A Additional Remarks

A.1 Second-order terms in the upper and lower bounds

In terms of the convergence rate, Theorem[2.T and Theorem[2.2 admit large second-order terms which
may dominate the MSEs when n < d3. However, our results improve the sample complexity for the
high-accuracy regime. More precisely, as a direct corollary of Theorem|2.1, the /5 sample complexity
1 HPH1/2 d?logd

e’ n2b 7 \/elog(1l/e)4b
of the previous global minimax schemes. For instance, all the minimax upper and lower bounds for
distribution estimation (without any additional assumptions on the target distribution) in previous
works [44/5,7,(8]] require n > d2.

is O (max ( )) In addition, the n > poly(d) requirement is necessary for all

That being said, with additional prior knowledge on the target distribution such as sparse/near-
sparse assumptions, we can easily improve our two-stage scheme by replacing the uniform grouping
localization step with other sparse estimation schemes [28], and the resulting sample size requirement
can be decreased to n > poly(s, log d).

A2 Achieving centralized convergence without the knowledge of [[p|; ,

We note that when the goal is to achieve the centralized rate with minimal communication (instead of
achieving the best convergence rate for a fixed communication budget as we have assumed so far), the
performance promised in the above corollary can be achieved without knowing H; /»(p) beforehand.
We can do that by modifying our proposed scheme to include an initial round for estimating Hy /5 (p).
More precisely, we can have the first n/2 clients communicate only 1 bit about their sample and
estimate Hq /5 (p) within 1 bit accuracy. When n is sufficiently large (e.g. n = Q(d?)), this estimation
task will be successful with negligible error probability. Then the remaining n/2 of clients can
implement the two-round scheme we propose to estimate p (i.e. the scheme described in Section [4))
by using |:|1 /2(p) + 1 bits per client. Under this strategy, we are guaranteed to achieve the centralized
performance while each client communicates no more than Hy /5 (p) + 2 bits.

B Adaptive grouping algorithm

In this section, we describes the details of the adaptive grouping algorithm used in Section 4 and
Algorithm[2]

Algorithm 3: gen_groups
Input: p, d
Output: G1,...,Gy
Compute 7; and n; according to (2);
{no@)s - no@) } < sort({n1,...,na}) ; // Sort {m;} in non-increasing order.
glv ey gd — @;
for i€ [n+1:2n]do
for t < 2°do
for j < ddo
if |G (j)| < 10(;) then
o(j) ¢ 15
t+—t+1;
else
| jed+
end
end

end
t + 20,

end
return G, ..., Gy
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C Proof of Theorem

Again, consider the scheme in SectionEbut with 7;(p) £ P LetJ, 2 {j €[dllp; > o}

2kera) VPk
and
&2 () {Vhi e [vm - Veu o + Vi }
Jjeld]
where o > 0 will be determined later. Notice that by Lemma- ]P’ {&1} > 1— -, so we have the

following bounds on the ¢; error:

Elllp—plry] =PLETE | D Ipj — pil|&5 | + PLEIE | D Ipy — pil|&

jeld] Jeld]

Z Ip; — Djl

3\1\3

As in the /5 case, the server computes p; £ ni Binom(nj , pj). For the ease of analysis, we partition
J
[d] into three disjoint subsets:

Jr&{jeldn=n}, Jo £ {j€ld\ T |p; > a} and J° =[]\ (" U ),

where o > 0 will be specified later. For each subset, we will apply different lower bound on n;:
s forj € J*, wehave n; = %;

. obs .
s forj € Jo, weuse nj > "5

. b
» forj € J¢ weusen; > %.

We can then compute the estimation error by

Z|pj p] 51 <Z\/ Pj ’51}(1)2 &

N
J€ld] J€ld] J€ld]
(b) 4p; 4dp;
DTS e, T 2\
JETT Jj€Ta jET®

|2 ||le 4p Ad3 o
j
S Z n2°7; n2b
@ 2 HP| % ‘/ Z \/4d3a
\/ \/ ob b
n2 7 E[d JE€ETa \/]75 n2
2 \|p| : % ida
Qb Z \/ o+ \/a) Z 3 5 n?b ’ (5)

Jj'€ld] JETa

where (a) holds since conditioned on &7, p ~ %Binom(nj, p;), (b) holds by the definition of n;, (c)
is due to Cauchy-Schwartz inequality, (d) follows from the definition of 7; and finally (d) is due to
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Lemma[5.1] If we pick o = 8¢,,, then we can further bound (5] by

V3 5 (5 )

j’eld] JE€ETa
@ [2]plls 16 16d ¢/z,, 32d3¢,,
< n + n2b Z VP n2b Z VPi |+ n2b
jeEld] J€ld]
® 21l L |1 . N 48d3en
- n n2b = \/E n2b
J

[d3e
O n
n n2b t0s n2b’

where (a) holds since vVa+b < v/a + Vb and in (b) we use the following Young’s inequality:
ashs <2+ 2 <a+tb

_ 2z _ 2
Remark C.1 For general {, error with q € [1,2], we pick w;(p) = p; 0" le' ") and the

local €, error under our scheme becomes

(g+2)/2
2
(Sewn )" +ou)

E|Y (-5 = (n20)a/2

J€E[d]
D Proof of Theorem

Let s £ | h| and observe that Ps 4 = {p € Py||Ip|l, < s} C {p € Pd’||p||1/2 < h} Then the proof
is complete since

inf sup Ex~p [Hﬁ(Wn(Xn)) - pHg}
(W™p) Ellseq |||, 5 <h

> inf sup Ex~ [pW"X” —p2]
R - [BW™(X™)) = pll;
s
n2b’

where the last inequality holds by [10].

-

E A complete characterization for the local complexity of Zipf distributions

Below we characterize the local complexity of Zipf distributions for all regime A > 0. Interestingly,
as A decreases, we see different dependency on d.

Corollary E.1 (Truncated Zipf distributions with \ > 2) Let p £ Zipf A,d be a truncated Zipf

1
distribution with \ > 2. That is, for d,k € N, Zipf, 4(k) = M Then the skewness of p is
k=1 (K/)\

characterized by
2
||pH1/2 =0 ((ﬁ) > = 0O(1), if X > 2. In this case, v ({3, p, W™, p)) = O (%)

logd

2 2
2 llpllyye = © ((1_(1) ) =0 (log?d), if A =2 507 (l3,p, (W, 7)) = O (122 v 1)

n2b nj)*
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“x/241 \ 2
3. ||p1/2:@((1d_;/;+1) )Z@(dz_)‘),if1</\<2. Sor ({2, p, (W",f)))zO(nQb \/%)

—x/241\ 2 o
4 llpl/a@<(dlogd ) )@(logad) A= 1 Sor (b, (W, 5)) = O (gt V 1),
5 =0 d_ 22 ’ = | n 2)) — d 1
pllyye = (W) =0 (d), if A <L Sor (la,p, W",p)) = O (-5 v 3).

F Proof of technical lemmas

F.1 Proof of Lemmal5.1]

Let (W™, p) be the naive grouping scheme introduced by [4]. Then p; ~ %Binom(n’ ,Dj), Where
! £ 2o By the Chernoff bound, with probability at least 1 — -1,

3dlog(nd)p; 3dlog(nd)p;
€ lpj—\/nzb L, pj + — 2| = [pj — VEubss P+ VERD;) - (6)

The first result follows from

n

2 VEnPj
NS @\—mf < e

and taking union bound over j € [d]. To prove the second result, for each j € [d], we consider two
cases.

 If p; > e, then it holds with probability at least 1 — 1/nd that

‘ﬁ pj‘ (‘1) \/5npj z *1/6 ® 1/
1/3 2/3 = 2/3 Vénp
+ (Bips)" " +p; p;

where (a) holds with probablhty at least 1 — 1/nd due to (6), and (b) holds since by
assumption p; > &y,

VP

Az/s

* If p; < &, then since p; > 0 almost surely, it suffices to control

}P’{ Yp; > p; + ,3/57} <P{p; >p;+en}

<P{lp; — pjl > en}

@) R
< ]P){|pj _pj| > \/Enpj}
® 1
< IRl
~ nd
where (a) holds since p; < ¢, and (b) holds by (6.

The proof is complete since for both cases we have | \/Dj — ¥/Dj ‘ < @/, with probability at least
1- 5

F.2 Proof of Lemma|[5.2]

To analyze the error, we partition [d] into three disjoint subsets:

JtE{jeldn;=n}, Ta2{jcld\IT |p,>a} and T £ [d\ (TTUTL).

for some o > 0 that will be specified later. For each subset, we use different lower bound on n;:

n.

s forj € J*, wehaven; = %,
n27rj,

e forj € Jo, weusen; > —;
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. b
« forj € J¢ weusen; > 2.

We can then compute the estimation error by

E Z (p; _pj)Z el @ Z pJ

J€ld] J€ld]
(b) 2p; 4p; 4dp;
< j j j
—237+Zm%+2n@
jegt j€ITa jeTe
© 2 4p; 4d’ o
< Z J el
~n + Z n2b; + n2b
JE€ETa

e
S
NS
o
=5
Q\
ﬂ@
>b
o

B
N
Sl e)

J'€ld] JE€ETa
© 2 4 D 4d%a
Sﬁ—’—nQb Z\/}?—'_\/a Z : +n2b’

j'eld] jeg. VPi T Ven

where (a) holds since p; follows binomial distribution, (b) holds by the definition of n;, (c) is due to
the definition of 7, (d) is due to the definition of 7;, and finally (e) is from Lemma

In particular, if we pick a = 4¢,,, then for all j € J,, /e, = @ < @ Then (e) above can be
further controlled by

4 Dj 4’ 2
— Vi +\/En + + =
TLQb j%i] g§ \/p7 V TLQb n
8 8d+/en 16d%e,, 2
e DR R IR Rl IDDRVIN e s
J€[d] JE€ETa J€ETa
2
@ 12 20d2%e,, 2
S@'Zﬁ5+if*ﬁ
Jj€ld]
_c ||p||1
O Lo Len Qb,

where in (a) we use the fact that a® + b2 > 2ab.

F.3 Proof of Lemmal6.1]

Recall that under the model @Z, the score function

So(z) £ (Sg,(x), ..., Sp, (x)) £ (510gagixl9)w7 alogagixe)>

can be computed as

7, fe=7(0),2<i<h
Sp, (z) = ,9; if z = (1)
0, otherwise

The next lemma shows that to bound the quantized Fisher information, it suffices to control the
variance of the score function.

Lemma F.1 (Theorem 1 in [8]) Let W be any b-bit quantization scheme and Iy (0) is the Fisher
information of Y at @ where Y ~ W (-|X) and X ~ py. Then for any § € © C R",

Tr (Iw(#)) < min (IX(Q),2I’ max Var((u,Sg(X)>)) .

flull;<1
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Therefore, for any unit vector v = (us, ..., up) with ||ul|, = 1, we control the variance as follows:

Var (u, Sp(X))) = 305 | D o, (n(0)

St (7

where (a) holds since the score function has zero mean. This allows us to upper bound Iy () in a
neighborhood around #(p), where 6(p) is the location of p in the sub-model ©”, i.e.

0(p) = (02(p), .-, On(p)) = (P(z)a -~-,P(h))~

In particular, for any 0 < B < p(T”) and p € P} £ {p € Pd|% <p < %} the neighborhood

NB.n(p) £ 0(p) + [-B, B]" must be contained in ©. In addition, for any 6’ € g ,(p). it holds

that

hpn)
3

where the second inequality holds since 1) 61(p) = Py = % by our definition of P/, and 2)

hp(n) >h 1
3 < 3 < 3

1
0, = 01(p) - L >

. We also have

. . D(h) _ 2D(w)
0. > 0.(p) — —= > )
jelin 05> min 6;() - =7 2

Therefore (7) implies for any 6’ € N 1, (p),

Var ((u, Sy(X))) < 6h + S
2p(n)

Together with Lemma [F.1, we arrive at

8" € Nip(p), Tr (I (8)) < 2° <6h—|— 3 ) .
2p(n)

F.4 Proof of Lemmal6.2]
We prove by contradiction.

1. For the first inequality, assume by contradiction that || p||% > maxpe(q) h*p(p) does not hold.

Then there must exists some A € [d] such that

- > e VPi
Wpy, > ol <= V7, > % 8)
However, this implies
2 - 2 - 2 2
@ [ & h ® [ & © [ <
ol =D _vEr | 2|\ v | = (D2 vPam | > | 2o v ]
j=1 Jj=1 Jj=1 Jj=1

where (a) is by definition, (b) holds since Piy < pg forall j < h, and (¢) is due to (8).
This yields contradiction.
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2. Secondly, assume by contradiction that for all h, h? Py < (%)
This would imply

146

140 0\ Lica Py’
Poy <\153 h1+9

146 6 148 1
th ij <<1+5> ij2 Rito
h Jj€[d]

=
h

1

1+5 >1+g,

which cannot occur since ), -y ﬁ § 14 %.

Tog > does not hold. Then it would imply that for all

3. Finally assume maxp,¢[g h? D) = C

Iplly 1

: - ||pu, a
logd 7 2 VP = Il <© Z

d
(Z ]11> > —logd

D(h) <

Picking C' small enough yields contradiction.
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