
BIRD: Generalizable Backdoor Detection and Removal for
Deep Reinforcement Learning

S1 Additional Technical Details

S1.1 Details of Our Proposed Algorithms
Trigger restoration. We first discuss how to compute the gradient of Eqn.(2) in Section 3.2 with
respect to our unknown parameter θ. We leverage the REINFORCE [11] method, also known as the
score function estimator

Es∼ρπ [Eps∼Bs [(ηs(π(ps)) + λ1R1(ps) + λ2R2(ps))∇θ log
∏
i,j

Beta(α, α + (fθ(s))ij) + λ1∇θR1(ps) + λ2∇θR2(ps)]]. (1)

Algorithm 1 shows our backdoor restoration algorithm. As mentioned in Section 3.2, we design our
algorithm based on the on-policy REINFORCE. Alternative choices can be the off-policy methods, e.g.,
PPO [10].

Algorithm 1 Trigger restoration algorithm

1: Input: the policy and value network of the agent under our detection, π(s) and Vπ(s) (s ∈ Rp×q),
trigger restoration function fθ, Beta distribution parameter α, maximal detection iteration N ,
maximum trajectory length T (given by the environment), number of trajectories in each batch M ,
sparsity regularization weight λ1, smoothness regularization weight λ2.

2: Output: the restored trigger ∆.
3: for n = 1, 2, ..., N do
4: Compute the joint distribution B =

∏
i,j Beta(α, α+ (fθij )), i = 1 : p, j = 1 : q.

5: T = ∅
6: for 1, ...,M do
7: for t = 1, 2, ..., T do
8: Generate a trigger ∆st by sampling from B.
9: Add ∆st to the current input state of the agent to generate s′t = st +∆st .

10: Agent takes action according to the perturbed state a′ ∼ π(s′t).
11: end for
12: Add the current trajectory to T .
13: end for
14: Compute the gradient of Eqn.(2) in Section 3.2 with respect to θ according to Eqn. (1) and

update the parameters of fθ using Adam [4].
15: end for
16: Return the final restored trigger as ∆s = 2( α

2α+fθ(s)
)− 1.

Backdoor detection algorithm. Algorithm 2 shows our backdoor detection algorithm. As the
defender, we are able to know the maximum reward difference (ηmax) since we have the knowledge of
the environment in which we will deploy the agents.

Removal algorithm. Algorithm 3 shows our backdoor removal algorithm.
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Algorithm 2 Backdoor detection algorithm
1: Input: A possibly backdoored agent with policy π, the restored triggers ∆, the clean environment,

maximum reward different of the environment ηmax, detection threshold ϵ, number of trajectories
K.

2: Output: True if π is backdoored, False if π is clean.
3: η̄(π)← 0, η̄(π,∆)← 0
4: for 1, ...,K do
5: Randomly select an initial state and start the trajectory.
6: Add the restored trigger ∆ to the state at every time step, the agent takes an action a′ ∼ π(s′).
7: Collect the agent’s reward r in this trajectory, η̄(π,∆)← η̄(π,∆) + r.
8: end for
9: for 1, ...,K do

10: Randomly select an initial state and start the trajectory.
11: Agent πi observes the real clean state from the environment.
12: Collect the reward r in this trajectory, η̄(π)← η̄(π) + r.
13: end for
14: Compute the average reward under poisoned environment η̄(π,∆)← η̄(π,∆)/K.
15: Compute the average reward under clean environment η̄(π)← η̄(π)/K.
16: ϕ(π,∆)← (η̄(π,∆)− η̄(π))/ηmax
17: if ϕ(π,∆) ≤ ϵ then
18: Return True, the policy is backdoored.
19: else
20: Return False, the policy is clean.
21: end if

Algorithm 3 Backdoor removal algorithm

1: Input: The backdoored policy π′, the restored trigger ∆, the number of reset neuron L, the clean
environment, warm up iteration E, maximum finetuning iteration N , number of trajectories in
each batch M .

2: Output: the finetuned policy πϕ.
3: A = ∅ ▷ Identify the vulnerable neurons
4: for 1, ..., E do
5: Add restored trigger ∆ to the clean environment.
6: Record each neuron’s activation value.
7: end for
8: Compute the mean activation value for each neuron and select the top L neurons a with the highest

activation value. A = A ∪ a
9: for neuron a in π do ▷ Reset the weights and biases of vulnerable neurons to zero

10: if a ∈ A then
11: Set the weight and bias of a to be zero.
12: end if
13: end for
14: for n = 1, 2, ..., N do ▷ Begin retraining
15: for 1, ..,M do
16: Add restored trigger ∆ to the clean environment at a fixed interval.
17: Run the current policy π

(n−1)
ϕ and collect trajectories.

18: end for
19: Estimate η(πn

ϕ ,∆) using the current value function of πϕ, Vπϕ
, and the collected trajectories.

20: Estimate the KL divergence KL(πn
ϕ∥π) using the clean states in the collected trajectories.

21: Compute the policy gradient of Eqn.(4) in Section 3.4 with respect to πn
ϕ and update the policy

πn
ϕ ← πn−1

ϕ based on the PPO algorithm, and update the value function Vπϕ
.

22: end for
23: Return the finetuned policy πN

ϕ .
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S1.2 Avoid Adversarial Samples
In this section, we compare our trigger restoration objective function in Eqn.(1) of Section 3.2 with
another similar formulation. We discuss why our objective function is the correct one for restoring the
trigger rather than computing the adversarial example of the value function. For simplicity, we use the
original objective function in Eqn.(1) of Section 3.2 for our analysis without adding the transformations
in Eqn.(2) of Section 3.2.

First, we compute the gradient of Eqn.(1) of Section 3.2 with respect to ∆ as∑
s

ρπ(s)
∑
a

∇∆π(a
′|s+∆)Q(a′, s+∆) , (2)

which is the standard policy gradient formulation.
One possible confusion is to solve ∆ by optimizing the following objective function

max∆

∑
s

ρπ(s)V (s+∆) . (3)

This objective function finds a perturbation added to the agent’s value network input that maximizes
the value network output. The corresponding gradient is as follows∑

s

ρπ(s)∇∆V
′(s+∆) . (4)

Eqn.(4) shows that solving Eqn.(3) is equivalent to finding an adversarial example for the agent’s value
network. Given that Eqn.(4) is different from the correct gradient in Eqn. (2), solving Eqn.(3) will
not produce the correct trigger but an adversarial example of the agent’s value network. Adding this
adversarial example to the state will likely not trigger the backdoored action of the agent.

S1.3 Derivation of Eqn.(3) in Section 3.4
First we introduce a local approximation to η(πϕ) according to [9]:

Lπ′(πϕ) = η(π′) +Mπ′(πϕ),

= η(π′) +
∑
s

ρπ
′
(s)

∑
a

πϕ(a|s)Aπ′(s, a). (5)

Lπ(πϕ) uses the state stationary occupancy distribution for the original backdoored policy π′ instead
of πϕ. Aπ′(s, a) is the advantage function for π′. Then according to [9], we have

|η(πϕ)− Lπ′(πϕ)| ≤ C1 max
s∼ρπ′

KL(πϕ(s)||π′(s))

|η(πϕ)− η(π′)−Mπ′(πϕ)| ≤ C1 max
s∼ρπ′

KL(πϕ(s)||π′(s))

|η(πϕ)− η(π′)| ≤ C1 max
s∼ρπ′

KL(πϕ(s)||π′(s)) + |Mπ′(πϕ)|.

(6)

According to Theorem 1 in [1], we further derive

Mπ′(πϕ) =
∑
s

ρπ
′
(s)

∑
a

πϕ(a|s)Aπ′(s, a) ≤ Es∼ρπ′ ,a∼π′,s′∼p(·|s,a)[(
πϕ(a|s)
π′(a|s)

− 1)R(s, a, s′)]

= Es∼ρπ′ ,a∼π′ [(πϕ(a|s)− π′(a|s))Es′∼p(·|s,a)R(s, a, s′)]

≤ max
s,a,s′

|R(s, a, s′)|maxDTV (πϕ, π
′)

≤ C2 max
s∼ρπ′

KL(πϕ(s)||π′(s)).

(7)

Based on 6 and 7, we have the following inequality

|η(πϕ)− η(π′)| ≤ C max
s∼ρπ′

KL(πϕ(s)||π′(s)). (8)
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S1.4 Apply BIRD to Other Attacks
Adversarial agent attacks. Adversarial agent attacks [12] manipulate the system’s actual state and
state transitions through an adversarial agent’s trigger action. The trigger action modifies a certain
part of the state representation that corresponds to the adversarial agent’s status and action, setting
it to a specific value. This process is equivalent to adding a perturbation ∆̂t to the current state st,
resulting in a poisoned state. As such, our trigger restoration objective function (Eqn.(2) in Section
3.2) can be directly used to solve such a perturbation for each state in adversarial agent attacks (we
also need to normalize the state). Given that adversarial agent attacks consider two-agent setups, with
one adversarial agent and one victim/backdoored agent. The policy of the adversarial agent is fixed,
and retraining the victim/backdoored agent is a single-agent problem, where our backdoor removal
algorithm can be directly applied.
Multi-agent perturbation-based attacks. Multi-agent perturbation attacks [2] directly add
perturbations to a specific part of the agent’s state representation that corresponds to its surrounding
terrain. While this attack scenario involves multiple agents, the original attack setup [2] assumes that
all agents share the same policy. As such, trigger restoration can still be obtained by solving Eqn.(2) in
Section 3.2. When retraining/finetuning the backdoored policy, we use their corresponding training
method, QMIX or COMA, to conduct the policy updating using our retraining/finetuning objective
function (with the KL divergence constraint).

S2 Implementation Details and Hyper-parameters
We use pytorch [7] and Stable-Baselines [8] to implement the backdoor agent training, trigger restoration,
detection and backdoor removal. We attach a preliminary version of our implementation of BIRD in
the supplementary material and we will publish the code if our work gets accepted.
Backdoor agent training. We follow the default settings to reproduce the backdoored agent. For
TrojDRL [5], we inject a 3× 3 square patch trigger at the top left of the state representations using
A2C algorithm [6]. The poisoning rate is set to 0.1 for untargeted attacks and 0.05 for targeted attacks.
In the case of Backdoorl, we set the trigger action as staying still for 10 time steps at the beginning of
the game. As for Marnet, we use the in-distribution trigger with a trigger size 5%, where the trigger
is perturbation vector whose value falls into [0.8, 1.2], The trigger itself is a perturbation vector with
randomly generated values falling within the range of [0.8, 1.2], which is then added to the part of the
agent’s observation that represents its surrounding terrain. We use the 5m_vs_6m and 3m map for
QMIX and COMA, respectively.
Restoration and retraining. For backdoor restoration, we empirically set α to be 100, the learning
rate of Adam optimizer to be 1e − 1, the sparsity regularization weight λ1 to be 1e − 3 and the
smoothness regularization weight λ2 to be 1e− 5. For backdoor detection, the detection threshold ϵ
is set to be −0.9. For backdoor removal, we set the number of warm up iterations to be 100 and we
report the number of re-initialized neurons of each layers in Table S1 for different attack scenarios.
To run our methods on multi-agent attack, we make the following adaptions. Specifically, for QMIX,
we generate the perturbations ∆ that need to be optimized and add it to the state representations
of all participating agents. Then we use the global Q value to replace the Qπ(s+∆, π(a|s+∆)) in
Eqn.(1) in Section 3.2, and solve the objective function. For backdoor removal step, we perform neuron
re-initialization on the global Q value network and the agent’s shared policy network. As for COMA,
we also use the global Q value to optimize ∆ since it aggregates all agent’s state as input. Similarly, we
perform neuron re-initialization on both the global Q value network and the shared policy network.
The state representations of adversarial agent attack and Marnet are 1-dimension vectors, i.e., s ∈ Rq

, thus the Provable Defense method cannot be directly applied to these attack scenarios. We have
conducted a sensitivity test on λ1, λ2, ϵ, which is described in detail in Supplement S3.5. For baselines,
we use the official code released by NC, Pixel and Provable Defense.
Neuron reinitialization process. When selecting the neurons to be reinitialized, we first sort
neurons based on their activation value within each layer. Our policy networks involve two types of
layers – the convolutional layer and the fully-connected layer. More specifically, as shown in Algorithm
3 in Supplement S1, during the backdoor removal, we first run a warm-up stage to collect a set of
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Table S1: Number of reinitialized neurons for different attack scenarios.

Breakout CrazyClimber Pong Qbert Seaquest SpaceInvaders QMIX COMA YSNP SH RTGA

# re-init neurons 20 20 20 20 30 30 20 25 20 25 15

Table S2: BIRD against adaptive attack.

c
Original BIRD

Clean Poisoned Clean Poisoned

1e− 1 505 448 418 457
1e− 2 571 392 518 451
1e− 3 551 374 540 527
1e− 4 582 170 563 512

trajectories from the poisoned environment. For each state in these trajectories, we input it into the
policy network and record the activation value for each kernel in the convolutional layer and each
neuron in the feedforward layer. We then compute the activation mean of each kernel/neuron across all
the states.

Given these mean activation values, we then select L neurons/kernels from each layer in the policy
network. Specifically, for each convolution layer, the output for each state is a 3-D tensor with the
size of [C ×H ×W ] . We first find the highest activation value in each channel (i.e., each [H ×W ]
2-D activation matrix). Then, we rank these channel-wise highest activation values to select the top L
channels with the highest values. We reinitialize the weights and biases of the kernels corresponding to
the selected channels. For each linear layer, we rank the activation value and select the top L neurons.
We reinitialize the weight and bias of these selected neurons. Regarding the reinitialization operation,
we reset the weights and biases as zero.
Adaptive attacks. For adaptive attack-1, we introduce randomness in the location of the trigger
each time it is injected, while maintaining its shape. For adaptive attack-2, we add an extra loss term
c ·
∑

i(Fi(s
′)−Fi(s))

2 to the training objective of the backdoor agent. Fi(s) represents the pre-activation
value of the i-th layer on clean states and s′ denotes the states with trigger. The parameter c controls
the influence of this loss term. By design, the backdoored policy trained with this adaptive loss aims to
encourage the backdoored policy to generate smaller activation values on vulnerable neurons, making it
more challenging for the defender to unlearn the trigger.
To implement this adaptive loss, we add it to the time step in which the trigger is injected. We also
modify the agent’s reward using the same mechanism as in TrojDRL. The poisoning rate, trigger pattern
and other training hyper-parameters remain the same with the default setting. In our evaluation, we
use SpaceInvaders and test four different values of c: 1e− 2, 1e− 3, 1e− 2, 1e− 1 on untargeted attack.
The backdoor removal result is shown in Table S2. As shown in the Table, with the increase of the
regularization weight c, the backdoored agent fails to achieve low reward in the poisoned environment,
which demonstrates that the success of trigger injection relies on the abnormal behavior of the neurons.
However, even in cases where the attack is not highly effective, BIRD is still capable of removing the
backdoor from the model.

Note that the adaptive attack-1 (trigger location variation) is not applicable to the adversarial-agent
attack, as it does use the perturbation patch as the trigger. Besides, in the MuJoCo games, each
dimension’s meaning in the state representation is pre-defined and fixed. This indicates that no matter
how the adversarial agent changes its trigger action, it will pertain to fixed dimensions in the state
representation, resulting in a similar perturbation pattern being learned.

S3 Additional Experiment Details and Results

S3.1 Additional Experiment Results
Trigger fidelity comparison. In Figure S1, we report the trigger fidelity scores of untargeted
attacks on four Atari games and two attacks (QMIX and COMA) for Marnet. We compute the fidelity
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Figure S1: Average trigger fidelity scores of the selected methods on 5 backdoored policies.

Table S3: Paired t-test p-value between the performance of backdoored agents retrained with BIRD
and those retrained with the baseline methods in the poisoned environment.

Method Breakout SI Qbert Seaquest QMIX COMA YSNP SH RTGA

Original >0.001 >0.001 >0.001 >0.001 >0.001 >0.001 >0.001 >0.001 >0.001
Finetuning >0.001 >0.001 >0.001 >0.001 >0.001 >0.001 >0.001 0.002 0.001

PD >0.001 0.001 0.002 0.001 - - - - -

scores according to [3]. For the restored trigger ∆̂ and the ground-truth trigger ∆, we compute the

precision
||∆⊙ ∆̂||1
||∆||1

and recall
||∆⊙ ∆̂||1
||∆̂||1

. We use the F1 score as the trigger fidelity score. The results

demonstrate that BIRD can restore triggers with better quality than two baseline methods.
Paired t-test for Tab. 1. We perform a paired t-test to demonstrate the statistical significance of our
comparison results in Table 1. Our null hypothesis is H0 : E[D] ≤ 0, where D is the reward difference
between our method and a baseline method. If the p-value is larger than an empirical threshold (e.g.,
0.05), we accept H0, indicating our method cannot outperform the baseline. The results of the paired
t-test are reported in Table S3.
Two alternative removal methods. We directly use the trigger restored by NC and Pixel and
apply our backdoor removal method to retrain the backdoored policies. To evaluate the effectiveness of
our approach, we conduct experiments on targeted and untargeted attacks using two Atari games, as
these two baselines can not be applied on the adversarial agent attack. The result is shown in Table
S4. Directly leveraging the triggers restored by two baselines can help remove the backdoors but the
improvements are limited especially in the case of untargeted attacks. These results serve as further
evidence that although our trigger restoration method may not always produce a trigger with high
fidelity, it still contributes to the successful removal of backdoors from the poisoned policies.

S3.2 Untargeted Attack Results.
Backdoor detection results. In Figure S2, we show the backdoor detection results on two additional
untargeted attacks.
Backdoor removal results. We show the performance of different defenses in additional two
untargeted attacks in Table S5, as a supplement of Table 1 in Section 4.1.

S3.3 Targeted Attack Results.
Backdoor detection results. The targeted attack proposed by TrojDRL assumes that the poisoned
action is pre-defined by the attacker in advance. This targeted attack typically leads to a lower reward
for the agent compared to the untargeted attack, as in untargeted attack, the agent still has a chance
to take actions that are beneficial for the task, making the detection of the backdoor more challenging.
We keep the same setting and train 10 policies, with five of them being backdoored policies, three being
well-trained clean policies, and the left two being not well-trained clean policies. Figure S3 shows the
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Table S4: Backdoor removal results of two algernative removal methods. “tar.” stands for the targeted
attack and “untar.” stands for the untargeted attack.

Environments Methods Seaquest(tar.) Seaquest(untar.) Qbert(tar.) Qbert(untar.)

Clean

Original 1736±92 1719±107 12899±2004 13488±1897

NC 1320±101 1430±80 10037±1981 11975±2133

Pixel 1552±94 1692±61 12675±2018 12380±1536

BIRD 1469±85 1741±73 12450±1793 13389±2452

Poisoned

Original 0.0 146±49 0.0 150±12

NC 1273±97 343±188 10367±2132 7547±2108

Pixel 1448±86 728±206 12200±1964 9255±2349

BIRD 1550±104 1686±83 11809±1245 12694±2194
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Figure S2: Backdoor detection F1 scores of
two untargeted attacks.

Table S5: Performance of different defenses in two
untargeted attack scenarios.

Environments Methods Pong CrazyClimer

Clean

Original 20±1 96705±1623

PD 8±3 10566±378

Finetuning 20±1 101328±8682

BIRD 20±0 95870±10175

Poisoned

Original -16±3 696±557

PD 6±1 9367±562

Finetuning -15±2 705±396

BIRD 19±1 88527±12874

backdoor detection performance of all three methods in six targeted attacks scenarios. Two baseline
methods perform better on targeted attacks compared to untargeted attacks. This can be attributed
to the fact that the targeted task closely resembles a backdoor attack in supervised classification, as
the attacker specifies the poisoned action. TrojDRL also reported similar observations, noting that
identifying the trigger for untargeted attacks is more challenging than for targeted attacks. However,
our proposed defense mechanism, BIRD, still outperforms the two baseline methods in the majority of
the games, demonstrating its effectiveness in targeted attack scenarios.
Backdoor removal results. In Table S6, we report the performance of different defenses against the
six targeted attacks proposed by TrojDRL.

S3.4 Adaptions of BIRD When Value Network Is Not Available.
Our backdoor removal algorithm assumes access to the agent’s network Vπ(s) or Qπ(s, π(s)), which
is utilized for estimating the policy gradient of fθ(s) in Algorithm 1. However, there may be cases
where only the policy network is available to the defender as the value networks are primarily used to
facilitate policy network training, or the attacker intentionally attach a benign value network to make
the attack stealthy so we may not trust the value network. We discuss an alternative solution of apply
BIRD for those two cases. As we discuss in Section 3.2, the backdoor agent will receive the actual
reward when it takes trigger action at the poisoned states. This indicates that by adding a proper
trigger to its states will result in a significant decrease in the agent’s total reward under the actual
reward function. we leverage the actual reward rk obtained from the environment and compute the
agent’s return. In such cases, we restore the trigger by minimizing the actual return of the agent (i.e.,
change the objective function in Eqn. (1) to

min∆

∑
s

ρπ(s)
∑
a

π(s+∆)R(s+∆, π(s+∆)) , (9)

where R(·) is the actual reward function of the RL problem. The insight is for a backdoored agent,
its actual return will drop when facing the triggered environment. And we are minimizing the return of
the agent to restore the trigger. The result is shown in Figure S4. Without access to the poisoned value
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Figure S3: Backdoor detection F1 scores of six targeted attacks.

Table S6: Performance of different defenses in the six targeted attack scenarios. “Clean” and “poisoned”
refer to the original clean environment and an environment poisoned by the ground truth trigger. The
numbers in each element are average rewards across 1000 game rounds ± std.

Environments Methods Breakout SpaceInvaders Qbert Seaquest Pong CrazyClimer

Clean

Original 286±41 621±73 12899±2004 1736±92 20±1 97128±2510

PD 175±62 331±86 7021±1069 1087±113 13 ± 4 10300±1340

Finetuning 307±26 659±87 14160±1951 1734±106 20±1 96199±2387

BIRD 259±33 551±86 12450±1793 1469±85 19±1 96166±8682

Poisoned

Original 0.0 0.0 0.0 0.0 -21 0.0

PD 202±13 417±106 7131±1628 996±185 12±1 9943±498

Finetuning 2±1 0.0 0.0 1±64 -21 0.0

BIRD 245±56 609±82 11809±1245 1550±104 19±1 86428±11057

network of the agent, the performance of BIRD is slightly inferior compared to directly utilizing the
value network. However, BIRD still outperforms all of the baselines regarding the trigger restoration
task.

Our removal step is not affected as Eqn. (4) does not require the agent’s value function. It optimizes
the agent’s total return under the actual reward.

S3.5 Ablation Study.
Generative model. We conduct the ablation study to verify the efficacy of our key design in backdoor
restoration: leveraging generative models to restore trigger. We select two games: Seaquest and Qbert
for the targeted and untargeted attacks in TrojDRL, QMIX for perturbation-based multi-agent attack
and YSNP for adversarial agent attack. To conduct the ablation study, we make the following adaptions
to conduct the ablation study. We maintain the objective function of our method but modify the
process of generating ∆. Specifically, instead of generating ∆ from a generative model, we directly
solve for ∆. We evaluate the performance of these two methods on six attack scenarios. Our method,
which employs a generative model, is denoted as “w.G”(with generative model) and the method that
directly solves ∆ is denoted as “w/o.G” (without generative model) in Figure S5.

S3.6 Choice of Detection Threshold.
When sub-optimal agent is backdoored. Consider a very challenging task, where the clean agent
might struggle to learn and can not achieve a high reward at the end, an attacker may choose such
sub-optimal agents as the target. Under this scenario, how would the choice of detection threshold ϵ
effect the performance of BIRD.

To test the effectiveness of BIRDon detecting sub-optimal clean agents and backdoored agents, we
design the following experiments on Atari SpaceInvaders game. We first prepare 20 agents, 5 agents are
well-trained clean agents, 5 agents are sub-optimal clean agents, 5 agents are well-trained backdoored
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Figure S4: Backdoor detection F1 scores of the selected methods. We leverage the return to restore the
trigger for BIRD and compute the F1 scores. All the other experiment settings stay the same.
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Figure S5: Ablation studies on generative model design. “tar.” stands for the targeted attack and
“untar.” stands for the untargeted attack. We report the F1 scores for two methods.

agents, 5 agents are sub-optimal backdoored agents. For all the backdoored agents, we only use the
successfully attacked ones. That is, their reward will drop to almost zero after observing the trigger.
Otherwise, we treat it as an unsuccessful attack. We mix them together and then apply BIRD to detect
the backdoored agents. The result is shown in Table S7. As we can see, with the increase of ϵ, we
are able to capture more and more sub-optimal backdoored agents. But we will not include any false
positives. Thus it is encouraged to not set ϵ as an overly regressive value in case there are sub-optimal
agents that are backdoored.

We acknowledge that selecting the optimal ϵ can be a trick task especially when the sub-optimal
and optimal backdoored agents are mixed together. As such, we design our final removal step with the
consideration that it will not minimize the effect on the agent’s performance in a clean environment.
With that said, conservatively, we can apply the restoration and removal step to all the given agents.
In this experiment, as shown in Table ??, after applying the removal step to all the 20 agents, we can
observe that (1) For clean agents, their performance is only marginally affected; (2) For the backdoored
agent, their performance in the clean environment keep similar, and their backdoor is removed. This
shows that even our detection step fails to capture some backdoored agents. With a conservative
solution, the removal step can still remove the backdoor for both optimal and sub-optimal agents.

S4 Computational Efficiency and Hyper-parameter Sensitivity
Runtime comparison. On average, for one policy, the average runtime for BIRD trigger restoration
is 0.75 hours, and the retraining stage takes 3.5 hours on a single NVIDIA Quadro RTX 6000 GPU.
For the Provable Defense, we need to perform single value decomposition on a state matrix with about
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Table S7: Performance of BIRD on detecting sub-optimal clean and backdoored agents.

ϵ Optimal clean (5) Suboptimal clean (5) Optimal backdoor Suboptimal backdoor

-0.5 5 5 5 5
-0.6 5 5 5 5
-0.7 5 5 5 4
-0.8 5 5 5 4
-0.9 5 5 5 3

Table S8: Performance of BIRD backdoor removal on 20 agents in SpaceInvaders targeted attack. We
report the mean±std of the reward at clean and poisoned environments respectively. Orin. represents
the original version of the policy, i.e., before applying BIRD.

Agent Clean Env Poisoned Env

Orin. BIRD Orin. BIRD

Optimal clean (5) 667±74 639±104 652±81 636±98
Suboptimal clean (5) 311±96 338±83 305±97 322±74
Optimal backdoor (5) 621±73 551±86 0±0 609±82

Suboptimal backdoor (5) 342±75 312±94 22±93 308±88

30000 dimension, depends on the length of the trajectories, which takes 3.5 hours on average. Then
during testing, we need to project every time step’s state to another space, and the average runtime is
4.5 hour. We believe the runtime of BIRD is reasonable as it is still within the normal range of training
a DRL agent in benchmark environments.
Sensitivity to restoration and detection hyper-parameters. The hyper-parameters for our
backdoor restoration approach include the weights of the two regularization terms (λ1 and λ2) and
the detection threshold (ϵ). In Table S9, we show the F1 scores of our backdoor detection technique
across various hyper-parameter settings. The default values are set to λ1 = 1e− 3, λ2 = 1e− 5, and
ϵ = −0.9, and we systematically vary these values to assess the sensitivity of our method to different
hyper-parameters. For ϵ, when its value is too small, false positive cases may arise, but the performance
of BIRD stays stable when ϵ ≤ −0.5, showing the robustness of our detection method.
Sensitivity to number of re-initialized neurons. Table S10 presents the impact of the number
of re-initialized neurons on the efficacy of backdoor removal in the targeted and untargeted attack
scenarios of the SpaceInvaders Atari game. As we can observe, when the number of re-initialized
neurons is set between 25 and 30 for untargeted attack, between 20 and 25 for targeted attack, the
performance of our backdoor removal remains stable. These results show the insensitivity of BIRD to
the key hyper-parameter for backdoor removal and demonstrate its robustness.
Sensitivity to α. In Table S10, we show the influence of the hyper-parameter α on the backdoor
detection performance. Intuitively, α plays a role in controlling the variance of our generative model
Bs. A larger value of α indicates that the restored trigger values tend to concentrate around 0 and 1,
while a smaller α allows for sampling values in between to explore a wider range. We observe that the
performance of BIRD stays stable when 50 ≤ α ≤ 200 and when it is set to 400, the F1 score begins to
decrease. this decline can be attributed to excessively large values of α, which hinder the generative
model from exploring a broader range of possible trigger values.
Sensitivity to ϵ1 in Eqn.(4). In Table S11, we vary the value of ϵ1 from 1 to 0.01, and report the
mean ± standard deviation of the rewards in clean and poisoned environment for two Atari game’s
targeted attack, after applying BIRD.

S5 Potential Social Impact.
Reinforcement learning has recently emerged as a powerful approach across various domains in computer
science, including gaming, robotics, natural language processing, and computer vision. The successful
application of RL in these areas highlights its potential impact and significance. In this context, our
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Table S9: Influence of hyper-parameters on backdoor detection performance.

Attack
scenarios

λ1 λ2 ϵ

1e-4 1e-3 5e-3 1e-2 1e-6 1e-5 5e-5 1e-4 -0.9 -0.7 -0.5 -0.3

SI(tar.) 0.833 0.833 0.800 0.667 0.800 0.833 0.875 0.500 0.833 0.833 0.800 0.500
SI(untar.) 0.909 1.000 0.800 0.727 0.750 1.000 0.909 0.889 1.000 1.000 0.750 0.571
Qbert(tar.) 0.875 1.000 0.909 0.769 0.800 1.000 0.750 0.727 1.000 1.000 0.800 0.667

Qbert(untar.) 0.875 0.909 0.909 0.667 0.909 0.909 0.875 0.750 0.909 0.909 0.727 0.500

Table S10: Influence of hyper-parameters on targeted and untargeted attacks of SpaceInvaders(SI) game.
“tar.” stands for targeted attack and “untar.” stands for untargeted attack. We re-initialize different
number of neurons in the same model and report the average reward across 1000 game rounds in the
poisoned environment. For the influence of α, we set different values for α during trigger restoration
and report the F1 score.

Attack
scenarios

# of re-init neurons α

20 25 30 40 50 100 200 400

SI(tar.) 597 609 237 135 0.800 0.833 0.800 0.667
SI(untar.) 104 510 543 147 0.909 1.000 0.889 0.633

proposed method offers a practical and valuable tool to enhance the security and integrity of RL agents
deployed in these applications. By providing an effective defense against DRL backdoor attacks, our
method strengthens the overall security posture of RL systems. This is particularly relevant in scenarios
where large-scale RL models are shared and utilized, as it can bolster the trust and confidence in these
models. By raising the bar for attackers attempting to compromise DRL agents, our method contributes
to an ongoing arms race between defenders and attackers in the field of DRL backdoor attacks. This
advancement in defense techniques not only protects RL-based technologies but also drives further
research and development in the field. It encourages the exploration of novel defense strategies and
promotes the creation of more resilient DRL systems that can withstand malicious attacks. Ultimately,
this benefits the broader community that relies on DRL-based technologies, ensuring the integrity and
security of RL applications across various domains.
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Table S11: Influence of ϵ1 in Eqn.(4) on backdoor removal performance.

Attack
scenarios

λ1

1 0.5 0.1 0.01

Breakout(clean) 284±46 298±37 302±51 293±43
Breakout(poisoned) 260±55 269±49 258±32 270±38

Seaquest(clean) 1469±198 1719±107 1656±97 1760±98
Seaquest(poisoned) 1510±121 1686±83 1652±78 1715±114
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