈[K]
|{i : zi = m}|,

(7)
where α is upper bounded as α ≤ c1ϕn(δ)/w

3/2
min + ψ(2t). The constants c1, c2, wmin and δ, and the

functions C, S, ϕn and ψ are as in (Schiebinger et al., 2015) and App. F.

Prop. 5 in App. D works out a small example, corresponding to a case where the Pi’s are uniformly
distributed on disjoint domains. There, we show that by using GE, we end up solving an eigenvector
problem of order K, the number of components, instead of the naive order n≫ K.

Intuitively, for well-separated mixture models, embedding the dataset via the top Laplacian eigen-
vectors returns an embedded dataset that exhibits an almost orthogonal structure: points that share
the same latent variable (i.e., which came from the same mixture component) have a high probability
of lying along the same axis in the orthogonal system; while points sampled from different distri-
butions tend to be positioned orthogonally. GE with proper pivoting on Gn is thus a good heuristic
for sampling uniqueness sets, as it selects points that are almost orthogonal to each other, which is

1For completeness, we have define and discuss the parameters of the difficulty function in App. F.
2Sequences of graphs sampled from a graphon are always convergent (Borgs et al., 2008).
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equivalent to picking a sample from each component. The significance of this result is twofold: it
bridges graphon sampling and kernelized spectral clustering; and the almost orthogonal structure
ensures that the set sampled via GE is a uniqueness set for large graphs sampled from W with high
probability. This is stated in the following proposition, which we prove in App. D.

Proposition 4. Consider a graph sequence Gn
n→∞−−−−→ W. If there is a δ ∈ (0, ∥k∥P/(b

√
2π))

such that the difficulty function3 is small, i.e., ϕn(δ) <
( w3

mint
(3/π+1)c0

)2
, then with probability at least

that in Thm. 5, there exists a minimum number of nodes N such that, for all n > N , the sampled
nodes form a uniqueness set for the finite graph Gn. All quantities in the bound and additional
assumptions are the same as in (Schiebinger et al., 2015) and App. F.

5 ALGORITHM

Motivated by Theorems 3–5, we propose a novel algorithm for efficient sampling of signals on large
graphs via graphon signal sampling. When the regularity assumptions of our theorems are satisfied,
this algorithm will generate a consistent sampling set.

Consider a graph Gn = (V, E) and signal xn from which we want to sample a subgraph Gm

and signal xm with minimal loss of information (i.e., we would like the signal xn to be uniquely
represented on the sampled graph Gm). The proposed algorithm consists of three steps:

(1) Represent Gn as its induced graphon Wn(ω, θ) =
∑n

i=1

∑n
j=1[An]ijI(ω ∈ Ii)I(θ ∈ Ij) where

I1 ∪ . . . ∪ In is the n-equipartition of [0, 1].
(2) Define a coarser equipartition I ′1 ∪ . . . ∪ I ′q , q < n, of [0, 1]. Given the bandwith λ of the signal

xn, sample a graphon uniqueness interval ∪p
j=1I

′
ij

(Def. 2), p < q, from I ′1 ∪ . . . ∪ I ′q .

(3) Sample the graph Gm by sampling r = ⌊m/(p − 1)⌋ points from each of the I ′i1 , . . . , I
′
ip−1

in
the graphon uniqueness set (and the remaining m − (p − 1)r nodes from Iip). By Prop. 4, this
procedure yields a uniqueness set for Gn with high probability.

To realize (2), we develop a heuristic based on representing the graphon Wn on the partition I ′1 ∪
. . . ∪ I ′q as a graph G̃q with adjacency matrix given by [Ãq]ij =

∫
I′
i

∫
I′
j
Wn(x, y)dxdy. We then

sample p nodes from G̃q—each corresponding to an interval I ′ij ⊂ I ′1 ∪ . . . ∪ I ′q—using the graph
signal sampling algorithm from (Anis et al., 2016). This algorithm is a greedy heuristic closely
connected to GE and E-optimal sampling but without spectral computations.

The sampling of m nodes from I ′i1 ∪ . . .∪ I
′
ip

in step (3) is flexible in the way nodes in each interval
are sampled. Random sampling is possible, but one could design more elaborate schemes based on
local node information. To increase node diversity, we employ a scheme using a local clustering
algorithm based on the localized heat kernel PageRank (Chung & Simpson, 2018) to cluster the
graph nodes into communities, and then sample an equal number of nodes from each community.

Runtime analysis. The advantages of algorithm (1)–(3) w.r.t. conventional graph signal sampling
algorithms (e.g., (Anis et al., 2016; Marques et al., 2015)) are twofold. First, if q ≪ n, (2) is much
cheaper. E.g., the heuristic from (Anis et al., 2016) now costs O(pq2) as opposed to O(p|E|). If step
(3) uses uniform sampling then our method runs inO(|E|+pq2+m); whereas obtaining a uniqueness
set of size m from Anis et al. (2016) requires O(m|E|) time. Second, given the graphon W, we
only need to calculate the sampled intervals once and reuse them to find approximate uniqueness
sets for any graph Gn generated from W as described in Section 2.2, provided that their node labels
ω1, . . . , ωn (or at least their order) are known. Thus we save time on future sampling computations.

6 NUMERICAL EXPERIMENTS

Transferability for node classification. We use our sampling algorithm to subsample smaller
graphs for training GNNs that are later transferred for inference on the full graph. We consider
node classification on citation networks (Yang et al., 2016) and compare the accuracy of GNNs
trained on the full graph, on graphs subsampled following the proposed algorithm, and on graphs

3Notice a slight reparameterization.
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Table 1: Accuracy and runtime for models trained on the full graph, a graphon-subsampled graph,
and a subgraph with randomly sampled nodes with the same size as (ii). The columns correspond to
doubling the number of communities, doubling r, and doubling the eigenvalue index.

Cora CiteSeer

base x2 comm. x2 nodes per int. x2 eig. base x2 comm. x2 nodes per int. x2 eig.

full graph 0.86 ± 0.02 0.86 ± 0.01 0.86 ± 0.01 0.85 ± 0.01 0.80 ± 0.01 0.81 ± 0.01 0.79 ± 0.01 0.79 ± 0.02
graphon sampl. 0.49 ± 0.09 0.56 ± 0.09 0.73 ± 0.05 0.51 ± 0.09 0.56 ± 0.06 0.56 ± 0.05 0.67 ± 0.03 0.51 ± 0.10
random sampl. 0.46 ± 0.09 0.52 ± 0.17 0.71 ± 0.05 0.57 ± 0.14 0.51 ± 0.08 0.48 ± 0.11 0.67 ± 0.03 0.52 ± 0.03

PubMed runtime (s)

base x2 comm. x2 nodes per int. x2 eig. Cora CiteSeer PubMed

full graph 0.76 ± 0.02 0.77 ± 0.02 0.77 ± 0.03 0.77 ± 0.01 0.9178 0.8336 0.8894
graphon sampl. 0.71 ± 0.07 0.67 ± 0.06 0.75 ± 0.05 0.69 ± 0.07 0.3091 0.2578 0.3204
random sampl. 0.69 ± 0.07 0.71 ± 0.07 0.74 ± 0.07 0.72 ± 0.04 0.3131 0.2514 0.3223

Table 2: Accuracy and PE compute runtime on MalNet-Tiny w/o PEs, w/ PEs computed on full
graph, w/ PEs computed on graphon-sampled subgraph (removing or not isolated nodes), and w/
PEs computed on subgraph with randomly sampled nodes (removing or not isolated nodes).

no PEs full graph PEs graphon sampl. PEs randomly sampl. PEs PE compute
w/ isolated w/o w/ isolated w/o runtime (s)

mean 0.26±0.03 0.43±0.07 0.29±0.06 0.33±0.06 0.28±0.07 0.27±0.07 full 12.40
max 0.30 0.51 0.40 0.42 0.35 0.37 sampl. 0.075

sampled at random. To ablate the effect of different parameters, we consider a base scenario and 3
variations. For Cora and CiteSeer, the base scenario fixes the cutoff frequency at the 5th smallest
eigenvalue, λ5, of the full graph. It partitions [0, 1] into q = 20 intervals and samples p = 10
intervals from this partition in step (2). In step (3), it clusters the nodes in each sampled interval
into 2 communities and samples r = 20 nodes from each sampled interval, 10 per community. For
PubMed, the parameters are the same except q = 30 and p = 15. The three variations are doubling
(i) the number of communities, (ii) r, and (iii) the eigenvalue index. Further details are in App. G.

Table 1 reports results for 5 realizations. Graphon sampling performs better than random sampling
in the base case, where the subsampled graphs have less than 10% of the full graph size. Increasing
the number of communities improves performance for Cora and widens the gap between graphon
and random sampling for both Cora and CiteSeer. For PubMed, it tips the scale in favor of random
sampling, which is not very surprising since PubMed has less classes. When we double r, the
difference between graphon and random sampling shrinks as expected. Finally, when we increase
λ, graphon sampling performs worse than random sampling. This could be caused by the sample
size being too small to preserve the bandwith, thus worsening the quality of the sampling sets.

Positional encodings for graph classification. Many graph positional encodings (PEs) for GNNs
and graph transformers use the firstK normalized Laplacian eigenvectors (or their learned represen-
tations) as input signals (Dwivedi et al., 2021; Lim et al., 2022); they provide additional localization
information for each node. While they can greatly improve performance, they are expensive to com-
pute for large graphs. In this experiment, we show how our algorithm can mitigate this issue. We
sample subgraphs for which the Laplacian eigenvectors are computed, and then use these eigenvec-
tors as PEs for the full-sized graph by zero-padding them at the non-sampled nodes.

We consider the MalNet-Tiny dataset (Freitas et al., 2021), modified to anonymize the node features
and pruned to only keep large graphs (with at least 4500 nodes). After balancing the classes, we
obtain a dataset with 216 graphs and 4 classes on which we compare four models: (i) without PEs,
and qith PEs calculated from (ii) the full-sized graph, (iii) a graphon-sampled subgraph, and (iv) a
randomly sampled subgraph. For (iii) and (iv), we also consider the case where isolated nodes are
removed from the sampled graphs to obtain more meaningful PEs.

We report results for 10 random realizations in Table 2. The PEs from the graphon-subsampled
graphs were not as effective as the PEs from the full-sized graph, but still improved performance
with respect to the model without PEs, especially without isolated nodes. In contrast, on average,
PEs from subgraphs with randomly sampled nodes did not yield as significant an improvement, and
displayed only slightly better accuracy than random guessing when isolated nodes were removed.
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A EXTRA NOTATIONS

For some probability measure Q, and some functions in the sameL2(Q) spaces, denote by ⟨·, ·⟩L2(Q)

the L2(Q) inner product and ∥ · ∥L2(Q) the induced L2 norm. We will also abuse notation and write
L2(D) for some set D that is a closed subset of the real line to mean the L2 space supported on D
under the usual Lebesgue measure. When the measure space is clear, we will also drop it and simply
write L2.

For some set of functions {f1, . . . fK}, {g1, . . . , gK} where fi and gj are in the same L2 space,
denote by ((fi, gj))

K
i,j=1 the K ×K matrix:

((fi, gj))
K
i,j=1 =


⟨f1, g1⟩L2 ⟨f1, g2⟩L2 . . . ⟨f1, gK⟩L2

⟨f2, g1⟩L2 ⟨f2, g2⟩L2 . . . ⟨f2, gK⟩L2

...
... . . .

...
⟨fK , g1⟩L2 ⟨fK , g2⟩L2 . . . ⟨fK , gK⟩L2

 (8)

B ADDITIONAL BACKGROUND

In this section, we revisit operator theory arguments in our construction of various graphon objects
(degree function, normalized graphon, graphon shift operators and normalized graphon Laplacian)
from Section 2.2.

Recall that a graphon W is a bounded, symmetric and L2-measurable function from [0, 1]2 → [0, 1]
and thus induces a Hilbert-Schmidt kernel with open connected domain W : (0, 1)2 → [0, 1]. We
will abuse notation and refer to both of these objects as graphons. The associated Hilbert-Schmidt
integral operator for W is:

H : L2([0, 1]) → L2([0, 1]) : X 7→
(
v 7→

∫ 1

0

W(u, v)X(u)du

)
, (9)

where the resulting function is understood to be in L2. When W is viewed as the adjacency matrix
of a graph with infinitely many vertices, if X is taken to assign each nodes with a feature in [0, 1],
then H is understood as a message-passing operator that aggregates neighboring features into each
node. Note that measurable functions are only defined up to a set of measure 0.
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In the paper, we consider a normalized version of W:

W(u, v) =

{
W(u, v)/

√
d(u)d(v) if d(u) ̸= 0 and d(v) ̸= 0

0 otherwise.
(10)

where d ∈ L2([0, 1]) is the degree function:

d(u) =

∫ 1

0

W(u, v)dv. (11)

It is clear that W is also bounded, symmetric and L2-measurable. The corresponding HS operator is
denotes H . When the kernel is symmetric and has bounded L2([0, 1]2)-norm, then Hilbert-Scmidt
operator theory tells us that H is continuous, compact and self-adjoint.

Spectral theory of HS operators then tell us that H and H has countable discrete spectrum {λ1 ≥
λ2 ≥ . . .}, {λ1 ≥ λ2 ≥ . . .} and the essential spectrum of a single accumulation point 0 (Lovász,
2012). Furthermore, each nonzero eigenvalues have finite multiplicity (Lovász, 2012). As compact
self-adjoint operator, H and H admits a spectral theorem:

W(u, v) ∼
∑
k∈N

λkφk(u)φk(v), (12)

for some eigenfunctions {φk}k∈N, ∥φk∥L2 = 1 (Lovász, 2012).

Recall that Mercer’s theorem asserts that continuous positive semi-definite kernel k admits a spectral
theorem: there exists a set of orthonormal functions {pi}i∈N and a countable set of eigenvalues
{λi}i∈N such that

∑∞
i=1 λipi(u)pj(v) = k(u, v) where the convergence is absolute and uniform.

For measurable kernels (graphons), Eq. (12) only converges in L2 norm. However, the sequence of
eigenvalues admits a stronger ℓ2 convergence:

∞∑
i=1

λ2i = ∥W∥22. (13)

Note that by our normalization, ∥W∥22 ≤ 1 and thus |λi| ≤ 1 for all i ∈ N. Finally, we defined the
normalized Laplacian operator L = Id−H . It is then straightforward to see that the spectrum of L
is just 1− σ(H) set-wise.

C POINCARÉ INEQUALITY

Proof of Thm. 2. The proof mirrors Pesenson (2008). Fix an X in L2(U). Define X ′ ∈ L2(D) as:

X ′(u) =


X(u) if u ∈ U

−X(u) if u ∈ U ′

0 otherwise.
(14)

It is clear that X ′ is measureable (with respect to Lebesgue measure on D). Consider:

∥X ′(u)∥2L2(D) =

∫
U

(X ′(u))2du+

∫
U ′
(X ′(u))2du = 2∥X(u)∥2L2(U), (15)

and at the same time, for all u ∈ U :∫ 1

0

W(u, v)dv =

∫
U∪N (U)

W(u, v)dv =

∫
D

(Γ(U))(u, v)dv. (16)

This in particular means that normalizing Γ(U) as Γ(U)′ means scaling by the same scalar as nor-
malizing W into W′.
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Now we investigate the image of X ′ under Laplacian operator:

L′
Γ(U)X

′(u) := X ′(u)−
∫
D

(Γ(U))′(u, v)X ′(v)dv (17)

=


X(u)−

∫ 1

0
W′(u, v)X(v)dv if u ∈ U

−X(u)−
∫ 1

0
−W′(u, v)X(v)dv if u ∈ U ′

0 otherwise,
(18)

=


L′X(u) if u ∈ U

−L′X(u) if u ∈ U ′

0 otherwise.
(19)

And therefore: ∥L′
Γ(U)X

′∥L2(D) =
√
2∥L′X∥L2(U) ≤

√
2∥L′X∥L2([0,1]). The point of construct-

ing Γ(U)′ is that it has a nice eigenfunction that corresponds to eigenvalue 0. Let φ0 be such a
function, then

0 = L′
Γ(U)φ0(u) = φ0(u)−

∫
D

(Γ(U))(u, v)√∫
D
(Γ(U))(z, v)dz

∫
D
(Γ(U))(u, z)dz

φ0(v)dv. (20)

By inspection, setting φ0(u) :=
√∫

D
(Γ(U))(u, v)dv satisfies the above equation and this is the

eigenfunction of L′
Γ(U) corresponding to eigenvalue 0. Expand X ′ in the eigenfunction basis of

L′
Γ(U) to get:

∥X ′∥L2(D) =
∑

i∈N∪{0}

|⟨X ′, φi⟩|2. (21)

However, the first coefficient vanishes:

⟨X ′, φ0⟩ =
∫
D

X ′(u)

√∫
D

(Γ(U))(u, v)dvdu (22)

=

∫
U

X(u)

√∫
D

W(u, v)dvdu−
∫
U ′
X(u)

√∫
D

W(u, v)dvdu = 0, (23)

and we have:
√
2∥L′X∥L2([0,1]) ≥ ∥L′

Γ(U)X
′∥2L2(D) (24)

=
∑
i∈N

λ2i |⟨f ′, φi⟩|2 (25)

≥ λ21∥X ′∥2L2(D) (26)

=
√
2∥X∥2L2(U), (27)

which finishes the proof.

Proof of Thm. 3. If X,Y ∈ PWλ(W), then X − Y ∈ PWλ(W) and we have:

∥L̄(X − Y )∥L2 ≤ λ∥X − Y ∥L2 . (28)

If X and Y coincide on U , then X − Y ∈ L2(S) and we can write the Poincaré inequality:

∥X − Y ∥L2 ≤ Λ∥L̄(X − Y )∥L2 . (29)

Combining the two inequalities, we have:

∥X − Y ∥L2 ≤ Λ∥L̄(X − Y )∥L2 ≤ Λλ∥X − Y ∥L2 (30)

which can only be true if ∥X − Y ∥L2 = 0 since λΛ < 1.
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D PROOF FROM SECTION 4.2

D.1 GRAPHON IS EQUIVALENT TO MIXTURE MODEL FOR RANDOM GRAPHS

Proof of Prop. 1. Let ω ∼ P(Ω). We want to find a strictly monotone function β : [0, 1] → Ω such
that U = β−1(ω) is uniformly distributed over [0, 1]. Let Fω(ω) = P(ω ≤ ω), and assume the
function β exists. Then, for all ω we can write

Fω(ω) = P(ω ≤ ω) = P(β(U) ≤ ω) = P(U ≤ β−1(ω)) = β−1(ω) (31)

where the second equality follows from the fact that, since β is strictly monotone, it has an inverse.
This proves that β exists and is equal to the inverse of the CDF of ω.

Before continuing, let us introduce a few useful definitions. The Laplacian associated with the model
K(Ω,P,K) is defined as

LKf = f −
∫
Ω

K̄(ω, ·)f(ω)dP(ω) (32)

where K̄(ω, θ) = K(ω, θ)/(q(ω)q(θ)) and q(ω) =
√∫

Ω
K̄(ω, θ)dP(θ). The operator L is self-

adjoint and positive semidefinite, therefore it has a non-negative real spectrum {λi, φi}∞i=1.

To simplify matters, we will consider the problem of finding frames {fi}Ki=1 allowing to uniquely
represent signals in any PWΩ(λ) with λ ≤ λK . Note that the graphon W (and therefore its asso-
ciated Laplacian) are themselves rank K. Recall that, in order to uniquely represent a signal, the
frame {fi} must satisfy

rank


⟨f1, φ1⟩ ⟨f1, φ2⟩ . . . ⟨f1, φK⟩
⟨f2, φ1⟩ ⟨f2, φ2⟩ . . . ⟨f2, φK⟩

...
... . . .

...
⟨fK , φ1⟩ ⟨fK , φ2⟩ . . . ⟨fK , φK⟩

 = K (33)

where {φi}Ki=1 are the eigenfunctions associated with strictly positive eigenvalues of LK , sorted
according to their magnitude.

By (Schiebinger et al., 2015, Thm.1), the functions qi(θ) =
∫
Ω
K(ω, θ)dPi(ω), 1 ≤ i ≤ K, form

such a frame.

D.2 MIXTURE COMPONENT GIVES RISE TO UNIQUENESS SETS

In this section, we Leb to emphasize the Lebesgue measure on R being used in our integrals.

Proof of Thm. 4. Define the Heaviside frame {hi : X → R}Ki=1 as hi(ω) =

δ∈Ai
(ω)

√
pi(ω)/pi(Ai) where δE is the Dirac delta function for a measurable set E, for each

i ∈ [K]. It is straightforward to check that hi is also in L2(pi) for each i ∈ [K]. De-
fine the subspace H := span{h1, . . . , hK} and the Heaviside embedding ΦH : X → RK as
ΦH(ω) = (h1(ω), . . . , hK(ω)).

Step 1: Show that ((hi, qj))Ki,j=1 is full-rank. To show that ((hi, qj))Ki,j=1 is full-rank, we com-
pute entries of ((hi, qj))Ki,j=1: for any i, j ∈ [K],

⟨hi, qj⟩ =
1√
pi(Ai)

∫
Ai

qj(ω)
√
pi(ω)dLeb(ω) =

1√
pi(Ai)

∫
Ai

√
pj(ω)pi(ω)dLeb(ω). (34)

For diagonal entries, note that:

⟨hj , qj⟩ =
1√

pj(Aj)

∫
Aj

pj(ω)dLeb(ω) =
√
pj(Aj). (35)
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Fix an j ∈ [K] and consider:∑
i̸=j

|⟨hi, qj⟩| =
∑
i ̸=j

1√
pi(Ai)

∫
Ai

√
pj(ω)pi(ω)dLeb(ω) (36)

≤
∑
i ̸=j

1√
pi(Ai)

√∫
Ai

pj(ω)dLeb(ω)

√∫
Ai

pi(ω)dLeb(ω) (37)

=
∑
i ̸=j

1√
pi(Ai)

√
pj(Ai)

√
pi(Ai) (38)

=
∑
i ̸=j

√
pj(Ai), (39)

where the inequality is from Cauchy-Schwarz. In the first choice of assumption, we have
pj(Aj)−K2ϵ2 >

∑
i ̸=j pj(Ai)/(K − 1)2 and thus

√
pj(Aj)−Kϵ >

√∑
i ̸=j pi(Ai)/(K − 1) >∑

i ̸=j

√
pi(Ai), due to monotonicity of square root and Cauchy-Schwarz. Thus, we have shown

that for every j ∈ [K], the j-th column of ((hi, qj))Ki,j=1 has j-th entry larger (in absolute value)
than the sum of absolute values of all other entries. Gershgorin circle theorem then tells us that
eigenvalues of ((hi, qj))Ki,j=1 lie in at least one disk center at some diagonal value with radius sum
of absolute value of remaining column entries. None of the Gershgorin disks contain the origin, and
we can conclude that ((hi, qj))Ki,j=1 has no 0 eigenvalue. Therefore, it is full rank.

Now, fix an i ∈ [K] and consider:∑
j ̸=i

|⟨hi, qj⟩| =
∑
j ̸=i

1√
pi(Ai)

∫
Ai

√
pj(ω)pi(ω)dLeb(ω) (40)

≤
∑
j ̸=i

1√
pi(Ai)

√∫
Ai

pj(ω)dLeb(ω)

√∫
Ai

pi(ω)dLeb(ω) (41)

=
∑
j ̸=i

1√
pi(Ai)

√
pj(Ai)

√
pi(Ai) (42)

=
∑
j ̸=i

√
pj(Ai) (43)

In the second choice of assumption, the same thing happens: pi(Ai)−K2ϵ2 >
∑

j ̸=i pj(Ai)/(K−
1)2 implies that

√
pi(Ai) − Kϵ >

∑
j ̸=i

√
pi(Ai) and once again, the center of any Gershgorin

disk (but this time in the rows) are further away from zero than the sum of absolute value of other
non-diagonal entries. Therefore, none of the disks contain the origin and ((hi, qj))

K
i,j=1 cannot have

0 eigenvalue, thus full-rank. Therefore, either choices of assumption leads to full-rank-ness of the
system ((hi, qj))

K
i,j=1.

Step 2. Full-rank implies uniqueness. By the premise of this result, we have for each i,

∥qi − φi∥L2 < ϵ. (44)

Thus,

⟨hi, φj⟩ = ⟨hi, qj⟩ − ⟨hj , qj − φj⟩ ∈ (⟨hi, qj⟩ − ϵ, ⟨hi, qj⟩+ ϵ), (45)

by Cauchy-Schwarz.

Recall that ((hi, qj))i,j is full rank, and that Gershgorin circle theorem applied in the previous step
still has a slack of at leastKϵ. Therefore, perturbation element-wise of additive size ϵ of ((hi, qj))i,j
will still be full rank by Gershgorin circle theorem and we conclude that ((hi, φj))i,j is full-rank.
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Let X ∈ PWλ(W) for some λ ∈ (λK , λK+1), then by definition, there exists a vector c ∈ RK

such that X =
∑K

j=1 cjφj . Take inner product (in L2(P) = L2(W)), we have:
⟨h1, φ1⟩ ⟨h1, φ2⟩ . . . ⟨h1, φK⟩
⟨h2, φ1⟩ ⟨h2, φ2⟩ . . . ⟨h2, φK⟩

...
... . . .

...
⟨hK , φ1⟩ ⟨hK , φ2⟩ . . . ⟨hK , φK⟩

 c =


⟨h1, X⟩
⟨h2, X⟩

...
⟨hK , X⟩

 (46)

.

To test if U =
⋃K

i=1Ai is a uniqueness set, we assume that ∥XδU∥L2(W) = 0. But |⟨hi, X⟩| =
|⟨hi, δAi

X⟩| ≤ ∥hi∥∥XδU∥ = 0 for each i in [K]. Thus:
⟨h1, φ1⟩ ⟨h1, φ2⟩ . . . ⟨h1, φK⟩
⟨h2, φ1⟩ ⟨h2, φ2⟩ . . . ⟨h2, φK⟩

...
... . . .

...
⟨hK , φ1⟩ ⟨hK , φ2⟩ . . . ⟨hK , φK⟩

 c =


0
0
...
0

 (47)

.

Finally, since ((hi, φj))
K
i,j=1 is full rank, its null space is trivial, implying c = 0 and thus X = 0,

which proves uniqueness of U .

D.3 CONSISTENCY THEOREM

This result is an adaptation of (Schiebinger et al., 2015, Thm. 2), which is reproduced below.
Theorem 6 (Thm.2, Schiebinger et al. (2015)). There are numbers c, c0, c1, c2 depending only on b
and r such that for any δ ∈ (0, ∥K∥P

b
√
2π

) satisfying condition (Schiebinger et al., 2015, 3.17) and any
t > c0w

−1
min

√
ϕn(δ), the embedded dataset {ΦV(ωi), Zi}ni=1 has (α, θ) orthogonal cone structure

with

| cos θ| ≤
c0
√
ϕn(δ)

w3
mint− c0

√
ϕn(δ)

(48)

α ≤ c1

w
3/2
min

ϕn(δ) + ψ(2t) (49)

and this event holds with probability at least 1− 8K2 exp− c2nδ
4

δ2+Smax+C .

Thm. 6 elucidates the conditions under which the spectral embeddings of the nodes ω form an
orthogonal cone structure (see (Schiebinger et al., 2015, Def. 1) for a precise definition). This is
helpful for Gaussian elimination, as provided that we pick a pivot inside a cone, the other rows to be
picked—which are orthogonal to the pivot—are themselves inside other cones, and therefore likely
to belong to a different cluster (i.e., to be distributed according to a different mixture component).

We first recall connections between graphons and mixture models and explain how each objects in
the context of Thm. 6 can be understood in graphons terms. In mixture model, we sample dataset
{ωi}ni=1 from the mixture distribution. This is equivalent to sampling nodes under a pushforward
in when we sample finite graphs from a graphon. Thus, each data point ωi is a ‘node’ of a finite
graph sampled from the graphon. Next, the spectral embedding of datapoints in spectral clustering
is equivalent to computing the eigenfunction of graphon Laplacian at that datapoint - embedding
it in frequency domain. Therefore, from a graphon perspective, the theorem is asserting that given
some underlying structure controlled by the difficulty function, embedding of nodes in finite graph
from a fix graphon into frequency domain under GFT has a peculiar structure: an orthogonal cone.
While we do not have easy access to graphon eigenfunction, computing an approximation once with
a large graph suffices. This is because we can reuse the embedding when new points are sampled
into the graph!

Proof of Thm. 5. Let us consider what happens when performing Gaussian elimination on the
columns of ΦV(ω). When picking the pivot, the probability of picking a “good” point inside a
cone, i.e., a point that is both inside a cone and that is distributed according to the mixture com-
ponent associated with that cone, is 1 − α. Conditioned on this event, the probability of picking a
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second “good” point from another cone is (1−α)(n−n1)
n−(1−α)n1

, where n1 is the number of points distributed
according to the pivot’s distribution, denoted P1. More generally, the probability of picking a “good”
point at the ith step, conditioned on having picked i− 1 “good” points, is

P(ith point is “good” | 1, . . . , i− 1 are “good”) =
(1− α)n−i

n− (1− α)n+i
(50)

where n−i =
∑i−1

j=1 n− nj and n+i = n− n−i.

Since Eq. (50) is a decreasing function of n−i, the probability of picking K good points is lower
bounded by

P(1, . . . ,K are “good”) ≥ (1− α)K(n− nmin)
K

(n− (1− α)nmin)K
(51)

where nmin = min1≤j≤K nj . Combining Eq. (51) with Theorem Thm. 6 gives the proposition’s
result.

Proof of Prop. 4. The conditions on the difficulty function in the hypothesis of Prop. 4 means that
the angle θ in the cone structure is at least π/3.

Note that every finite graph Gn induces a graphon via stochastic block model:

WGn
:=

n∑
i=1

n∑
j=1

[An]i,jI(x ∈ Ii)I(y ∈ Ij) (52)

From Ruiz et al. (2021), we know that the eigenvalues of the adjacency HS operator of WGn

converges to that of W. As the graphon Laplacian is a scaled and translated operator from the
adjacency operator, eigenvalues of the Laplacian also converges. Let the eigenvalues of the finite
graph be λ̂n,1 ≤ . . . ≤ λ̂n,−1 Pick an n0 large enough such that there is a spectral gap λ̂n,K <

λ̂n,K+1 for all n > n0. Then pick an even larger n1 such that λ ∈ (λ̂n,K , λ̂n,K+1) for all n > n1.
Such a choice of n0, n1 is guaranteed by convergence of eigenvalue.

Not only do eigenvalue converges, when there is an eigengap, the subspace spanned by the first K
eigenfunctions also converges. The convergence is in term of convergence in operator norm of the
projection operator (Ruiz et al., 2021). Let the projection operator be ΦGn

and ΦW, corresponding
to that for the finite graph Gn and for the graphon W respectively. Therefore, we select yet a larger
n2 such that ∥ΦGn

− ΦW∥HS < ϵ for all n > n2 and for some ϵ to be chosen later.

Recall that we picked some sample via Thm. 5 and with high probability, our sample attains an
orthogonal cone structure. In other words, there is a permutation of samples such that for each
i ∈ [K], | cos τ(i)| > 1/2 with high probability, where τ(i) is the angle between φ(xi) and the unit
vector with all zero entries but the i-th one. This means that for any i, |φi(xi)|/∥(φj(xi))j∈[K]∥2 >
1/2. Therefore, the matrix: 

φ1(x1) φ2(x1) . . . φK(x1)
φ1(x2) φ2(x2) . . . φK(x2)

...
... . . .

...
φ1(xK) φ2(xK) . . . φK(xK)

 (53)

is full rank, since the off-diagonal absolute value sum does not exceed the absolute value of the
diagonal entry for every row, via Gershgorin circle theorem. As a corollary from Thm. 1 of Anis
et al. (2016), the system being full rank means that the samples drawn form a uniqueness set and the
proof is complete.

To select ϵ, notice that there are still slack in Gershgorin circle theorem and one can select such an ϵ
that the two projection has eigenfunctions differs by at most that slack amount in L2. This is possible
since full-ranked-ness is a robust property: if a matrix is full-rank then other matrices within a small
ball from it is also full-rank. Thus, if there is a converging sequence of eigenfunction/eigenspace
to φ(x) then the perturbed matrix analogous to Eq. (53) would eventually enter the small ball of
full-rank matrices. We leave more precise nonasymptotic analysis to future work.
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E SMALL EXAMPLE: BLOCK MODEL AND MIXTURE OF DISJOINT UNIFORM
DISTRIBUTIONS

Let us consider a simplified setting, consisting of a blockmodel kernel and uniform mixture compo-
nents, to show an example where Gaussian elimination recovers intervals distributed according to
the {qi}Ki=1.

Proposition 5. Let I = Ω1∪ . . .∪ΩN be anN -partition of Ω. Let the kernel k be aK-block model
over a coarser partition I ′ = Ω′

1 ∪ . . . ∪ Ω′
K of Ω containing I (each block has value given by the

integral of K over the centroid). Let the Pi be uniform over the Ω′
i. Then, column-wise Gaussian

elimination over the positive eigenfunctions(vectors) finds subsets Ωj1 , . . . ,ΩjK distributed with
probability density functions equal to the corresponding qi, up to a normalization.

Proof of Prop. 5. The kernel k can be written as

k(ω, θ) =

K∑
i,j=1

aijI(ω ∈ Ω′
i)I(θ ∈ Ω′

j). (54)

Therefore, the model K can be represented as a SBM graphon,

A =



i11 . . . i1k1
. . . iK1 . . . iKkK

i11 a11 . . . a11 . . . a1K . . . a1K
...

...
. . .

...
...

. . .
...

i1k1
a11 . . . a11 . . . a1K . . . a1K

...
...

. . .
...

iK1 a1K . . . a1K . . . aKK . . . aKK

...
...

. . .
...

...
. . .

...
iKkK

a1K . . . a1K . . . aKK . . . aKK


(55)

where iljl , 1 ≤ jl ≤ kl, indexes elements of I contained in Ω′
l (i.e., in the support of Pl), and∑K

j=1 kj = N . For a more concise representation, let us write

A =

A11 . . . A1K

...
. . .

...
A1K . . . AKK

 (56)

where Aij = aij11
T .

Consider the normalized adjacency Ã = (D†)1/2A(D†)1/2, which has the same block structure
as A but with blocks Ãij . Note that technically, we would find eigenvectors of the normalized
Laplacian I−Ã but the identity shift only shifts the spectrum by 1 (after inversion about the origin).
Therefore it is equivalent to finding the eigenvectors of Ã: Ã11 . . . Ã1K

...
. . .

...
Ã1K . . . ÃKK

u = λu. (57)

Note, however, that for each 1 ≤ i ≤ K, the rows corresponding to [Ã1i . . . ÃKi]u are repeated,
so plugging Ã into an eigensolver without simplifying Ã first is going to incur huge computational
cost for little gain. We can exploit the repeated structure of Ã to do some preprocessing first, via
a variant of Gaussian elimination. Permuting the rows and columns of this matrix to ensure the
sequence ai1, . . . , aiK appears in the first K columns, and subtracting the repeated rows, we can
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rewrite this as 
ã11 . . . ã1K b1

...
. . .

...
...

ã1K . . . ãKK bK

0 . . . 0 0

u = λu (58)

where the bi ∈ RN−K are row vectors collecting the remaining entries of row i after permutation,
and 0 denotes the all-zeros vector of dimension N −K.

For the linear system in Eq. (58), it is easy to see that the solutions u must have form u =
[u1 . . . uk 0 . . . 0]T . Hence, the eigenvectors of the modified matrix in Eq. (58) are the eigenvec-
tors of its K ×K principal submatrix padded with zeros. To obtain the eigenvectors of the original
matrix Eq. (57), we simply have to “revert” the operations performed to get from there to Eq. (58),
with the appropriate normalizations to ensure orthonormality. By doing so, we get eigenvectors of
the following form

u =



u1

k1 times
...
u1

...

uK

kK times
...
uK


(59)

i.e., in every eigenvector of Ã, entries corresponding to sets Ωi contained in the same set Ω′
k are the

same.

Now, assume that we have found all K eigenvectors of Ã and collect them in the matrix UK ∈
RN×K . To find a uniqueness set for the associated graphon, we perform columnwise Gaussian
elimination on UK , and add the indices of the zeros in the Kth row of the echelon form to the
sampling set.

In the current example, this heuristic is always guaranteed to find a uniqueness set. Any combination
of indices corresponding to K different rows from UK forms such a set. Since through Gaussian
elimination we are guaranteed to pickK linearly independent rows, when picking a row from cluster
Ωi for arbitrary i, all ki rows are equally likely to be picked, as they are equal and thus have the
same “pivoting” effect. In an independent trial, the probability of picking a row from Ω′

i is thus
(ki/N)×Pi. Up to a normalization, this probability is equal to qi = APi. The entries of this vector
determine the level sets of qi as

qi(x) = qiI(x ∈ Ω′
i) (60)

completing the proof.

F ELEMENTS FROM (SCHIEBINGER ET AL., 2015)

For completeness, we reproduce elements from (Schiebinger et al., 2015) that were used in our
paper.

F.1 DIFFICULTY FUNCTION FOR MIXTURE MODELS

Recall Ω is a measurable space and P(Ω) is a set of all probability measures on Ω. Let Pi ∈ P(Ω)
mixture components for i = 1..K. A mixture model is a convex combination:

P :=

K∑
i=1

wiPi, (61)

for a set of weights wi ≥ 0 for i = 1 . . .K and
∑

i wi = 1. Recall that there is also a kernel k
associated with the mixture model.
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The statistics of how well-separated the mixture components are can be quantified through five
defined quantities:

Similarity index. For any distinct pair of mixtures l ̸= k, the kernel-dependent similarity index
between Pl and Pk is:

S(Pl,Pk) :=

∫
Ω

∫
Ω
k(ω, θ)dPl(ω)dPl(θ)∫

Ω

∫
Ω
k(ω, θ)dP(ω)dPl(θ)

, (62)

and the maximum over all ordered pairs of similarity index is:

Smax(P) := max
l ̸=k

S(Pl,Pk) (63)

In general, Smax measures the worst overlap between any two components with respect to the kernel
k.

Coupling parameter. The coupling parameter is defined as:

C(P) := max
m

∥∥∥∥ k(ω, θ)

qm(ω)qm(θ)
− wm

k(ω, θ)

q(ω)q(θ)

∥∥∥∥2
Pm⊗Pm

, (64)

where q(θ) =
√∫

k(ω, θ)dP(ω) and qm(θ) =
√∫

k(ω, θ)dPm(ω). It measures the coupling
of function spaces over P2 with respect to the Laplacian operator. When it is 0, for instance, the
Laplacian over P is the weighted sum of Laplacians over Pm with weights wm.

Indivisibility parameter. The indivisibility of a probability measure is defined as:

Γ(Q) := inf
S⊂Ω

p(Ω)
∫
S

∫
Sc k(ω, θ)dQ(ω)dQ(θ)

p(S)p(Sc)
, (65)

where p(S) :=
∫
S

∫
Ω
k(ω, θ)dQ(ω)dQ(θ).

And Γmin(P) := minm Γ(Pm) measures how easy it is to split a single component into two which
is suggestive of ill-fittedness of the current model.

Boundedness parameter. Finally, we define:

bmax := max
m

∥∥∥∥ k(·, θ)
qm(·)qm(θ)

dPm(θ)

∥∥∥∥2
∞
. (66)

This is just a constant when the kernel is bounded.

The difficulty function. With these parameters set up, we can now define the difficulty function
used in Prop. 3:

ϕ(P,k) :=
√
K(Smax(P) + C(P))
minm wmΓ2

min(P)
. (67)

F.2 FINITE-SAMPLE CONE STRUCTURE ELEMENTS

To get Theorem 2 from (Schiebinger et al., 2015), we require additional concepts and notations.
For two vectors u, v in RK , we define the angle between them angle(u, v) := arccos ⟨u,v⟩

∥u∥∥v∥ . An
orthogonal cone structure OSC with parameter α, θ is an embedding of n points {(Xi ∈ Rn, Zi ∈
[K])}i∈[n] into RK such that for each m ∈ [K], we can find a subset Sm with at least a (1 − α)
proportion of all points with Zi = m where any K points taken from each one of these subsets have
pairwise angle at least θ.

In the derivation of Thm. 6, Schiebinger et al. (2015) also let b be such that k ∈ (0, b), and r be such
that qm(Xm) ≥ r > 0 with probability 1. c0, c1, . . . are then other constant that depends only on b
and r.
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Table 3: Citation network details.
Nodes (N ) Edges Features Classes (C)

Cora 2708 10556 1433 7
CiteSeer 3327 9104 3703 6
PubMed 19717 88648 500 3

In conjunction with other works on the topic, they also defined a tail decay parameter:

ψ(t) :=

K∑
m=1

Pm

[
q2m(X)

∥qm∥2P
< t

]
(68)

and an extra requirement and the difficulty function: that there exists a δ > 0 such that:

ϕ(P;K) +
1

Γ2
min(P)

(
1√
n
+ δ

)
≤ cΓ2

min(P). (69)

In words, it means that the indivisibility parameter of the mixture model is not too small relative to
the clustering function. Finally, in the statement of Thm. 6, the difficulty parameter is reparameter-
ized as the left hand side of Eq. (69):

ϕn(t) := ϕ(P; k) +
1

Γ2
min(P)

(
1√
n
+ δ

)
, (70)

where n is the number of points in the dataset.

G ADDITIONAL EXPERIMENT DETAILS

All the code for the numerical experiments was written using the PyTorch and PyTorch Geometric
libraries. The first set of experiments was run on an Intel i7 CPU, and the second set on an NVIDIA
A6000 GPU.

Transferability for node classification. The details of the citation network datasets used in this
experiment are displayed in Table 3. To perform graphon sampling, the nodes in these networks
were sorted by degree. We considered a 60-20-20 training-validation-test random split of the data
for each realization. In all scenarios, we trained a GNN consisting of a 2-layer GCN with embedding
dimension 32 and ReLU nonlinearity, and 1 readout layer followed by softmax. We minimized the
negative log-likelihood using ADAM with learning rate 0.001 and default forgetting factors over
100 training epochs.

Positional encodings for graph classification. We anonymized the MalNet-Tiny dataset by remov-
ing the node features and replacing them with the all-ones signal. Since we focus on large graphs,
we further removed any graphs with less than 4500 nodes. This brought the number of classes down
to 4, and we additionally removed samples from certain classes at random to balance the class sizes,
yielding a dataset with 216 graphs in total (54 per class). We considered a 60-20-20 random split
of the data for each realization. In all scenarios, we trained a GNN consisting of a 4-layer GCN
with embedding dimension 64 and ReLU nonlinearity, and 1 readout layer with mean aggregation
followed by softmax. We minimized the negative log-likelihood using ADAM with batch size 8,
learning rate 0.001 and default forgetting factors over 150 training epochs. The PEs are the 10 first
normalized Laplacian eigenvectors, and to obtain the graphon-sampled subgraph, we fix λ = λ10,
q = 20, p = 10, 2 communities, and r = 10.
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