
Appendix558

The appendix of this paper is structured as follows.559

• Section A introduces the evaluated datasets and their statistics.560

• Section B introduces the preprocessing procedure in our experiments.561

• Section C details the compared baselines in our experiments.562

• Section D introduces the used backbone model structure and their related configurations.563

• Section E summarizes the training strategies we applied in this paper.564

• Section F presents more comprehensive evaluation results.565

• Section G lists the existing limitations of the work and potential solutions for future exten-566

sions.567

A Datasets568

The basic statistics for each dataset are summarized in Table 3.569

Moving Object Detection (MOD): This is a self-collected dataset using sensor nodes consisting of570

a RaspberryShake 4D (from https://raspberryshake.org/) and a microphone array to collect571

the vibration signals caused by nearby moving vehicles. The data was collected from two different572

sites, where one was a former State park repurposed for research purposes, while the other was a large573

college parking lot. The RaspberryShake featured a geophone designed to measure seismic vibrations574

due to remote earthquakes. It was found to be much more sensitive to vibrations introduced by575

nearby moving objects than, say, accelerometers on a smartphone. In this dataset, we introduced each576

of seven different targets alternately in the vicinity of the sensor nodes: A Polaris off-road vehicle577

(from https://ranger.polaris.com/), a Chevrolet Silverado, a Warthog all-terrain Unmanned578

Ground Vehicle (from https://clearpathrobotics.com/), a Motorcycle, a Tesla, a Mustang,579

and a dismount human. Each target moved around at a different speed, while our sensors collected580

the corresponding seismic and acoustic signals. Only one target is considered during our experiments.581

The sampling rate for the seismic signal was 100Hz and the acoustic signal was collected under582

16000Hz (which was downsampled to 8000Hz in the preprocessing). For each target, the collection583

lasted between 40 minutes to 1 hour. The training, validation, and testing datasets are randomly584

partitioned with a ratio of 8:1:1 at the sample level. (See IRB note.5) We do plan to release this585

dataset for public usage after the paper anonymization period.586

Acoustic-seismic identification Data Set (ACIDS): ACIDS is an ideal dataset for developing587

and training acoustic/seismic classification/ID algorithms. The data was collected by 2 co-located588

acoustic/seismic sensor systems. There are over 270 data runs (single target only) from 9 different589

types of ground vehicles in 3 different environmental conditions. The ground vehicles were traveling590

at constant speeds from one direction toward the sensor systems passing the closest point of approach591

(CPA) and then away from the sensor systems. The microphone data is low-pass filtered at 400 Hz592

via a 6th-order filter to prevent spectral aliasing and high-pass filtered at 25 Hz via a 1st-order filter593

to reduce wind noise. The data is digitized by a 16-bit A/D at the rate of 1025 Hz. The CPA to the594

sensor systems varied from 25m to 100m. The speed varied from 5km/hr to 40km/hr depending595

upon the particular run, the vehicle, and the environmental condition. We randomly partition the runs596

into training, validation, and testing datasets with a ratio of 8:1:1. It is more challenging than MOD597

since domain shift caused by vehicle speed, distance, or terrain between training and testing can be598

included. No information related to the target types is revealed except the numerical labels.599

RealWorld-HAR [18]: This is a public dataset using the accelerometer, gyroscope, magnetometer,600

and light signals to recognize 8 common human activities (climbing stairs down and up, jumping,601

lying, standing, sitting, running/jogging, and walking) from 15 subjects. Only the data collected from602

"waist" is used in our experiments. The sampling rate of all selected sensors is 100Hz. We use the603

5The work was deemed Not Human Subjects Research (NHSR) because the purpose of the experiment was
to test the performance of an AI algorithm in the presence of noise, as opposed to collecting data about humans.
The humans who assisted with the experiment, in essence, acted as “lab technicians" who operate machinery for
experimental purposes.
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Table 3: Statistical Summary of Selected Datasets.
Dataset Classes Modalities (Freq) Sample Length Interval (Overlap) #Samples #Labels

MOD 7 acoustic (8000Hz), seismic (100Hz) 2 sec 0.2 sec (0%) 39,609 7,335
ACIDS 9 acoustic, seismic (both 1025Hz) 1 sec 0.25 sec (50%) 27,597 27,597

RealWorld-HAR 8 acc, gyro, mag, lig (all 50Hz) 5 sec 1 sec (50%) 12,887 12,887
PAMAP2 18 acc, gyr, mag (all 100Hz) 2 sec 0.4 sec (50%) 9,611 9,611

leave-one-out evaluation strategy where 10 random subjects are used for training, 2 subjects are used604

for validation, and 3 subjects are used for testing.605

Physical Activity Monitoring dataset (PAMAP2) [16]: This dataset contains data of 18 different606

physical activities (e.g., walking, cycling, playing soccer, etc) performed by 9 subjects using inertial607

measurement units (IMUs) that are put at the chest, wrist (of dominant arm), and dominant side’s608

ankle respectively. Only data collected from the "wrist" is used in our experiment. Each IMU records609

readings from a 3-axis accelerometer, gyroscope, and magnetometer. The sampling rates of all610

sensors are 100Hz. We use the leave-one-out evaluation strategy where 7 random subjects are used611

for training, and 2 subjects are used for testing.612

B Data Preprocessing613

In our data preprocessing, we first divide the time-series data into equal-length data samples and614

further segment each sample into overlapped/non-overlapped intervals. The signals within each615

interval are processed by the Fourier transform to obtain the spectrum. In this way, both the time-616

domain information and frequency-domain patterns are preserved. The length of the samples and617

the intervals, as well as the time overlap ratios between intervals within samples of each dataset,618

as listed in Table 3, are configured to achieve the best-supervised classification performance. The619

generated time-frequency spectrogram is further fed into the backbone feature encoders. We define a620

set of data augmentations in both the time domain before the Fourier transform and the frequency621

domain after the Fourier transform. For each sample, only one random augmentation from either the622

time domain or the frequency domain is selected and applied. To further increase the randomness of623

data augmentations in multimodal applications, we let each modality have a probability of 0.5 to be624

processed by the selected random augmentation.625

B.1 Data Augmentations626

We follow the common practices in [22, 7, 10, 19] to define the augmentations used in the time627

domain and frequency domain respectively.628

B.1.1 Time-Domain Augmentations629

Here we list the used time-domain augmentations.630

• Scaling: We multiply the input signals with values sampled from a Gaussian distribution.631

• Permutation: Given intervals within a sample, we randomly permute the order of the632

intervals.633

• Negation: The signal values are multiplied by a factor of -1.634

• Time Warp: Randomly stretching/distorting the time locations of the signal values based635

on a smooth random curve.636

• Magnitude Warp: The magnitude of each time series is multiplied by a curve created by637

cubicspline with a set number of knots at random magnitudes.638

• Horizontal Flip: The entire time series of the sample is flipped in the time direction.639

• Jitter: We add random Gaussian noise to signals.640

• Channel Shuffle: We randomly shuffle the channels of multi-variate time-series data (e.g.,641

X, Y, Z dimensions of three-axis accelerometer input).642

• Time Masking: We randomly mask a portion of the time intervals within a sample window643

with 0.644
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B.1.2 Frequency-Domain Augmentations645

Here we list the used frequency-domain augmentations.646

• Phase Shift: Given the complex frequency spectrum, we add a random value between −π647

to π to their phase values.648

• Frequency Masking: We randomly mask a portion of frequency ranges with 0.649

C Baselines650

Supervised: We train the whole model including the encoder and linear classifier in a fully supervised651

manner using all available labels.652

SimCLR [1] is a simple yet powerful contrastive learning framework proposed for vision tasks. For653

this work, we randomly formulate batches. During pretraining, we apply random augmentations654

to generate two different views of each sample, with a contrastive objective of bringing different655

transformations (augmentations) of the same samples closer while repelling the representations of656

different samples. The framework optimizes the parameters of the underlying backbone model by657

minimizing the NT-Xent loss [1]. Similar to [1], we take different samples from the same minibatch658

as the negative samples. That is, different views of the same sample are considered positive pairs,659

while views generated from different samples are considered negative pairs.660

MoCoV3 [2] is a SOTA contrastive learning framework for Vision Transformers (ViT). It leverages661

a query encoder fq and a key momentum encoder fk on two stochastically augmented views of a662

sample to output a query vector q and a key vector k. It uses random batch sampling and learns by663

maximizing the agreement between the positive encoded query and an encoded key pair. In the latest664

version of MoCo (V3), for a given query q, the positive key k+ is encoded from the same sample as665

q, while the negative labels k− are encoded keys of other samples within the same mini-batch. Both666

encoders have a similar structure including a backbone plus a projection head, and the query encoder667

fq has an additional projection head at the end. The key momentum encoder fk is slowly updated by668

a query momentum with the query encoder fq .669

CMC [20] is a contrastive learning framework focusing on learning from multiview observations. It670

learns meaningful data representations by contrasting the encoded features from different modalities.671

To achieve this, it maximizes the agreement between the synchronized representations of different672

modalities. For each randomly sampled batch with a random augmentation, the backbone model673

extracts vector representations of each modality. Then, for each pair of modalities, we maximize the674

similarity between modality representations of the same samples and regard mismatched modality675

representations from different samples as negative pairs. We sum up the losses for all pairs of676

modalities to optimize the backbone parameters. For downstream tasks, a linear classification layer is677

applied on top of concatenated modality representations.678

MAE [6] is a self-supervised learning approach based on the auto-encoding paradigm. It incorporates679

the Transformer architecture and achieves SOTA performance on multiple vision tasks. Unlike680

contrastive learning, MAE does not depend heavily on random augmentations. During the pretraining,681

we randomly mask a significant portion (i.e., 75%) of each modality input. Instead of dropping the682

masked patches as in the original MAE paper, we replace them with 0 values to ensure consistent683

dimensions for the Swin-Transformer and DeepSense operations. A separate encoder and decoder are684

used for each modality. Before encoding, the modality spectrogram is first projected into fixed-size685

(e.g., 2x2) patches through a convolutional layer, on top of which the modality embeddings are686

extracted by the modality encoder. Between independent modality encoding and decoding, we first687

apply multiple fully-connected layers to the concatenated modality features for modality information688

fusion and then use separate MLP projection layers to get the projected modality embeddings before689

decoding. This step is created to enable interactions between modalities. Finally, the modality decoder690

reconstructs the modality input from the projected modality embeddings. The overall objective is to691

minimize the mean squared error (MSE) between the original modality patches and the reconstructed692

modality patches on the masked locations. During the inference, the modality decoders are dropped693

and only modality encoders are used to extract the latent representations from unmasked modality694

input. In the end, a linear classification layer is applied to the concatenated modality embeddings to695

serve the downstream task.696
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Cosmo [14] focuses on contrastive fusion learning from multimodal time-series data to extract697

modality-consistent information. Cosmo applies separate modality encoders to extract the embedding698

vector of each modality from the randomly sampled mini-batches. After encoding, each modality699

embedding is mapped to a hypersphere through an MLP projector and a normalization layer. Then,700

Cosmo applies a fusion-based feature augmentation to generate P randomly combined features by701

multiplying the modality embeddings with P normalized random weight vectors. When calculating702

contrastive loss, these P fusion-based augmented features are considered as positive pairs, while703

features generated through the same approach but from different samples are treated as negative pairs.704

Cocoa [3] extends the self-supervised learning of multimodal sensing data by exploring both the cross-705

modal correlation and intra-modal separation. Similar to other modality-level contrastive frameworks,706

Cocoa applies a separate backbone encoder to extract the latent embedding of each modality from the707

randomly sampled and augmented mini-batch. Cocoa has two losses: Cross-modality correlation loss708

and discriminator loss. Cross-modality correlation loss maximizes the consistency between different709

modality embeddings corresponding to the same sample by defining them as hard positive pairs. On710

the contrary, discriminator loss tends to minimize the agreement within a modality, by separating711

modality embeddings of irrelevant samples within the mini-batch from each other.712

GMC [15] introduces a multimodal contrastive loss function that encourages the geometric alignment713

of different modality embeddings. Similar to other multimodal contrastive frameworks, samples are714

randomly batched and augmented. GMC consists of modality-specific encoders and a joint encoder715

that simultaneously takes all modality data as input. An additional linear layer is used to map the716

joint embedding to the same space as individual modality embeddings. Then, a shared projection717

head is then employed to project both the modality embeddings and the joint embeddings before718

calculating the contrastive loss. To align the local views (i.e., individual modality embeddings) with719

the global view (i.e., joint embeddings) in a context-aware manner, GMC minimizes a multimodal720

contrastive NT-Xent loss by defining the modality-specific embeddings and joint embeddings of the721

same samples as positive pairs, while treating local-global embedding pairs from different samples as722

negative pairs.723

MTSS [17] is a predictive self-supervised learning framework by exploiting the distinguishability724

among different data transformations. It uses random augmentation ID prediction as the pretext725

task during the pretraining. Specifically, MTSS first formulates random batches and applies random726

augmentation to either time or frequency domain. Each modality is augmented with the selected727

random augmentation with a probability of 50%. Then, individual modality encoders extract modality728

embeddings from their input, followed by modality fusion to compute the overall sample embeddings.729

Different from contrastive frameworks, a shallow classifier is included to classify “which random730

augmentation is applied to the input”. A cross-entropy loss is calculated between the predicted731

augmentation ID and the actual augmentation ID as the pertaining objective. For downstream tasks,732

only the backbone sample encoder (including the modality encoder and modality fusion layers) is733

used to extract the sample embeddings, along with a linear classification layer appended at the end of734

the sample encoder.735

TS2Vec [24] proposes to learn representations of time series by simultaneously performing temporal736

contrastive tasks and instance contrastive tasks at multiple granularities (i.e., lengths of sample win-737

dows). Instead of creating random batch samples, TS2Vec involves randomly sampled sequences in738

each batch, with each sequence containing temporally close samples. TS2Vec employs a hierarchical739

contrasting method to learn representations at multiple sample window granularities. It always regards740

the same sample under different augmentations and sequence contexts as the positive pairs, while741

in the instance contrastive task, different samples from separate sequences are regarded as negative742

pairs, and in the temporal contrastive task, different samples within the same sequence are regarded743

as negative pairs. At each sample window level, TS2Vec computes both the temporal contrastive loss744

and instance discrimination loss.745

TNC [21] learns time series representations with a debiased contrastive objective to distinguish746

samples within the temporal neighborhood from temporally distant samples. It utilizes a backbone747

encoder to extract the feature representations from the time series data in a randomly sampled748

sequence batch. For each sample, TNC identifies a group of samples with similar timestamps as749

neighboring samples and a group of distant samples as non-neighboring samples. In this paper, we750

consider samples within the same sequence as the neighboring samples and samples from different751

sequences as non-neighboring samples. A discriminator is used to learn the time series distribution752
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Table 4: DeepSense Configurations.
Dataset MOD ACIDS RealWorld-HAR PAMAP2

Dropout Ratio 0.2 0.2 0.2 0.2
Mod Conv Kernel aud: [1, 5], sei: [1,3] [1,4] [1, 3] [1, 5]

Mod Conv Channel 128 128 128 64
Mod Conv Layers 5 6 6 4

Recurrent Dim 256 128 256 64
Recurrent Layers 2 2 2 2

FC Dim 512 256 256 128

by predicting the probability of each sample and its neighboring/non-neighboring samples being in753

the same window. The objective is to maximize the similarity of neighboring samples while pushing754

the similarity of non-neighboring samples to zero.755

TS-TCC [4] learns robust representation by performing cross-view predictions and contrasting both756

temporal and contextual information. It randomly groups multiple sequences into a mini-batch. It757

first generates two views through random augmentations on each sample. For each view, it extracts758

context vectors of each timestamp from all sample representations up to this timestamp within the759

sequence with an autoregressive model and then uses the context vectors from one view to predict760

the future timesteps of the other view. In the temporal contrastive task, given cross-view predicted761

representations at a future timestamp, it regards the true future representation at that timestamp from762

the same sequence as the positive pair and regards samples at that timestamp from other sequences as763

negative pairs. In the contextual contrastive task, TS-TCC calculates NT-Xent loss by considering764

different augmentations of the same sample as positive pairs and considering different samples within765

the same mini-batch as negative pairs.766

D Backbone Models767

We tested with two different backbone encoders in this paper: DeepSense and Swin-Transformer (SW-768

T for short). Both models process the spectrogram of each input sensing modality separately, before769

the information fusion between the sensing modalities. For each backbone model, the configuration770

is tuned to achieve the best-supervised model accuracy.771

DeepSense [23]: It is a state-of-the-art neural network model for time-series sensing data processing.772

Given the time-frequency spectrogram of each sensing modality, it first uses stacked convolutional773

layers to extract localized modality features within each time interval. Then, modality information774

fusion is performed by taking the mean of flattened modality features. Finally, the features across time775

intervals are aggregated through recurrent layers (e.g., Gated Recurrent Unit (GRU)). For learning776

frameworks that operate on modality-level features (i.e., FOCAL, CMC, Cosmo, Cocoa, and MAE),777

we skip the mean fusion among modalities and use individual recurrent layers for each modality,778

before calculating the pretrain loss.779

Swin-Transformer (SW-T) [11]: It is a state-of-the-art Transformer model for processing image780

data. We adapt it to process the time-frequency spectrogram input. Similar to convolution operations,781

it adaptively allocates attention within subframe windows of input with hierarchical resolutions.782

The modality input is first partitioned into patches with a convolutional layer. Then, it gradually783

extracts features from local and shifted windows with multiple blocks. The shift window operation is784

introduced to break the boundary of partitioned windows and increase the perception area of each785

window. Each block consists of multiple self-attention layers. The patch resolution of the feature786

map is halved at the end of each block by merging neighboring patches while the channel number787

is doubled, such that the receptive field increases as going into deeper layers while the number of788

patches within each window is fixed. A separate SW-T encoder is used to extract features from789

each modality input, after which a stack of self-attention layers is appended for information fusion790

from multiple modalities. Similarly, for learning frameworks that operate on modality-level features,791

we skip the attention-based fusion blocks and directly calculate pretrain losses on top of modality792

features.793
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Table 5: Swin-Transformer Configurations.
Dataset MOD ACIDS RealWorld-HAR PAMAP2

Dropout Ratio 0.2 0.2 0.2 0.2
Patch Size aud: [1, 40], sei: [1,1] [1, 8] [1, 2] [1, 2]

Window Size [3, 3] [2,4] [3, 3] [3, 5]
Mod Feature Block Num [2, 2, 4] [2, 2, 4] [2, 2, 2] [2, 2, 2]

Mod Feature Block Channels [64, 128, 256] [64, 128, 256] [32, 64, 128] [32, 64, 128]
Head Num 4 4 4 4

Mod Fusion Channel 256 256 128 128
Mod Fusion Head Num 4 4 4 4

Mod Fusion Block 2 2 2 2
FC Dim 512 512 256 128

Table 6: Training configurations. (We use LR for Learning Rate)
Dataset MOD ACIDS RealWorld-HAR PAMAP2

Temperature 0.07 0.2 0.07 0.07
Batch Size 256 256 256 256

Sequence Length 4 4 4 4
Pretrain Optimizer AdamW AdamW AdamW AdamW

Pretrain Max LR Default: 1e-4
Cosmo, TNC, GMC, TS2Vec, TSTCC: 1e-5

Default: 1e-4
Cosmo: 1e-5

Default: 1e-4
CMC, GMC: 5e-4

Cosmo: 1e-5

Default: 1e-4
CMC, GMC: 5e-4

Cosmo: 1e-5
Pretrain Min LR 1e-07 1e-07 1e-07 1e-07

Pretrain Scheduler Cosine Cosine Cosine Cosine
Pretrain Epochs 6000 3000 1000 1000

Pretrain Weight Decay 0.05 0.05 0.05 0.05
Finetune Optimizer Adam Adam Adam Adam
Finetune Start LR 0.001 0.0003 0..001 0.001

Finetune Scheduler step step step step
Finetune LR Decay 0.2 0.2 0.2 0.2
Finetune LR Period 50 50 50 50

Finetune Epochs 200 200 200 200

E Training Configurations794

In this section, we detail the training strategies used in this paper, which are summarized in Table 6.795

For each framework, the same configuration is mostly shared between different backbone encoders796

with few exceptions.797

During the pertaining, we use the AdamW [12] optimizer with the cosine schedules [13]. The start798

learning rate is tuned accordingly for each framework according to their convergence situation. We799

did observe Cosmo [14] is hard to converge in some cases thus we have to reduce its start learning800

rate. The used batch size is 256, where 64 short sequences of 4 samples are randomly selected in801

each batch. The constitution of sequences is determined at the initialization and does not change over802

training epochs. The temperature is tuned to achieve the best linear classification performance after803

the finetuning. A weight decay of 0.05 is used as the training regularization.804

During the finetuning, we use the Adam [9] optimizer with the step scheduler. Essentially, the805

learning rate decays by 0.2 at the end of each period. By default, finetuning runs for 200 epochs in806

total, and each period is 50 epochs. Besides, the weight decay parameter is separately tuned for each807

framework for the best balance between training fit and validation fit.808

The models are trained on a lab workstation with AMD Threadripper PRO 3000WX Processor of809

64 cores and NVIDIA RTX 3090 GPUs. The implementation is based on PyTorch 1.14, and the810

pretraining on a single GPU spans between 3 hours to 4 days among different datasets and backbone811

encoders.812

F Additional Evaluation Results813

In this section, we report additional evaluation results and analyses that are not included in the main814

paper.815
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F.1 Finetuning: Complete Linear Classification Results816

Setup: For each dataset, we apply two backbone encoders (DeepSense and SW-T), and finetune the817

linear classifier with three different ratios of available labels (100%, 10%, and 1%). For label ratios818

10% and 1%, we take 5 random portions of labels for finetuning in each training framework and819

report the mean and standard deviation among the runs with all testing data. The best result under820

each configuration is highlighted with the bold text. Besides, we also train a supervised model for821

each configuration as a reference to the self-supervised frameworks.822

Analysis: Table 7, Table 8, Table 9, and Table 10 summarize the complete linear finetuning results823

on MOD, ACIDS, RealWorld-HAR, and PAMAP2 datasets, respectively.824

First, FOCAL consistently demonstrates significant improvements in both accuracy and F1 score825

across all label ratios compared to other self-supervised learning baselines on the ACIDS, RealWorld-826

HAR, and PAMAP2 datasets. In the case of the MOD dataset under 1% labels, FOCAL achieves827

similar accuracy to TNC with the DeepSense encoder but beats TNC by 10.56% with the SW-T828

encoder. These results underline the superior performance of FOCAL in multimodal time series829

sensing data and emphasize the importance of the underlying relationship between the shared and830

private modality features through time.831

Second, the performance improvements persist across backbone encoders and different label ratios,832

proving the advantage of FOCAL in improving the label efficiency during downstream finetuning.833

Although there are a few cases where some baselines perform close to FOCAL (e.g., TNC with834

DeepSense encoder on MOD dataset under 1% labels), such comparability does not persist across835

encoders.836

Third, FOCAL shows comparable performance to the supervised model when all available labels837

(i.e., 100%) are used in the training. However, when fewer labels are available, FOCAL shows a838

larger advantage over the supervised oracle, demonstrating its capability to better leverage the limited839

available labels in adapting to downstream tasks. On average, FOCAL surpasses the supervised840

model by 1.37% with 100% labels, 15.04% with 10% labels, and 68.39% with 1% labels. By learning841

semantically meaningful multimodal representations from the massive unlabeled inputs during the842

pretraining phase, FOCAL can effectively utilize limited data labels during the finetuning process.843

This is especially reflected in the MOD results, where we have around 6 times more data in pretraining844

than the finetuning and achieve 3.49% and 9.58% improvement over the supervised model.845

Fourth, between the backbone encoders, we found FOCAL brings more relative performance improve-846

ment to SW-T than DeepSense compared to their supervised versions. With FOCAL training, SW-T847

beats DeepSense in two out of four datasets (i.e., MOD and RealWorld-HAR), while DeepSense is al-848

ways the better encoder architecture with supervised training. Besides, the performance improvement849

on SW-T is more significant when the number of available labels is low during the finetuning (i.e.,850

10% and 1%) since larger performance gaps are observed between FOCAL and supervised models.851

F.2 Finetuning: Complete KNN Classification Results852

Setup: In addition to linear probing, we further evaluate the self-supervised frameworks on four853

datasets using the K-Nearest-Neighbors (KNN, K=5) classifier without introducing new parameters.854

This evaluation method allows us to examine the quality of learned representations without new855

training steps. We first construct a KNN estimator using the encoded sample features and corre-856

sponding labels from finetuning data. For multi-modal frameworks, we directly concatenate modality857

embeddings as the sample-level representations. Subsequently, the estimator predicts the test labels858

according to the labels of neighboring samples in the supervised set X s and computes the testing859

accuracy accordingly.860

Analysis: The complete evaluation results with the KNN classifier are reported in Table 11. FOCAL861

consistently surpasses the performance of other self-supervised learning baselines in most cases.862

The KNN evaluation results are mostly consistent with the linear classification results, but there are863

also a few exceptions. With the SW-T encoder, FOCAL exceeds the best baseline by an average of864

4.85%. When using DeepSense as the encoder, FOCAL outperforms the most competitive contrastive865

framework baseline by 1.18% across all datasets. In the RealWorld-HAR dataset, DeepSense with866

MAE achieves higher accuracy than FOCAL, but it fails in the linear classification scenario and fails867

to generalize to other datasets and backbone encoders. In comparison to other contrastive learning868
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Table 7: Fintuning Experiments with Linear Classifier on MOD dataset.

Encoder Framework Label Ratio: 1.0 Label Ratio: 0.1 Label Ratio: 0.01
Acc F1 Acc F1 Acc F1

DeepSense

Supervised 0.9404 0.9399 0.6821 ± 0.0442 0.6810 ± 0.0475 0.3567 ± 0.0450 0.3366 ± 0.0365

SimCLR 0.8855 0.8855 0.8186 ± 0.0055 0.8162 ± 0.0058 0.5934 ± 0.0319 0.5808 ± 0.0337
MoCo 0.8808 0.8812 0.7819 ± 0.0078 0.7763 ± 0.0089 0.5038 ± 0.0377 0.4794 ± 0.0509
CMC 0.9196 0.9186 0.8938 ± 0.0055 0.8920 ± 0.0056 0.7645 ± 0.0131 0.7459 ± 0.0224
MAE 0.5981 0.5993 0.4963 ± 0.0083 0.4985 ± 0.0041 0.3586 ± 0.0347 0.3292 ± 0.0497

Cosmo 0.8989 0.8998 0.8505 ± 0.0066 0.8519 ± 0.0061 0.7025 ± 0.0169 0.7025 ± 0.0171
Cocoa 0.8774 0.8764 0.8397 ± 0.0058 0.8378 ± 0.0055 0.7181 ± 0.0198 0.6998 ± 0.0226
MTSS 0.4153 0.3582 0.3863 ± 0.0058 0.3139 ± 0.0081 0.3140 ± 0.0084 0.2527 ± 0.0198

TS2Vec 0.7669 0.7648 0.7018 ± 0.0066 0.6980 ± 0.0070 0.5319 ± 0.0199 0.5150 ± 0.0230
GMC 0.9257 0.9267 0.8812 ± 0.0061 0.8820 ± 0.0069 0.7198 ± 0.0097 0.6983 ± 0.0204
TNC 0.9518 0.9528 0.9437 ± 0.0055 0.9446 ± 0.0054 0.8616 ± 0.0330 0.8469 ± 0.0620

TSTCC 0.8707 0.8735 0.8295 ± 0.0034 0.8319 ± 0.0036 0.6080 ± 0.0321 0.5753 ± 0.0553

FOCAL 0.9732 0.9729 0.9485 ± 0.0038 0.9480 ± 0.0039 0.8567 ± 0.0151 0.8544 ± 0.0173

SW-T

Supervised 0.8948 0.8931 0.5555 ± 0.0164 0.5450 ± 0.0197 0.2028 ± 0.0111 0.1638 ± 0.0196

SimCLR 0.9250 0.9247 0.8891 ± 0.0040 0.8888 ± 0.0042 0.7523 ± 0.0368 0.7443 ± 0.0442
MoCo 0.9390 0.9384 0.9073 ± 0.0032 0.9073 ± 0.0032 0.7482 ± 0.0228 0.7409 ± 0.0269
CMC 0.9129 0.9105 0.8691 ± 0.0067 0.8661 ± 0.0067 0.6994 ± 0.0157 0.6835 ± 0.0191
MAE 0.7803 0.7772 0.6561 ± 0.0119 0.6480 ± 0.0120 0.3764 ± 0.0200 0.3544 ± 0.0297

Cosmo 0.3429 0.3378 0.2122 ± 0.0087 0.1989 ± 0.0071 0.1753 ± 0.0152 0.1346 ± 0.0138
Cocoa 0.7040 0.7038 0.6869 ± 0.0145 0.6833 ± 0.0177 0.6122 ± 0.0162 0.5955 ± 0.0300
MTSS 0.4206 0.4163 0.3799 ± 0.0087 0.3700 ± 0.0081 0.3113 ± 0.0259 0.2964 ± 0.0191

TS2Vec 0.7254 0.7174 0.6522 ± 0.0086 0.6434 ± 0.0099 0.4750 ± 0.0225 0.4477 ± 0.0355
GMC 0.8640 0.8611 0.7712 ± 0.0049 0.7685 ± 0.0053 0.5191 ± 0.0209 0.4959 ± 0.0348
TNC 0.8533 0.8539 0.8436 ± 0.0068 0.8443 ± 0.0070 0.7996 ± 0.0331 0.7935 ± 0.0419

TSTCC 0.8734 0.8735 0.8564 ± 0.0040 0.8558 ± 0.0038 0.7473 ± 0.0220 0.7322 ± 0.0470

FOCAL 0.9805 0.9800 0.9593 ± 0.0025 0.9584 ± 0.0024 0.8840 ± 0.0299 0.8776 ± 0.0389

Table 8: Fintuning Experiments with Linear Classifier on ACIDS dataset.

Encoder Framework Label Ratio: 1.0 Label Ratio: 0.1 Label Ratio: 0.01
Acc F1 Acc F1 Acc F1

DeepSense

Supervised 0.9566 0.8407 0.9379 ± 0.0158 0.8006 ± 0.0316 0.7567 ± 0.0335 0.5754 ± 0.0406

SimCLR 0.7438 0.6101 0.7111 ± 0.0157 0.5773 ± 0.0166 0.6166 ± 0.0206 0.4392 ± 0.0430
MoCo 0.7717 0.6205 0.7433 ± 0.0269 0.5833 ± 0.0243 0.6637 ± 0.0414 0.4827 ± 0.0470
CMC 0.8443 0.7244 0.7370 ± 0.0126 0.6139 ± 0.0180 0.6313 ± 0.0633 0.4726 ± 0.0786
MAE 0.6644 0.5618 0.5862 ± 0.0024 0.4479 ± 0.0062 0.4901 ± 0.0309 0.2825 ± 0.0293

Cosmo 0.8511 0.6929 0.8532 ± 0.0176 0.7083 ± 0.0199 0.7288 ± 0.0231 0.5571 ± 0.0447
Cocoa 0.6644 0.5359 0.6174 ± 0.0106 0.4605 ± 0.0219 0.5617 ± 0.0223 0.3811 ± 0.0289
MTSS 0.4352 0.2441 0.4247 ± 0.0341 0.2130 ± 0.0385 0.4280 ± 0.0274 0.1879 ± 0.0333

TS2Vec 0.5224 0.3587 0.5299 ± 0.0121 0.3554 ± 0.0113 0.5341 ± 0.0363 0.3516 ± 0.0366
GMC 0.9096 0.7929 0.8890 ± 0.0090 0.7681 ± 0.0178 0.7156 ± 0.0603 0.5573 ± 0.0693
TNC 0.8237 0.6936 0.8063 ± 0.0156 0.6635 ± 0.0370 0.7428 ± 0.0419 0.5760 ± 0.0576

TSTCC 0.7667 0.6164 0.7655 ± 0.0094 0.6127 ± 0.0083 0.6697 ± 0.0354 0.4846 ± 0.0368

FOCAL 0.9516 0.8580 0.9253 ± 0.0143 0.8007 ± 0.0199 0.7829 ± 0.0448 0.5940 ± 0.0514

SW-T

Supervised 0.9137 0.7770 0.7310 ± 0.0224 0.5532 ± 0.0158 0.2666 ± 0.0319 0.1531 ± 0.0398

SimCLR 0.9128 0.8144 0.8882 ± 0.0154 0.7751 ± 0.0161 0.7580 ± 0.0380 0.6030 ± 0.0565
MoCo 0.9174 0.8100 0.9069 ± 0.0111 0.7841 ± 0.0192 0.7990 ± 0.0299 0.6235 ± 0.0408
CMC 0.8128 0.6857 0.7985 ± 0.0129 0.6700 ± 0.0170 0.6583 ± 0.0401 0.4990 ± 0.0422
MAE 0.8516 0.7023 0.7916 ± 0.0066 0.6344 ± 0.0088 0.4751 ± 0.0631 0.3440 ± 0.0317

Cosmo 0.7110 0.6086 0.6722 ± 0.0102 0.5279 ± 0.0067 0.5419 ± 0.0235 0.3710 ± 0.0114
Cocoa 0.7096 0.5794 0.6711 ± 0.0117 0.5324 ± 0.0127 0.6262 ± 0.0282 0.4585 ± 0.0212
MTSS 0.3429 0.2250 0.2878 ± 0.0292 0.1782 ± 0.0113 0.2946 ± 0.0499 0.1564 ± 0.0142

TS2Vec 0.7183 0.5748 0.6756 ± 0.0124 0.5003 ± 0.0119 0.5801 ± 0.0194 0.3837 ± 0.0153
GMC 0.9402 0.7766 0.9014 ± 0.0116 0.7278 ± 0.0148 0.7089 ± 0.0426 0.5250 ± 0.0401
TNC 0.8352 0.7372 0.8158 ± 0.0135 0.7051 ± 0.0176 0.6827 ± 0.0469 0.5424 ± 0.0500

TSTCC 0.9041 0.7547 0.9009 ± 0.0062 0.7449 ± 0.0202 0.7656 ± 0.0378 0.5806 ± 0.0223

FOCAL 0.9489 0.8262 0.9400 ± 0.0081 0.7975 ± 0.0199 0.8669 ± 0.0287 0.6844 ± 0.0372

baselines, FOCAL still demonstrates its superiority in KNN classification. Between the two encoders869

on FOCAL, SW-T outperforms DeepSense in three out of four datasets, which further shows the870

benefits FOCAL brings to SW-T training.871
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Table 9: Fintuning Experiments with Linear Classifier on RealWorld-HAR dataset.

Encoder Framework Label Ratio: 1.0 Label Ratio: 0.1 Label Ratio: 0.01
Acc F1 Acc F1 Acc F1

DeepSense

Supervised 0.9348 0.9388 0.9256 ± 0.0056 0.9233 ± 0.0104 0.7305 ± 0.0270 0.6158 ± 0.0341

SimCLR 0.7138 0.6841 0.6597 ± 0.0182 0.6126 ± 0.0198 0.5334 ± 0.0566 0.4271 ± 0.0518
MoCo 0.7859 0.7708 0.7454 ± 0.0206 0.6687 ± 0.0340 0.5110 ± 0.0409 0.4018 ± 0.0552
CMC 0.7975 0.8116 0.7482 ± 0.0328 0.7590 ± 0.0282 0.5169 ± 0.0314 0.4716 ± 0.0455
MAE 0.7565 0.7515 0.7206 ± 0.0181 0.7056 ± 0.0175 0.5556 ± 0.0527 0.4593 ± 0.0541

Cosmo 0.8956 0.8888 0.8814 ± 0.0123 0.8626 ± 0.0338 0.8434 ± 0.0376 0.7775 ± 0.0801
Cocoa 0.8465 0.8488 0.8492 ± 0.0070 0.8211 ± 0.0068 0.7155 ± 0.0397 0.6381 ± 0.0324
MTSS 0.2989 0.1405 0.1905 ± 0.0503 0.0692 ± 0.0328 0.1698 ± 0.0365 0.0600 ± 0.0355

TS2Vec 0.6595 0.5984 0.6419 ± 0.0189 0.5721 ± 0.0154 0.6147 ± 0.0456 0.5197 ± 0.0241
GMC 0.8869 0.8948 0.8872 ± 0.0172 0.8842 ± 0.0124 0.7954 ± 0.0367 0.7620 ± 0.0442
TNC 0.8892 0.8971 0.8712 ± 0.0238 0.8629 ± 0.0260 0.7991 ± 0.0390 0.7337 ± 0.0229

TSTCC 0.8073 0.8010 0.7892 ± 0.0146 0.7625 ± 0.0223 0.7213 ± 0.0320 0.6181 ± 0.0352

FOCAL 0.9382 0.9290 0.9335 ± 0.0053 0.9224 ± 0.0075 0.8518 ± 0.0274 0.7933 ± 0.0436

SW-T

Supervised 0.9313 0.9278 0.7264 ± 0.0411 0.6090 ± 0.0447 0.4541 ± 0.0694 0.2771 ± 0.0798

SimCLR 0.7046 0.7220 0.6717 ± 0.0062 0.6892 ± 0.0081 0.4867 ± 0.0431 0.4267 ± 0.0674
MoCo 0.7813 0.8024 0.7324 ± 0.0096 0.7425 ± 0.0173 0.5541 ± 0.0462 0.4823 ± 0.0391
CMC 0.8840 0.8955 0.8352 ± 0.0154 0.8424 ± 0.0156 0.5602 ± 0.0411 0.5245 ± 0.0549
MAE 0.8829 0.8813 0.7873 ± 0.0100 0.7224 ± 0.0314 0.5602 ± 0.0275 0.4699 ± 0.0205

Cosmo 0.8604 0.8169 0.7710 ± 0.0134 0.6899 ± 0.0178 0.6089 ± 0.0256 0.5230 ± 0.0395
Cocoa 0.8892 0.8861 0.8609 ± 0.0110 0.8501 ± 0.0143 0.7430 ± 0.0321 0.6657 ± 0.0432
MTSS 0.5136 0.4370 0.4359 ± 0.0281 0.3690 ± 0.0303 0.3547 ± 0.0156 0.2792 ± 0.0202

TS2Vec 0.6151 0.5955 0.6074 ± 0.0202 0.5540 ± 0.0201 0.5667 ± 0.0451 0.4876 ± 0.0464
GMC 0.9319 0.9379 0.9081 ± 0.0108 0.9115 ± 0.0092 0.7925 ± 0.0426 0.7453 ± 0.0581
TNC 0.8817 0.8784 0.8635 ± 0.0109 0.8525 ± 0.0100 0.8061 ± 0.0215 0.7494 ± 0.0452

TSTCC 0.8731 0.8454 0.8606 ± 0.0114 0.8070 ± 0.0233 0.7374 ± 0.0434 0.6685 ± 0.0642

FOCAL 0.9452 0.9492 0.9370 ± 0.0069 0.9421 ± 0.0060 0.8301 ± 0.0428 0.7519 ± 0.0578

Table 10: Fintuning Experiments with Linear Classifier on PAMAP2 dataset.

Encoder Framework Label Ratio: 1.0 Label Ratio: 0.1 Label Ratio: 0.01
Acc F1 Acc F1 Acc F1

DeepSense

Supervised 0.8849 0.8761 0.8080 ± 0.0071 0.7649 ± 0.0275 0.6539 ± 0.0303 0.5695 ± 0.0726

SimCLR 0.6802 0.6583 0.6132 ± 0.0174 0.5606 ± 0.0247 0.4352 ± 0.0340 0.3305 ± 0.0197
MoCo 0.7559 0.7387 0.6325 ± 0.0177 0.5601 ± 0.0401 0.3872 ± 0.0301 0.2873 ± 0.0274
CMC 0.7906 0.7706 0.6687 ± 0.0263 0.5653 ± 0.0602 0.2724 ± 0.0287 0.1676 ± 0.0248
MAE 0.7114 0.6158 0.5769 ± 0.0222 0.4514 ± 0.0239 0.2734 ± 0.0192 0.1096 ± 0.0198

Cosmo 0.8356 0.8135 0.7790 ± 0.0220 0.7427 ± 0.0341 0.6782 ± 0.0226 0.5740 ± 0.0293
Cocoa 0.7603 0.7187 0.7132 ± 0.0105 0.6432 ± 0.0082 0.5922 ± 0.0234 0.5293 ± 0.0232
MTSS 0.3541 0.1795 0.2891 ± 0.0416 0.1169 ± 0.0378 0.1857 ± 0.0546 0.0710 ± 0.0406

TS2Vec 0.5729 0.4715 0.5416 ± 0.0171 0.4433 ± 0.0177 0.4399 ± 0.0341 0.3335 ± 0.0445
GMC 0.8119 0.7860 0.7528 ± 0.0097 0.6975 ± 0.0207 0.5837 ± 0.0367 0.4899 ± 0.0510
TNC 0.8387 0.8143 0.8287 ± 0.0022 0.8068 ± 0.0059 0.7365 ± 0.0414 0.6469 ± 0.0682

TSTCC 0.7776 0.7250 0.7489 ± 0.0105 0.6401 ± 0.0201 0.5348 ± 0.0782 0.4368 ± 0.0852

FOCAL 0.8604 0.8463 0.8373 ± 0.0041 0.8175 ± 0.0074 0.7521 ± 0.0151 0.6900 ± 0.0325

SW-T

Supervised 0.8612 0.8384 0.7295 ± 0.0135 0.6434 ± 0.0230 0.4048 ± 0.0337 0.3159 ± 0.0271

SimCLR 0.7705 0.7424 0.7307 ± 0.0060 0.6871 ± 0.0103 0.5416 ± 0.0441 0.4708 ± 0.0627
MoCo 0.7717 0.7313 0.7112 ± 0.0203 0.6356 ± 0.0331 0.4774 ± 0.0220 0.3740 ± 0.0301
CMC 0.8080 0.7901 0.6864 ± 0.0259 0.4590 ± 0.0131 0.1852 ± 0.0221 0.1283 ± 0.0127
MAE 0.7910 0.7606 0.6655 ± 0.0067 0.6028 ± 0.0129 0.3603 ± 0.0416 0.2866 ± 0.0402

Cosmo 0.7741 0.7366 0.6702 ± 0.0051 0.5958 ± 0.0107 0.4555 ± 0.0381 0.3870 ± 0.0297
Cocoa 0.7689 0.7317 0.7461 ± 0.0047 0.7048 ± 0.0115 0.6594 ± 0.0228 0.5973 ± 0.0243
MTSS 0.2847 0.1714 0.2558 ± 0.0109 0.1585 ± 0.0097 0.2133 ± 0.0164 0.1265 ± 0.0215

TS2Vec 0.6195 0.5426 0.6001 ± 0.0133 0.5249 ± 0.0154 0.5051 ± 0.0402 0.4123 ± 0.0374
GMC 0.8312 0.8083 0.7686 ± 0.0118 0.7297 ± 0.0140 0.5704 ± 0.0409 0.4965 ± 0.0426
TNC 0.8013 0.7506 0.7921 ± 0.0083 0.7380 ± 0.0144 0.7222 ± 0.0305 0.6378 ± 0.0488

TSTCC 0.7997 0.7260 0.7800 ± 0.0094 0.6890 ± 0.0148 0.6438 ± 0.0569 0.5566 ± 0.0509

FOCAL 0.8442 0.8287 0.8179 ± 0.0117 0.7856 ± 0.0177 0.7371 ± 0.0332 0.6630 ± 0.0410

F.3 Complete Clustering Results872

Setup: We further evaluate the clustering performance of FOCAL with other multimodal self-873

supervised learning baselines, including CMC, Cosmo, Cocoa, and GMC. We apply K-means874

clustering to the encoded embeddings from each framework, by setting the number of clusters equal875
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Table 11: Complete KNN Results

Encoders Framework MOD ACIDS RealWorld-HAR PAMAP2
Acc F1 Acc F1 Acc F1 Acc F1

DeepSense

SimCLR 0.8238 0.8240 0.7402 0.5637 0.6584 0.6234 0.6451 0.6114
MoCo 0.8446 0.8444 0.7735 0.5957 0.7496 0.7134 0.6924 0.6766
CMC 0.9002 0.8989 0.7584 0.6516 0.5216 0.5868 0.8032 0.7938
MAE 0.6470 0.6451 0.7457 0.5610 0.8794 0.8817 0.6857 0.6427

Cosmo 0.8379 0.8387 0.7986 0.6284 0.8102 0.7817 0.8005 0.7743
Cocoa 0.7910 0.7877 0.6758 0.4966 0.7778 0.7459 0.7129 0.6974
MTSS 0.3443 0.3249 0.4333 0.2417 0.5101 0.4384 0.3931 0.3379

TS2Vec 0.6966 0.6875 0.5726 0.3602 0.6480 0.5832 0.5639 0.5180
GMC 0.8533 0.8526 0.7411 0.6210 0.7415 0.7560 0.7843 0.7543
TNC 0.9498 0.9508 0.7813 0.6203 0.7882 0.7565 0.7993 0.7653

TSTCC 0.8607 0.8615 0.8192 0.6443 0.7686 0.7658 0.8032 0.7896

FOCAL 0.9551 0.9544 0.9247 0.7938 0.8205 0.8254 0.8482 0.8378

SW-T

SimCLR 0.9022 0.9021 0.8553 0.7086 0.6532 0.6767 0.7441 0.7178
MoCo 0.9344 0.9343 0.8311 0.6943 0.7103 0.7303 0.7082 0.6678
CMC 0.8305 0.8261 0.7187 0.6355 0.5701 0.6007 0.7709 0.7694
MAE 0.3389 0.3104 0.5945 0.4194 0.6428 0.6080 0.5517 0.4969

Cosmo 0.2786 0.2621 0.5790 0.4573 0.7086 0.6389 0.6672 0.5874
Cocoa 0.5941 0.5793 0.5311 0.4261 0.7421 0.7496 0.7188 0.7070
MTSS 0.3423 0.3376 0.3151 0.1890 0.4882 0.4431 0.2007 0.1649

TS2Vec 0.5847 0.5718 0.6050 0.4144 0.5580 0.5335 0.5623 0.5040
GMC 0.5318 0.5180 0.7589 0.6150 0.7380 0.7455 0.7567 0.7401
TNC 0.8265 0.8263 0.7795 0.6725 0.8009 0.7817 0.7674 0.7189

TSTCC 0.8607 0.8613 0.8356 0.6700 0.7582 0.7512 0.7780 0.7369

FOCAL 0.9665 0.9664 0.8826 0.7643 0.8586 0.8665 0.8549 0.8484

Table 12: Clustering Evaluation
Dataset MOD ACIDS RealWorld-HAR PAMAP2

Encoder Framework ARI NMI ARI NMI ARI NMI ARI NMI

DeepSense

CMC 0.3936 ± 0.0125 0.5224 ± 0.0206 0.2926 ± 0.0156 0.5833 ± 0.0051 0.2187 ± 0.1094 0.4354 ± 0.1713 0.3024 ± 0.0118 0.5063 ± 0.0120
Cosmo 0.1384 ± 0.0540 0.2552 ± 0.0803 0.5217 ± 0.0074 0.6416 ± 0.0184 0.4231 ± 0.2726 0.5318 ± 0.2564 0.3583 ± 0.0781 0.5212 ± 0.0671
Cocoa 0.3502 ± 0.0184 0.4444 ± 0.0135 0.5453 ± 0.0229 0.6767 ± 0.0184 0.3385 ± 0.1826 0.4792 ± 0.1940 0.3493 ± 0.0230 0.5091 ± 0.0184
GMC 0.1982 ± 0.0674 0.3925 ± 0.0416 0.2490 ± 0.0403 0.5296 ± 0.0150 0.3433 ± 0.1836 0.4794 ± 0.1978 0.3078 ± 0.0194 0.5092 ± 0.0221

FOCAL 0.3929 ± 0.0222 0.5067 ± 0.0226 0.5723 ± 0.0440 0.7213 ± 0.0432 0.4400 ± 0.2465 0.5545 ± 0.2437 0.4759 ± 0.0695 0.6037 ± 0.0558

SW-T

CMC 0.4314 ± 0.2716 0.5413 ± 0.2612 0.3604 ± 0.0119 0.5881 ± 0.0009 0.4014 ± 0.0528 0.5275 ± 0.0532 0.3718 ± 0.0480 0.5562 ± 0.0401
Cosmo 0.2865 ± 0.1521 0.4140 ± 0.1946 0.4436 ± 0.0145 0.5469 ± 0.0015 0.0029 ± 0.0020 0.0107 ± 0.0025 0.2425 ± 0.0301 0.3604 ± 0.0347
Cocoa 0.4281 ± 0.2314 0.5308 ± 0.2405 0.4363 ± 0.0020 0.6824 ± 0.0261 0.2487 ± 0.0053 0.3897 ± 0.0024 0.3658 ± 0.0540 0.5330 ± 0.0472
GMC 0.3973 ± 0.2177 0.4940 ± 0.2184 0.2055 ± 0.0029 0.4971 ± 0.0066 0.3050 ± 0.0076 0.4342 ± 0.0052 0.2794 ± 0.0206 0.5044 ± 0.0329

FOCAL 0.4660 ± 0.2737 0.5693 ± 0.2579 0.6050 ± 0.1027 0.7389 ± 0.0774 0.4319 ± 0.0851 0.5462 ± 0.0717 0.4785 ± 0.0914 0.6130 ± 0.0730

to the number of unique classes in the testing dataset. As mentioned before, the preferred cluster876

structure by the SSL frameworks should align well with the underlying ground-truth labels in addition877

to presenting clear separation among the clusters. Following this objective, we quantitatively assess878

the clustering performance by independently calculating the Adjusted Rand Index (ARI) and the879

Normalized Mutual Information (NMI) of each modality to provide an accurate comparison of the880

alignment between the pretrained clusters and ground-truth classes. ARI evaluates the similarity881

between the clustering assignments generated by the K-means clusters and the label distribution of882

the test data. With a value range of -1 to 1, ARI indicates a high degree of agreement between the883

two clusterings when close to 1, random agreement when close to zero, and a clustering performance884

worse than random when approaching -1. NMI serves as an external metric for measuring the885

clustering quality. A score close to 1 indicates a perfect correlation between the clusterings, and a886

score of 0 demonstrates no mutual information between the clusters. Lastly, we performed t-SNE to887

qualitatively visualize the sample embeddings after concatenating the modality embeddings.888

Analysis: In Table 12, we present the clustering results with the average and standard deviation of889

ARI and NMI across all modalities. As the results show, FOCAL consistently achieves the highest or890

similar ARI scores in comparison to other multimodal contrastive frameworks. When using SW-T891

as the encoder, FOCAL outperforms the strongest baseline by an average ARI margin of 8.33%892

and an average NMI margin of 4%. With DeepSense as the encoder, FOCAL surpasses the best893

baseline by an average ARI margin of 4.61% and an average NMI margin of 3.35%. Although894

CMC exhibits comparable performance for the MOD dataset when using DeepSense as an encoder,895

FOCAL with DeepSense exceeds CMC by an average of 16.8% and 8.47% in ARI and NMI across896

the four datasets. These results confirm our claim that FOCAL produces higher quality modality897

representations compared to the baseline multi-modal contrastive frameworks. We also found the898

general ARI and NMI values are relatively low because there could be multiple perspectives affecting899
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(a) MOD (b) ACIDS (c) RealWorld-HAR (d) PAMAP2

Figure 9: t-SNE visualization of the concatenated modality features in FOCAL. We use DeepSense
as the backbone encoder.

Table 13: Linear Finetune Results with Extended Tasks on MOD
Task Distance Classification Speed Classification

Encoder SW-T DeepSense SW-T DeepSense

Framework Acc F1 Corr Acc Acc F1 Corr Acc Acc F1 Corr Acc Acc F1 Corr Acc

SimCLR 0.9090 0.8694 0.9545 0.8787 0.8057 0.9242 0.5511 0.5514 0.7524 0.5596 0.5438 0.7751
MoCo 0.9090 0.8694 0.9545 0.8484 0.7374 0.9091 0.6108 0.6105 0.7879 0.5767 0.5655 0.7794
CMC 0.8180 0.7507 0.8636 0.9393 0.8181 0.9697 0.5170 0.5175 0.7268 0.6022 0.6016 0.7850
MAE 0.7272 0.4917 0.8333 0.7272 0.4969 0.8030 0.4545 0.4383 0.6932 0.4034 0.3929 0.6506

Cosmo 0.6363 0.2592 0.8182 0.9393 0.8730 0.9545 0.2926 0.2779 0.5459 0.5681 0.5566 0.7737
Cocoa 0.8181 0.6898 0.8939 0.8181 0.6966 0.8333 0.4005 0.3618 0.6851 0.5625 0.5580 0.7628
MTSS 0.7272 0.4832 0.8030 0.8787 0.6180 0.9394 0.3522 0.2711 0.6544 0.4005 0.3482 0.6856

TS2Vec 0.6969 0.5869 0.7879 0.9090 0.8469 0.9242 0.4517 0.4473 0.6799 0.5198 0.5073 0.7476
GMC 0.8181 0.7450 0.8788 0.8484 0.7956 0.8788 0.4460 0.4405 0.6856 0.6250 0.6232 0.7917
TNC 0.8484 0.8015 0.8788 0.8787 0.8169 0.9242 0.4375 0.4322 0.6643 0.6108 0.6077 0.7841

TS-TCC 0.7878 0.6575 0.8939 0.8484 0.7312 0.9242 0.5284 0.5230 0.7311 0.5255 0.5138 0.7486

FOCAL 0.9697 0.9726 0.9848 0.9393 0.8985 0.9697 0.6960 0.6920 0.8329 0.6647 0.6682 0.8234

the cluster structures that lead to complicated underlying semantics while we only evaluate one900

perspective among them.901

Figures 6 and 9 represent the t-SNE visualizations of the encoded sample embeddings. We can902

observe a clear separation between individual clusters on MOD, ACIDS, and RealWorld-HAR,903

indicating that FOCAL effectively captures the distinct characteristics of each class. However, for904

the PAMAP2 dataset, we notice various overlaps between different embeddings. This observation905

suggests that the underlying structure of the PAMAP2 dataset is more challenging to differentiate906

compared to other datasets, potentially due to similarities among a large number of classes with 18907

different physical activities. This discovery is also consistent with our linear probing results, which908

perform slightly worse on the PAMAP2 dataset.909

F.4 Complete Additional Downstream Task Results910

Setup: We collected additional data samples for the MOD dataset and finetuned our pretrained911

models from previous experiments. Specifically, we evaluated our pretrained models by finetuning912

the classifier layer on two downstream tasks, distance classification, and speed classification tasks,913

with data obtained from different environments and new types of vehicles. These alterations in the914

data lead to domain adaptation, referring to changes in the data’s distribution. For speed classification,915

the classifier predicts the speed of the moving object between 5, 10, 15, and 20 mph. For distance916

classification, the classifier outputs whether the detected object is close, near, or far away.917

Three metrics are evaluated in this experiment. In addition to the normal accuracy and (macro)918

F1 score, we also define a new metric called correlated accuracy. It considers the semantical919

distances between different classes and assigns different penalties to different misclassifications cases.920

Intuitively, for a sample with ground truth speed 5, a misclassification of speed 20 should be assigned921

more penalty than a misclassification of speed 10. Given a sample label pair (xs
i , y

s
i ), the predicted922

label yi, and the number of classes C, we define the maximum class distance as max(i, C − i− 1),923

then the correlated accuracy is calculated by924

corr_acc =
1

N ′

∑
i

(
1− |yi − ysi |

max(i, C − i− 1)

)
, (6)
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Table 14: Ablation Results with DeepSense Encoder and Linear Classifier

Metrics MOD ACIDS RealWorld-HAR PAMAP2

Acc F1 Acc F1 Acc F1 Acc F1

FOCAL-noPrivate 0.939 0.938 0.8803 0.7229 0.8742 0.843 0.8146 0.8017
FOCAL-noOrth 0.9691 0.9688 0.9068 0.8218 0.9061 0.8967 0.828 0.7957

FOCAL-wDistInd 0.9223 0.9223 0.9493 0.8347 0.9438 0.9287 0.7921 0.7344
FOCAL-noTemp 0.9557 0.9551 0.9461 0.872 0.9319 0.9237 0.8414 0.8162

FOCAL-wTempCon 0.9564 0.956 0.9255 0.8124 0.9353 0.9141 0.8497 0.8131

FOCAL 0.9732 0.9729 0.9516 0.8580 0.9382 0.9290 0.8588 0.8463

where the penalty of misclassification is linearly interpolated according to the distance of the predicted925

label and the ground truth label, divided by the maximum distance to this class. The value range of926

the correlated accuracy is still [0, 1], where 0 means the worst and 1 means the best.927

Analysis: We observe a significant drop in performance on most of the self-supervised learning928

frameworks on speed classification. When using SW-T as the encoder, FOCAL still dominates the929

performance over other baselines, exceeding the strongest baseline by 6.07% accuracy and 10.32 %930

F1 score. When using DeepSense as the encoder, FOCAL also achieves comparable high performance931

as the current baselines. The advantage of FOCAL persists in the correlated accuracy metric where932

the physical correlations among classes are counted. Considering the heterogeneous finetune tasks,933

the potential domain shift, and the leading performance, we conclude that FOCAL is promising in934

learning fundamental feature patterns from multi-modal sensing data that could serve an extensive set935

of downstream tasks.936

F.5 Ablation Study Results937

Steup: We first briefly introduce the compared variants of FOCAL in our ablation study. In these938

variants, they are set up in the same way as FOCAL except for the places we explain below.939

• FOCAL-noPrivate: We remove the private modality space and its related contrastive task940

but only apply the cross-modal matching task.941

• FOCAL-noOrth: We keep the private modality space, but do not enforce the orthogonality942

constraint between the shared feature and private feature of the same modality, and the943

private features between pairs of modalities.944

• FOCAL-wDistInd: We replace the geometrical orthogonality constraint with statistical945

independence between modality embedding distributions. Specifically, we follow the946

approach proposed in [8] to disentangle the distribution of latent subspaces, which minimizes947

the mutual information between shared-private spaces of the same modality and private-948

private spaces between two modalities. Given two embedding distributions, it minimizes the949

KL divergence between their joint distribution and the product of two marginal distributions.950

Following the density-ratio trick, we train a classifier consisting of several fully-connected951

layers to discriminate samples from the originally matched pairs of embeddings and the952

randomly selected embedding pairs, which has been shown to approximate the density ratio953

needed to estimate the KL divergence within sample batches. Similar to GAN [5], we train954

the discriminator alternatively with modality encoders until convergence.955

• FOCAL-noTemp: We remove the temporal structural constraint proposed in FOCAL.956

• FOCAL-wTempCon: We replace the temporal structural constraint with a temporal con-957

trastive task. Given a modality, we regard close sample pairs within a short sequence as958

positive samples and regard distant sample pairs from different short sequences as negative959

samples, and conduct discrimination between positive samples and negative samples.960

Analysis: The complete ablation results on DeepSense encoder are presented in Table 14. Similar961

to our observations with SW-T encoder, all of the three components introduced in FOCAL (private962

space, orthogonality constraint, and temporal constraint) contribute positively to the downstream963

performance. However, we do find the orthogonality constraint and the temporal constraint play a964

more important role in the performance improvement with the DeepSense encoder than that with965

SW-T encoder on ACIDS, RealWorld-HAR, and PAMAP2 datasets. Besides, it is noticeable that966

distributional independence contributes positively to FOCAL on ACIDS and RealWorld-HAR datasets967

but contributes negatively to FOCAL on MOD and PAMAP2 datasets. We leave it as future work to968
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investigate more into the role of distributional independence in factorizing the latent space within the969

multimodal contrastive learning paradigm.970

G Limitations and Potential Extensions971

Assumption on Modality Synchronization: We assume the signals simultaneously arrived at all972

sensory modalities such that the information at different modalities is synchronized. However, in973

some scenarios, different signals propagate at significantly different speeds. For instance, light travels974

much faster than sound. The shared modality embeddings can not be directly matched for the same975

samples without signal synchronizations between the modalities.976

Computational Complexity of Pretraining Loss: In the current design, we take all pairs of977

modalities to compute their shared space consistency loss and private space orthogonality loss, which978

leads to O(K2) complexity to the number of modalities K. On one hand, we assume the modality979

number is limited to a handful count in most sensing applications; on the hand, we leave it as one of980

our future work to reduce the computational complexity in pretraining loss calculation.981

Dependency on Data Augmentations: Our current contrastive learning paradigm is still not fully982

self-supervised, because we need to design a set of transformations (i.e., data augmentations) for983

the private modality feature learning. However, different from image data, designing proper label-984

invariant data augmentations for time-series data can be challenging in some applications, especially985

when we do not have knowledge about the potential downstream tasks. One potential solution986

is to integrate the masked reconstruction learning paradigm into the framework, such that data987

augmentations can be avoided or less depended on.988

Multi-Device Collaboration: This paper focused on multi-modal collaborative sensing settings989

while multi-device collaboration is not fully considered. The general design of contrastive learning in990

factorized latent space is extensible to the multi-device setting, but more designs need to be introduced991

to further address the heterogeneity contained in different vantage points and the scalability issues992

related to the number of participating sensor nodes in large-scale distributed sensing scenarios.993

Resiliency Against Domain Shift: Although FOCAL improves the downstream performance of994

contrastive learning from multimodal sensing signals, it still exhibits relatively low accuracy in speed995

classification when data is collected from a different environment. There are multiple environmental996

factors that can lead to such degradations, including terrain, wind, sensor facing directions. We997

hope to integrate domain-invariant considerations into the learning objective in the future such that998

apparently task-unrelated information is decoupled and removed from the pretrained embedding999

space, and the model resiliency can be significantly enhanced.1000
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