
Negative Social Impact

This script may provide better guidance for neural nets training. It would have certain negative social
impact if neural nets are deployed for illegal usage.

Appendix Organization

The Appendix is organized as follows.

• Appendix A introduces two “color-ball" models and their applications in proving Lemma 5.1 and
Lemma 5.2. This part is important for proving Theorem 3.1.

• Appendix B introduces more experiments to support our theory.
• Appendix C provide some suggestions for hyperparameter tuning of Adam.
• Appendix D.1 provide more discussions on some recent related works. Appendix D.2 re-state the

non-convergence results in (Reddi et al., 2018).
• Appendix E provides detailed proof for Proposition 3.3.
• Appendix F provides some more notations and technical lemmas that serve for the proof of

Theorem 3.1.
• Appendix G provides detailed proof for Theorem 3.1. Especially, Appendix G.1 provide a proof

roadmap.

A Introduction to the “Color-Ball” Models: the Key Ingredients to Prove
Theorem 3.1

We now introduce two “color-ball" models and their applications in tackling Issue I and Issue II
mentioned in Section 5. These two color-ball models are important for proving Theorem 3.1.

Solution to Issue I. As discussed in Section 5, we wish to show that δ(β1) vanishes with k.
Formally, we wish to get the following equation (7) for every l ∈ [d].

δ(β1) =

∣∣∣∣∣E
[
n−1∑
i=0

(ml,k,i − ∂lfi (xk,0))

]∣∣∣∣∣ = O(βnk1 ), ∀β1 ∈ [0, 1) (7)

When k is large, O(βnk1 ) vanishes faster than O( 1√
k

) and thus Lemma 5.1 can be proved. In the
following context, we will carefully quantify the mismatch between ml,k,i and the ∂lf(xk,0). We
find out that the error terms from successive epochs can be cancelled, which keeps the momentum
roughly in the descent direction. To help readers understand our idea, we introduce the “color-ball "
model (of the 1st kind) as follows.

The color-ball model of the 1st kind. Consider a box containing two balls labeled with constant
c0, c1 ∈ R, respectively. In each round (epoch), we randomly sample balls from the box without
replacement, then we put them back. We denote the 1st sampled label in the k-th epoch as ak and the
2nd sampled one as bk; ak, bk ∈ {c0, c1}. We define two random variables m0 and m1 as follows
(assume β ∈ [0, 1)):

m1 = bk + βak︸ ︷︷ ︸
m1,k

+β2bk−1 + β3ak−1︸ ︷︷ ︸
m1,k−1

+ · · ·+ β2(k−1)b1 + β2(k−1)+1a1︸ ︷︷ ︸
m1,1

;

m0 = ak︸ ︷︷ ︸
m0,k

+β1bk−1 + β2ak−1︸ ︷︷ ︸
m0,k−1

+ · · ·+ β2(k−1)−1b1 + β2(k−1)a1︸ ︷︷ ︸
m1,1

;

where m0,k denotes the summand of m0 in k-th epoch, similarly for m1,k. Note that in each epoch,
m0 and m1 share the same sample order. Further, we introduce the following deterministic constants.
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f1 = c1(1 + β︸ ︷︷ ︸
f1,k

+β2 + β3︸ ︷︷ ︸
f1,k−1

· · ·+ β2(k−1) + β2(k−1)+1︸ ︷︷ ︸
f1,1

);

f0 = c0(1 + β︸ ︷︷ ︸
f0,k

+β2 + β3︸ ︷︷ ︸
f0,k−1

· · ·+ β2(k−1) + β2(k−1)+1︸ ︷︷ ︸
f0,1

);

where f0,k denotes the summand of f0 in k-th epoch, similarly for f1,k. Now we prove the following
Lemma A.1.

Lemma A.1. In the color-ball model of the 1st kind, we have

∣∣∣∣∣E
[

1∑
i=0

mi −
1∑
i=0

fi

]∣∣∣∣∣ = β2(k−1)+1
(c0

2
+
c1
2

)
,

where the expectation is taken on all the possible draws. For the color-ball example with n ≥ 2 balls,
we have

∣∣∣∣∣E
[
n−1∑
i=0

mi −
n−1∑
i=0

fi

]∣∣∣∣∣ = βn(k−1)
n−1∑
i=0

ci(
1

n
β1 · · ·+ n− 1

n
βn−1).

How is Lemma A.1 related to (7)? In this color-ball toy example, mi mimics the possible
realization of momentum up to the i-th inner loop in k-th epoch. fi mimics the stochastic gradient
∇fi (xk,0). This is because we can expand ∇fi (xk,0) into an infinite-sum sequence ∇fi (xk,0) =

(1− β1)∇fi (xk,0)
∑∞
j=0 β

j
1 , which shares a similar structure as fi. In this sense, Lemma A.1 may

provide ideas to prove (7). Nevertheless, there are still gap between these two, we will explain the
gap later.

Proof. We use Ek [·] to denote the conditional expectation given all the history up to the beginning
of k-th epoch. Since E [·] = E [Ek [·]], we first calculate Ek

[∑1
i=0mi

]
. Since all the history before

k-th epoch is fixed, we relegate this part to later discussion and first focus on the expectation of∑1
i=0mi,k. As shown in Figure 5 (upper part), there are 2 possible realization.

Figure 5: All possible realization of
∑1
i=0mi,k and

∑1
i=0mi,k−1.

With the help of Figure 5 (upper part), we have the following result.

Ek

[
1∑
i=0

mi,k −
1∑
i=0

fi,k

]
= Ek

[
1∑
i=0

mi,k

]
− (1 + β) (c0 + c1)

= −β
2

(c0 + c1) (8)
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Now we move one step further to calculate Ek−1Ek
[∑1

i=0mi −
∑1
i=0 fi

]
. Using the similar

strategy as (8), we have the following result. The calculation is illustrated in Figure 5 (lower part)
and Figure 6.

Figure 6: For every k, Ek
[∑1

i=0mi,k −
∑1
i=0 fi,k

]
will create residues, while these residues will

be canceled out in the (k − 1)-th epoch.

Ek−1

{
Ek

[
1∑
i=0

mi,k −
1∑
i=0

fi,k +

1∑
i=0

mi,k−1 −
1∑
i=0

fi,k−1

]}
(8)
= −β

2
(c0 + c1) + Ek−1

{
1∑
i=0

mi,k−1

}
−

1∑
i=0

fi,k−1

Figure 5 and 6
= −β

2
(c0 + c1) +

1

2
(β + 2β2 + β3)(c0 + c1)− (β2 + β3)(c0 + c1)

= −β
3

2
(c0 + c1)

We observe that only the highest order term remains in the calculation. Repeat this process until
k = 1, we will get the results in Lemma A.1. The above analysis also holds for general n ≥ 2.

The gap between Lemma A.1 and Equation (7). Lemma A.1 shows the key idea of proving
equation (7). However, due to its idealized setting, the color-ball toy example is still far from our real
goal (7). We list some of the gaps here.

• In each possible trajectory: xk,i is changing with k and i, while the balls are fixed in the color-ball
example.

• When taking expectation: x is changing in different trajectory, while the balls is fixed in the
color-ball example.

• x is a vector in Rd while the label of the balls are constant in R.

It requires extra technical lemmas to handle these differences. We provide more discussions in
Appendix G.1.

Solution to Issue II. We now discuss how to resolve Issue II mentioned in Section 5. The solution
contains two parts. First, we need to prove (5). Second, we derive (6) from (5). Due to the limited
space, we relegate the first part to Appendix G.1 (related to Lemma G.2). Now, we discuss the second
part: Assume we have (5), how do we use it to prove (6)? To answer this question, we introduce the
color-ball model of the 2nd kind.
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The color-ball model of the 2nd kind. Consider the same setting as the color-ball model in Step
1. We define a sequence of real random variable {rj}kj=1 with the following relation.

|rj − rj−1| =
1√
j
, j = 1, · · · k.

Further, we assume rj is fixed when fixing the history up to j-th round. The sequence {rj}kj=1

mimics the sequence {∂lf(xk,0)√
vl,k,0

}∞k=1 in (5). Now, we consider the following quantities.

rkm1 = rk

bk + βak︸ ︷︷ ︸
m1,k

+β2bk−1 + β3ak−1︸ ︷︷ ︸
m1,k−1

+ · · ·+ β2(k−1)b1 + β2(k−1)+1a1︸ ︷︷ ︸
m1,1

 ;

rkm0 = rk

 ak︸ ︷︷ ︸
m0,k

+β1bk−1 + β2ak−1︸ ︷︷ ︸
m0,k−1

+ · · ·+ β2(k−1)−1b1 + β2(k−1)a1︸ ︷︷ ︸
m1,1

 ;

rkf1 = rk

c1(1 + β︸ ︷︷ ︸
f1,k

+β2 + β3︸ ︷︷ ︸
f1,k−1

· · ·+ β2(k−1) + β2(k−1)+1︸ ︷︷ ︸
f1,1

)

 ;

rkf0 = rk

c0(1 + β︸ ︷︷ ︸
f0,k

+β2 + β3︸ ︷︷ ︸
f0,k−1

· · ·+ β2(k−1) + β2(k−1)+1︸ ︷︷ ︸
f0,1

)

 ;.

We now prove the following Lemma A.2.

Lemma A.2. Consider the color-ball model of the 2nd kind, we have

E

[
1∑
i=0

rkmi −
1∑
i=0

rkfi

]
= β2(k−1)+1

(
−c0

2
− c1

2

)
+O(

1√
k

).

For general n = 1, 2, 3, · · · , we have

E

[
n−1∑
i=0

rkmi −
n−1∑
i=0

rkfi

]
=

n−1∑
i=0

ciβ
(k−1)n(− 1

n
β1 · · · − n− 1

n
βn−1) +O(

1√
k

).

Proof. We only describe the proof idea here. The proof contains the following 4 steps.

Step 2.1. We firstly take Ek[·] and thus rk can be viewed as a constant. We use the color-ball
procedure as in Figure 7 to calculate Ek

[
rk
∑1
i=0mi,k − rk

∑1
i=0 fi

]
.

Figure 7: Step 2.1 in the new color-ball model.
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Step 2.2. We change Ek
[
rk
∑1
i=0mi,k−1

]
into Ek

[
rk−1

∑1
i=0mi,k−1

]
+ Error; where Error =

O(1/
√
k).

Step 2.3. We calculate Ek−1Ek
[
rk−1

∑1
i=0mi,k−1

]
= Ek−1

[
rk−1

∑1
i=0mi,k−1

]
. This part is

illustrated in the top row in Figure 8

Step 2.4. For the leftovers in Step 2.1, we change all rk into rk−1. Then we do the cancellation to
calculate Ek−1Ek

[
rk−1

∑1
i=0mi,k−1 + rk−1

∑1
i=0mi,k − rk−1

∑1
i=0 fi

]
. This step is shown in

the second and third row in Figure 8.

Figure 8: Step 2.3 and 2.4 in the new color-ball model.

Repeat this process to the 1st epoch. We can prove the Lemma A.2.

We emphasize that here are still some gap between Lemma A.2 and our goal in (6) in Lemma 5.2.
First, we have the similar gap as discussed at the end of the Solution to Issue I. Second, the condition
in Lemma 5.2 has requirement on the gradient norm, while this requirement is temporarily ignored in
the color-ball method of the 2nd kind. It requires some technical lemmas to handle these gaps.

For more details, please refer to the complete proof in Appendix G.

B More experiments

Estimation on ρ in Theorem 3.1. To ensure convergence, Theorem 3.1 requires β2 ≥ γ1(n) =
1−O((1− βn1 )/n2ρ). Now we estimate the constant ρ. According to our definition in Appendix F.1
and Remark G.7 in Appendix G.1, ρ = ρ1ρ2ρ3, where ρ1, ρ2, ρ3 are defined as follows.

ρ1 ≥
∑n
i=1 |∂lfi(xk,0)|√∑n
i=1 |∂lfi(xk,0)|2

;

ρ2 ≥
|maxi ∂lfi(xk,0)|2

1
n

∑n
i=1 |∂lfi(xk,0)|2

;

ρ3 ≥
|
∑n
i=1 ∂lfi(xk,0)|√

1
n

∑n
i=1 |∂lfi(xk,0)|2

.

These constants are firstly introduced by (Shi et al., 2020). In worst case, we have 0 ≤ ρ3 ≤√
nρ1 ≤ n. However, ρ is highly dependent on the problem instance f(x) and training process. We

now estimate how ρ changes with Adam’s trajectory on MNIST and CIFAR-10. We use β1 = 0.9,
β2 = 0.99. On both datasets, we set batchsize to be 64, which brings n = 937 on MNIST and
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(a) Histogram of ρ1 (b) Histogram of ρ2 (c) Histogram of ρ3

Figure 9: Histograms of ρ1, ρ2, ρ3 along the training process on MNIST.

(a) Histogram of ρ1 (b) Histogram of ρ2 (c) Histogram of ρ3

Figure 10: Histograms of ρ1, ρ2, ρ3 along the training process on CIFAR-10.

n = 781 on CIFAR-10. We collect ρ1, ρ2, ρ3 along the training process and estimate their distribution
density. The results are shown in Figure 9 and 10.

On both CIFAR-10 and MNIST, we observe that the maximal ρ1 < 25 ≈ O(
√
n), ρ2 < 400 ≈ O(n),

ρ3 < 0.1 ≈ O(1/
√
n). Therefore, ρ = ρ1ρ2ρ3 ≈ O(n).

Batchsize and β2. As shown in Figure 11: on MNIST, smaller batchsize requires larger β2 to
reach small loss. Since batchsize equals to (number of total sample)/(number of batches). In the
context of finite-sum setting with n summand, n usually stands for the number of batches (e.g., In
the extreme case when batchsize = 1, n equals to the number of total samples). Therefore, smaller
batchsize brings larger n. As such, Figure 11 matches the message by Theorem 3.1: the threshold of
β2 increases with n.
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0.0074 0.0082 0.0065 0.006 0.0069 0.0064

0.009 0.006 0.0052 0.0048 0.006 0.0049

0.025 0.014 0.0073 0.0052 0.0056 0.0044

0.023 0.019 0.017 0.0079 0.0059 0.0063

0.044 0.022 0.019 0.027 0.0079 0.0092

0.083 0.028 0.016 0.03 0.026 0.012
0.006

0.008

0.010

0.012

0.014

Figure 11: The training loss on MNIST under different batchsize and β2. Here, β1 is fixed to be 0.9

More experiments on function (2). Figure 1 (a) shows the optimality gap after 50k iterations
when n = 10 and initialization x = 1. Here, we provide more relevant experiments. First, when
initialized at x = 1, we run experiments with n = 5, 10, 15, 20. The results are shown in Figure 12.
We observe that the blue region shrinks as n increases. This matches our conclusion in Theorem 3.1:
when n increases, the convergent threshold of β2 increases, which means we need larger β2 to ensure
convergence. It also matches the conclusion in Theorem 3.3: when n increases, the divergence region
will expand (more evidence can be seen in Appendix E).

When initializing at x = −5, we further demonstrate that the gradient norm of f(x) can dramatically
increase. All the setting is the same as that in Figure 12 except for the change of initialization.

20



1

2

10

20

30

40

50

60

70

(a) n = 5

1

2

10

20

30

40

50

60

70

(b) n = 10

1

2

10

20

30

40

50

60

70

(c) n = 15

1

2

10

20

30

40

50

60

70

(d) n = 20

Figure 12: The optimality gap x− x∗ after running 50k iterations of Adam on function (2). We use
initialization x = 1.

Starting at x = −5, the algorithm can touch the “quadratic" side of function (2) where the gradient is
unbounded. The results are shown in Figure 13. We observe a similar pattern as that in Figure 12. As
a result, the gradient norm of f(x) is large in the left bottom corner.

We further plot the change of gradient norm along the iterations. We pick β1 = 0.1 and β2 =
0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99 to see the phase transition when increasing β2. The result is shown in
Figure 14. When β2 is small, the gradient norm of f(x) increases rapidly along the iteration. Most
of them are even much larger than the upper bound of color bar in Figure 13. As a result, there is a
phase transition from diverge to converge when increasing β2 from 0 to 1.
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Figure 13: The gradient norm of f(x) after running 50k iterations of Adam on function (2). We use
initialization x = −5.
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Figure 14: The change of gradient norm along the iterations of Adam on function (2). We use
initialization x = −5. We use [β1, β2] to label the curves trained with corresponding hyperparameters.

Adam converges to a exact critical point when D0 = 0. Since function (2) satisfies D0 = 0, we
further provide empirical evidence that Adam converges to a exact critical point when D0 = 0. We
use function (2) n = 20 and initialization x = −5. We choose some large enough β2 to ensure the
convergence. As shown in Figure 15, We observe 0 gradient norm after Adam converges. All the
hyperparameter setting is the same as before.

Adam converges to a bounded region when D0 > 0. Now we show that Adam may not converge
to an exact critical point when D0 > 0. Instead, it converges to a bounded region near the critical
point. For this part, we re-state the example from (Shi et al., 2020). Consider the following function.

fj(x) =

{
(x− a)2 if j = 0

−0.1
(
x− 10

9 a
)2

if 1 ≤ j ≤ 9
(9)
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Figure 15: Under SGC (When D0 = 0), we observe 0 gradient norm after Adam converges. We use
function (2) with n = 20 and initialization x = −5. We use [β1, β2] to label the curves trained with
corresponding hyperparameters.

Summing up fj(x) we get

f(x) =

9∑
j=0

fj(x) =
1

10
x2 − 1

9
a2.

This f(x) is lower bounded by −a
2

9 with optimal solution x∗ = 0. At the optimal point x∗ = 0,
∇fj(x∗) 6= 0 so we have D0 > 0. When running Algorithm 1 on this function, we observe that
Adam with diminishing stepsize does not converge to 0 gradient norm. Instead, it converge to a
bounded region. Further, the size of the region shrinks when β2 increases. These phenomena matches
our discussion in Remark 3. The result is shown in Figure 4 (a). In the experiment, we choose
β1 = 0.9, a = 3, x0 = −2 and diminishing stepsize ηk = 0.1√

k
.

B.1 Experimental Settings

Here, we introduce our experimental settings.

• Experiments on function (2). We use Algorithm 1 with cyclic order f0, f1, f2 and so on. We
report the optimality gap x − x∗ after 50k iteration, or equivalently 50000/n epochs. We use
ε = 10−8 for numerical stability. We use diminishing stepsize ηk = 0.1/

√
k, where k is the index

of epoch. Unless otherwise stated, this setting applies to all the other experiments on function (2).
In Figure 1 (a), we use n = 10 and initialization x = 1. We will report more results with different
n and different initialization in Appendix B.

• MNIST (Deng, 2012). We use one-hidden-layer neural network with width =16. We set batchsize
=1, weight decay =0, stepsize =0.0001 and train for 20 epochs. We use ε = 10−8 for numerical
stability.

• CIFAR-10 (Krizhevsky et al., 2009). We use ResNet-18 (He et al., 2016) as the architecture. We
choose batchsize =16, weight decay =5e-4 , initial stepsize=1e-3. We use a stage-wise constant
learning rate scheduling with a multiplicative factor of 0.1 on epoch 30, 60 and 90. We use
ε = 10−8 for numerical stability.
For MNIST and CIFAR-10, larger batchsize will bring similar pattern as that in Figure 1, but the
phase transition will occur at some smaller β2.

• NLP. The WikiText-103 dataset is a collection of over 100 million tokens extracted from the set
of verified ‘Good’ and ‘Featured’ articles on Wikipedia. The base model of Transformer XL
contains 16 self-attention layers. In each self-attention layer, there are 10 heads. The encoding
dimension of each head is set to be 41. We set batchsize = 60, number of iteration = 200k, and
initial stepsize = 0.00025. We use cosine learning rate scheduler, which is a popular choice for
training Transformer. We use ε = 10−8 for numerical stability.

C Some Potential Implications for Practical Users

Theorem 3.1 and Proposition 3.3 establish a clearer image on the relation between (β1, β2) and quali-
tative behavior of Adam, which may have certain implication for practical users. Many practitioners
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are still doing grid or random search over (β1, β2), which could be costly. The following advice may
cut down a large portion of search space. Suppose we start with some random point (β∗1 , β

∗
2), we

provide the following suggestions for tuning β1 and β2.

Case 1: If (β∗1 , β
∗
2) lies above the blue curve in Figure 2. We point out two sub-cases. First, if

Adam with (β∗1 , β
∗
2) diverges, then any points with “β1 <

√
β2" and “β2 < β∗2" shall not be tried

due to the risk of divergence. Second, if Adam with (β∗1 , β
∗
2) converges, then any points above this

point will converge. You may either fix β1 = β∗1 and increase β2, or fix β2 = β∗2 and try smaller β1.
Both ways have convergence guarantee.

Case 2: If (β∗1 , β
∗
2) lies below the blue curve in Figure 2. We still discuss two sub-cases. First, if

you observe divergence at (β∗1 , β
∗
2), then do not further try any point on the left. We do not suggest

exploring the points in below either, since the majority of them will still face the risk of divergence.
Instead, we suggest fix β1 = β∗1 and increase β2. Since our Theorem 3.1 applies for any β1 <

√
β2,

algorithm will converge when β2 is large enough.

Second, if you observe convergence at (β∗1 , β
∗
2) (which is also possible according to Figure 1 (a)),

then we suggest: (i) either fix β1 = β∗1 and increase β2, or (ii) fix β2 = β∗2 and try smaller β1. Both
ways push (β1, β2) into the region of Theorem 3.1 with convergence guarantee.

D More Discussion on Related Works.

D.1 More Related Works on the Convergence Analysis of Adam Family

New variants of Adam. Ever since Reddi et al. (2018) pointed out the non-convergence issue of
Adam, one active line of work has tried to design new variants of Adam that can be proved to converge.
For instance, Zou et al. (2019); Gadat & Gavra (2020); Chen et al. (2018b, 2021) replace the constant
hyperparameters by iterate-dependent ones e.g. β1t or β2t. AMSGrad (Reddi et al., 2018) and
AdaFom (Chen et al., 2018b) modify {vt} to be an non-decreasing sequence. Similarly, AdaBound
(Luo et al., 2019) impose lower and upper bounds on {vt} to prevent the effective stepsize from
vanishing or exploding. Zhou et al. (2018b) also adopt a new estimate of vt to correct the bias. There
are also attempts to combine Adam with Nesterov momentum (Dozat, 2016) as well as warm-up
techniques (Liu et al., 2020a). Padam (Chen et al., 2018a) also introduce a partial adaptive parameter
to improve the generalization performance. There are also some works providing theoretical analysis
on the variants of Adam. For instance, Zhou et al. (2018a) study the convergence of AdaGrad and
AMSGrad under bounded gradient condition. Gadat & Gavra (2020) study the asymptotic behavior
of a subclass of adaptive gradient methods from landscape point of view. Their analysis applies
to Adam-variants with β1 = 0 and β2 increasing along the iterates (it could also be understood as
RMSProp with increasing β2). When this script is under review, a new work (Iiduka, 2022) appear
on line. Iiduka (2022) analyze the convergence of AMSGrad by relaxing the Lipschitz-gradient
condition. However, their analysis requires extra conditions on both bounded gradient and bounded
domain.

Some more discussions on (Guo et al., 2021) and (Huang et al., 2021). Here, we discuss more
on two recent works Guo et al. (2021) and Huang et al. (2021). As mentioned in Section 2.2, they both
require some extra conditions. First, both Guo et al. (2021) and Huang et al. (2021) requires bounded
gradient assumption. This can be seen in Assumption 2 in (Guo et al., 2021). In (Huang et al., 2021),
they require bounded iterates ( their Theorem 1) or change Adam into AdaBound (Luo et al., 2019)
by clipping (their Remark 2, Corollary 1). Both settings inherent boundedness on gradient.

Besides bounded gradient, both (Huang et al., 2021) and (Guo et al., 2021) requires 1/(
√
vt+ε) ≤ Cu.

This condition is stated in Assumption 2 in (Guo et al., 2021) and Assumption 3 in (Huang et al.,
2021) (they presented it as Ht � ρId � 0, where matrix Ht = diag(

√
vt + ε)). Combining these two

conditions, the effective stepsize of Adam will be bounded in certain interval 1√
vt+ε

∈ [Cl, Cu]. Such
boundedness condition changes Adam into AdaBound (Luo et al., 2019) and thus cannot explain the
observations of Adam in Section 1.
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D.2 A Brief Introduction to (Reddi et al., 2018)

Here, we re-state two counter examples by (Reddi et al., 2018). For the consistence of notation, we
will re-state their results under our notation in the full script. They consider the convex problem
((Reddi et al., 2018)): min

∑n−1
i=0 fi(x) where x ∈ [−1, 1], n ≥ 3:

fi(x) =

{
nx, for i = 0
−x, otherwise, (10)

Note that (10) satisfy both Assumption 2.1 and 2.2 (with D1 = n2 + n − 1 and D0 = 0), so our
assumptions do not rule out this counter-example a priori. This is a constrained problem with feasible
set x ∈ [−1, 1], the optimal solution is x∗ = −1. Since they consider constrained problems, their
claimed “divergence" actually means the iterates will stay in a huge region with the size of whole
feasible set. Here, we call it “non-convergence" to distinguish from our result of “diverge to infinity"
in Proposition 3.3.

They consider sampling fi in the cyclic order: f0, f1, f2. In (Reddi et al., 2018), Function (10) is
presented as an “online optimization problem with non-zero average regret". We choose to use the
form of (10) since it is more consistent with our notation in Algorithm 1. We re-state their results as
follows.

Theorem D.1 (Theorem 2 in (Reddi et al., 2018)). For any fixed (β1, β2) s.t. β1 <
√
β2, there exists

function (10) with large enough n, s.t. Adam will converge to highly sub-optimal solution x = 1.

We briefly re-state the non-convergent condition for this Theorem. As stated in Equation (7), Appendix
B in (Reddi et al., 2018), for every fixed (β1, β2), they need a “constant n that depends on β1 and β2".
As such, they require different n to cause non-convergence on different (β1, β2). So the considered
function class is constantly changing.

For completeness, we further re-state Theorem 1 in (Reddi et al., 2018).

Theorem D.2 (Theorem 1 in (Reddi et al., 2018)). For function (10), when β1 = 0 and β2 =
1/(n2 + 1), Adam will converge to highly sub-optimal solution x = 1.

This theorem considers choosing (β1, β2) after n. However, this result only show non-convergence on
a single point (β1, β2) = (0, 1/(n2 + 1)). This point lies somewhere on the left boundary of Figure
3. It seems unclear how Adam’s behavior would change as we change the (β1, β2) to anywhere else.

E Proof of Proposition 3.3

We restate our counter-example here. Consider f(x) =
∑n−1
i=0 fi(x) for x ∈ R , we define fi(x) as

follows:

fi(x) =

{
nx, x ≥ −1
n
2 (x+ 2)2 − 3n

2 , x < −1
for i = 0,

fi(x) =

{
−x, x ≥ −1
− 1

2 (x+ 2)2 + 3
2 , x < −1

for i > 0. (11)

Summing up all the fi(x), we can see that

f(x) =

{
x, x ≥ −1
1
2 (x+ 2)2 − 3

2 , x < −1

is a convex smooth function with optimal solution x∗ = −2 and optimal value f(x∗) = −3/2.

However, we are going to show that, for any fixed n > 2, there exists an orange region shown in
Figure 2, s.t., Adam with any (β1, β2) combination in the yellow region diverge to x = ∞ rather
than the optimal solution x = −2, causing the divergence. Now we introduce the formal statement of
Proposition 3.3.
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Proposition E.1. (Formal statement of Proposition 3.3.) Consider the convex function (11) for a
fixed n. Starting at the initialization x = 1 and initial stepsize η1, the iterates of Adam diverge to
infinity if the following holds:

(C1) :

(
n− 1−min

{
n− 1, logβ2

(
1

10n2
)

})
1− β

min{n−1,logβ2
( 1

10n2 )}
1√

1 + max
{

0.1, βn−1
2 n2

} ≥ 1− β1√
1− β2

+
β1√

1− β2
n;

(12)

(C2) :(1− βn−1
1 ) > (1− β1)βn−1

1 n. (13)

(C3) :η1 ≤ 2
√

(1− β2)βn2 . (14)

The analysis is motivated by that in (Reddi et al., 2018, Theorem 1). However, (Reddi et al., 2018,
Theorem 1) considers a simplified case with β1 = 0. Here, we consider non-zero β1, especially for
those β1 >

√
β2. To show the divergence, we aim to prove the following claim: (we denote xk,i as

the value of x at the k-th outer loop and i-th inner loop )

Claim: for any fixed n > 2, there exists an orange region shown in Figure 2 s.t., Adam with any
β1-β2 combination in the orange region gives xk+1,0 > 1 as long as xk,0 = 1.

Since the gradient stays constant when x > 1, so x will go to infinity if the claim holds. To prove this
claim, we only need to analyze the trajectory of Adam within one particular outer loop, e.g., the k-th
outer loop. We will show that xk+1,0 > 1 if this outer loop is initialized with xk,0 = 1. Similarly as
(Reddi et al., 2018), we assume fi(x) are sampled in the order of f0(x), f1(x), · · · , fn−1(x) within
the k-th outer loop.

Now let us prove the claim. For function (11), the update rule of Adam is shown as follows.

xk,1 = (xk,0 + δk,0) , δk,0 = − η1√
k

(
n(1− β1) + β1mk−1,n−1√
(1− β2)n2 + β2vk−1,n−1

)
(15)

xk,i+1 = (xk,i + δk,i) , i = 1, · · · , n− 1; (16)

where δk,i = − η1√
k

(
(1−β1)

∑i−1
j=0(−1)β

j
1+(1−β1)βi1n+βi+1

1 mk−1,n−1√
(1−β2)+β2vk,i−1

)
.

We decompose the total movement
∑n−1
i=0 δk,i into three terms as follows.

n−1∑
i=0

δk,i =
η1√
k

(
− β1mk−1,n−1√

(1− β2)n2 + β2vk−1,n−1

− β2
1mk−1,n−1√

(1− β2) + β2vk,0
− · · · − βn1mk−1,n−1√

(1− β2) + β2vk,n−2

)
︸ ︷︷ ︸

(I)

+
η1√
k

(
1− β1√

(1− β2) + β2vk,0
+

(1− β1) + β1(1− β1)√
(1− β2) + β2vk,1

+ · · ·+
(1− β1)

∑n−2
j=0 β

j
1√

(1− β2) + β2vk,n−2

)
︸ ︷︷ ︸

(II)

+
η1√
k

(
− n(1− β1)√

(1− β2)n2 + β2vk−1,n−1

− n(1− β1)β1√
(1− β2) + β2vk,0

− · · · − n(1− β1)βn−1
1√

(1− β2) + β2vk,n−2

)
︸ ︷︷ ︸

(III)

.

We will show that for some β1 and β2: (I), (II) > 0 and (III) < 0. However, (I) and (II)
outweigh (III), causing the divergence.

First, we show that mk−1,n−1 < 0 when β1 is small.
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−mk−1,n−1 = (1− β1)

n−2∑
j=0

βj1 − (1− β1)βn−1
1 n− βn1mk−2,n−1

= (1− βn−1
1 )− (1− β1)βn−1

1 n− βn1mk−2,n−1

=
[
(1− βn−1

1 )− (1− β1)βn−1
1 n

] k∑
j=0

(βn1 )
j
.

when β1 is small,we have (1− βn−1
1 ) > (1− β1)βn−1

1 n, which implies −mk−1,n−1 > 0. For these
choices of β1, we have (I) > 0. Now we derive a lower bound for (II).

(II) ≥ 1− β1√
1 + β2n2

+
(1− β1) + β1(1− β1)√

1 + β2
2n

2
+ · · ·+

(1− β1)
∑n−2
j=0 β

j
1√

1 + βn−1
2 n2

=
1− β1√
1 + β2n2

+
1− β2

1√
1 + β2

2n
2

+ · · ·+ 1− βn−1
1√

1 + βn−1
2 n2

.

The inequality is due to the fact that vk,0 ≤ n2. Since βj2n
2 is small when β2 is small and j is close

to n, there exists some small β2 such that βj2n
2 ≤ 0.1 for at least one j < n. For these small enough

β2, we keep the summand with j ≥ logβ2
(0.1/n2) and drop the rest. We have the following lower

bound for (II).

(II) ≥
(
n− 1− logβ2

(
1

10n2
)

)
1− β

logβ2
( 1

10n2 )

1√
1 + 0.1

However, this lower bound only holds for the small β2. With simple modification, we derive a
universal lower bound of (II) for any β2 ∈ (0, 1).

(II) ≥
(
n− 1−min

{
n− 1, logβ2

(
1

10n2
)

})
1− β

min{n−1,logβ2
( 1

10n2 )}
1√

1 + max
{

0.1, βn−1
2 n2

}
Now we derive a lower bound for (III).

(III) = − n(1− β1)√
(1− β2)n2 + β2vk−1,n−1

− n(1− β1)β1√
(1− β2) + β2vk,0

− · · · − n(1− β1)βn−1
1√

(1− β2) + β2vk,n−2

≥ − 1− β1√
1− β2

1 + n(

n−1∑
j=1

βj1)


= − 1− β1√

1− β2

− β1(1− βn−1
1 )√

1− β2

n

≥ − 1− β1√
1− β2

− β1√
1− β2

n.

The remaining step is to show for small enough step size η1, the iterates will stay in the linear region,
thus the above gradient holds for all iterates in the trajectory.

As we initial x as x0 = 1, if for all m < n and k > 0,
∑m
i=0 δk,i ≥ −2, we can conclude all iterates

in the trajectory stay in the linear region.
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Because it holds that mk−1,n−1 ≤ 0 and vk−1,n−1 ≥ 0, we have the following result after dropping
most negative terms in the definition of δk,i:

δk,i ≥ −
η1√
k

n(1− β1)βi1√
n2(1− β2)βi2

≥ −η1
(1− β1)βi1√
(1− β2)βn2

.

Therefore, to make
∑m
i=0 δk,i ≥

∑m
i=0−η1

(1−β1)βi1√
(1−β2)βn2

≥ −2, we have

η1 ≤ 2
√

(1− β2)βn2 .

To show the divergence, we want to show that there exists some β1 and β2 s.t. the both of the
following conditions hold:

(C1) :

(
n− 1−min

{
n− 1, logβ2

(
1

10n2
)

})
1− β

min{n−1,logβ2
( 1

10n2 )}
1√

1 + max
{

0.1, βn−1
2 n2

} ≥ 1− β1√
1− β2

+
β1√

1− β2

n;

(C2) :β1 is small s.t. (1− βn−1
1 ) > (1− β1)βn−1

1 n.

(C3) :η1 ≤ 2
√

(1− β2)βn2 .

The proof of Theorem 3.3 is completed. With the help of Python, we visualize the region where
(C1) and (C2) hold. The results are shown in Figure 16. We use orange color to indicate the region
where (C1) holds. White color is used for the counter part. As for (C2), we use the gray vertical
line to indicate the line where (1− βn−1

1 ) = (1− β1)βn−1
1 n. Note that there are two solutions to

this equation: one solution is β1 = 1 and the other solution lies in 0 < β1 < 1, this is why there are
two vertical lines in the figure. (C2) holds on the left hand side of the left gray vertical line.

The intersection of two regions will be the region where Adam diverges, which is actually the orange
region in Figure 16. As n increases, (C2) holds for a wide range of β1, so the grey vertical lines
move towards β1 = 1 and finally get overlapped. In addition, the size of divergence region increases
with n

Relation with γ1(n) in Theorem 3.1 According to Theorem 3.1, γ1(n) is at least in the order of
1 − O(n−2). Combining with Figure 16. It is not hard to see that γ1(n) is always larger than the
upper boundary of the orange region, so there is no contradiction.

Proof of Corollary 4.1. For any (β1, β2) ∈ [0, 1)2, condition (C1), (C2) and (C3) can be satisfied
by some sufficiently large n. Therefore, Adam will diverge and the proof is concluded.

F Some More Notations and Useful Lemmas for Convergence Analysis

F.1 More notations

• We denote xk,i,mk,i, vk,i ∈ Rd as the value of x,m, v at the k-th outer loop and i-th inner loop.
Further, we denote xl,k,i,ml,k,i, vl,k,i ∈ R as the l-th component of xk,i,mk,i, vk,i.

• We denote ηk as the stepsize at the k-th epoch (outer loop). We will focus mainly on diminishing
step size, especially ηk = η1√

nk
, where n is the number of batches (inner loop).

• We denote ∂lf(x) = ∂
∂xl

f(x), ∂lfj(x) = ∂
∂xl

fj(x). Further, we will use τk,i to index the i-th
randomly chosen batch in the k-th epoch. In this sense, we denote ∂lfτk,i(x) as ∂

∂xl
fτk,i(x).

• Given an epoch k, we denote α as the index of the coordinate with the greatest gradient:

α = arg max
l=1,2,··· ,d

|∂lf (xk,0)| .
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Figure 16: This figure illustrates the region where both (C1) and (C2) in Proposition E.1 hold. The
orange color indicates the region where (C1) holds. White color is used for the counter part. The
gray vertical lines are used to indicate the boundary of (C2). Note that there are two solutions to the
equation in (C2): one solution is β1 = 1 and the other solution lies in 0 < β1 < 1, this is why there
are two vertical lines in the figure. (C2) holds on the left hand side of the left gray vertical line. This
figure is visualized in Python.

• We define ρ1, ρ2, ρ3 as constants satisfying the following condition for any l = 1, · · · , d:

ρ1 ≥
∑n
i=1 |∂lfi(xk,0)|√∑n
i=1 |∂lfi(xk,0)|2

;

ρ2 ≥
|maxi ∂lfi(xk,0)|2

1
n

∑n
i=1 |∂lfi(xk,0)|2

;

ρ3 ≥
|
∑n
i=1 ∂lfi(xk,0)|√

1
n

∑n
i=1 |∂lfi(xk,0)|2

.

ρ1, ρ2, ρ3 are problem-dependent constants. In worst case, we have 0 ≤ ρ3 ≤
√
nρ1 ≤ n. These

constants are firstly introduced by (Shi et al., 2020).

• We define the constant4x := η0√
x

L
√
d√

1−β2

1−β1

1− β1√
β2

. This constant will be used repeatedly, especially

in Lemma F.2.
• We define Qk := 41

n
√
n√
k

32
√

2
(1−β2)nβn2

. This constant will be used repeatedly.

• We define

δ1 =
(1− β2)4nρ2

βn2
+

(
1√
βn2
− 1

)
. (17)

This constant will be used repeatedly. Note that δ1 → 0 when β2 → 1.
• E(·) means taking expectation over the whole trajectory.

• We will use Ek [·] as a shorthand for E[·
∣∣ xk,0, xk−1,n−1, · · · , x1,0], i.e. the conditional expecta-

tion given all the history up to xk,0. Similarly, Ek−1 stands for the conditional expectation given
all the history up to xk−1,0.

28



We further introduce some ‘index’ notation of the stochastic gradients, these notations will be useful
in the proof. For all the stochastic gradient, we have

• True index: every stochastic gradient has its own true index: f1(·), f2(·), · · · , fn−1(·). All these
{fi(·)}n−1

i=0 are fixed once the optimization problem is formulated.
Note that for a fixed x, we have the following relationship between fi and f :

n−1∑
i=0

∂lfi(x) = ∂lf(x). (18)

• Random-shuffle index: At the k-th epoch, all the stochastic gradients are sampled in the order
of fτk,0(·), fτk,1(·), · · · , fτk,n−1

(·).
Since Algorithm 1 is sampling without replacement, there is an implicit bijective mapping between
{fi(·)}n−1

i=0 and {fτk,i(·)}
n−1
i=0 . Further, for a fixed x, we have the following useful property:

n−1∑
i=0

∂lfτk,i(x) = ∂lf(x). (19)

• Index for m and v: As shown in Algorithm 1, we denote :

ml,k,i = (1− β1){∂lfτk,i(xk,i) + · · ·+ βi1∂lfτk,0(xk,0)}+ βi+1
1 ml,k,0,

vl,k,i = (1− β2){∂lfτk,i(xk,i)2 + · · ·+ βi1∂lfτk,0(xk,0)2}+ βi+1
2 vl,k,0.

F.2 Some useful lemmas

We begin with proving some useful lemmas.
Lemma F.1. For any β 6= 1, we have

(1− β)

∞∑
j=1

βj−1 = 1,

(1− β)

∞∑
j=1

jβj−1 =
1

1− β
,

(1− β)

∞∑
j=1

j2βj−1 =
1 + β

(1− β)
2 .

Proof. Proof only involves basic calculation, we omit the proof here.

Lemma F.2. Under Assumption 2.1, if β1 <
√
β2, we have∣∣∂lfτk,i(xk,i+1)− ∂lfτk,i(xk,i)
∣∣ ≤ η0√

nk

L
√
d√

1− β2

1− β1

1− β1√
β2

= 4nk. (20)

Proof. We start with bounding |xl,k,i+1 − xl,k,i|. By the update formula of Adam, we have

|xl,k,i+1 − xl,k,i| = ηk
|ml,k,i|√
vl,k,i

≤ ηk(1− β1)

{
β0

1

|∂lfτk,i(xk,i)|√
vl,k,i

+ β1

|∂lfτk,i−1(xk,i−1)|
√
vl,k,i

+ . . .

}
≤ ηk(1− β1)

{
β0

1

|∂lfτk,i(xk,i)|√
(1− β2)β0

2 |∂lfτk,i(xk,i)|
+ β1

|∂lfτk,i−1(xk,i−1)|√
(1− β2)β2|∂lfτk,i−1(xk,i−1)|

+ . . .

}

≤ ηk
(1− β1)√

1− β2

(
(
β1√
β2

)0 + (
β1√
β2

)1 + (
β1√
β2

)2 + . . .

)
= ηk

(1− β1)√
1− β2

1

1− β1√
β2

. (21)
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Now, by Assumption 2.1, we have

∣∣∂lfτk,i(xk,i+1)− ∂lfτk,i(xk,i)
∣∣ ≤ ‖∇fτk,i(xk,i+1)−∇fτk,i(xk,i)‖2
≤ L‖xk,i+1 − xk,i‖2
≤ L

√
dmax

l
|xl,k,i+1 − xl,k,i|

≤ ηk
L
√
d√

1− β2

1− β1

1− β1√
β2

=
η0√
nk

L
√
d√

1− β2

1− β1

1− β1√
β2

(22)

Proof is completed.

Lemma F.3. Under Assumption 2.1 and 2.2, for any integer i ∈ [0, n− 1], we have the following
two results,

|∂lfτk,i(xk,i)| ≤ i4nk +
√
D1ρ1d

(
|∂αf (xk,0)|+

√
D0

D1d

)
, (23)

|∂lfτk,i(xk,0)| ≤
n−1∑
i=0

|∂lfτk,i(xk,0)| ≤
d∑
l=1

n−1∑
i=0

|∂lfτk,i(xk,0)| ≤
√
D1ρ1d

(
|∂αf (xk,0)|+

√
D0

D1d

)
,

(24)

where |∂αf (xk,0)| = maxl∈[1,d] |∂lf (xk,0)|.

Proof.

|∂lfτk,j (xk,j)|
Lemma F.2
≤ j4nk + |∂lfτk,j (xk,0)|

≤ j4nk +

d∑
l=1

n−1∑
j=0

|∂lfτk,j (xk,0)|

(∗)
≤ j4nk + ρ1

d∑
l=1

√√√√n−1∑
i=0

|∂lfi(xk,0)|2

Cauchy-Swartz inequality
≤ j4nk + ρ1

√
d

√√√√ d∑
l=1

n−1∑
i=0

|∂lfi(xk,0)|2

Assumption 2.2
≤ j4nk + ρ1

√
d
√
D1‖∇f(xk,0)‖22 +D0

(∗∗)
≤ j4nk +

√
D1ρ1d

√
|∂αf (xk,0)|2 +

D0

D1d

≤ j4nk +
√
D1ρ1d

(
|∂αf (xk,0)|+

√
D0

D1d

)

where (∗) is because of the definition (see Appendix F.1): ρ1 is a constant satisfying ρ1 ≥∑n
i=1|∂lfi(xk,0)|√∑n
i=1|∂lfi(xk,0)|2

; (∗∗) is due to ‖∇f(xk,0)‖22 ≤ d |∂αf (xk,0)|2. The proof of (24) follows the

same procedure as above.
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G Proof of Theorem 3.1

G.1 A roadmap of the proof

Our proof is based on the Descent Lemma:

Ef(xk+1,0)− Ef(xk,0) ≤ E〈∇f(xk,0), xk+1,0 − xk,0〉+
L

2
E‖xk+1,0 − xk,0‖22

The expectation E(·) is taken on the whole trajectory. Summing both sides from the initialization
k = t0 to k = T , we have the following re-arranged inequality: (usually we set t0 = 1.)

E
T∑

k=t0

〈∇f(xk,0), xk,0 − xk+1,0〉 ≤
L

2

T∑
k=t0

E‖xk+1,0 − xk,0‖22 + Ef(xt0,0)− Ef(xT+1,0). (25)

To prove the convergence, we need an upper bound for L2 E‖xk+1,0−xk,0‖22, as well as a lower bound
for E〈∇f(xk,0), xk,0−xk+1,0〉 (and such a lower bound should be in the order of 1√

k
E‖∇f(xk,0)‖).

The upper bound for L2 E‖xk+1,0 − xk,0‖22 is relatively easy to get: according to the update rule of
Adam, this term is in the order of O(η2

kml,k,i/vl,k,i) = O(η2
k‖∇f(xk,0)‖/‖∇f(xk,0)‖) = O( 1

k ).
Further, recall

∑T
k=t0

1
k ≤ log T+1

t0
, so L

2 E‖xk+1,0 − xk,0‖22 contributes to the log term in Theorem
3.1. The proof is shown in Lemma F.2.

However, the lower bound for E〈∇f(xk,0), xk,0 − xk+1,0〉 = E
[∑d

l=1

∑n−1
i=0 ∂lf(xk,0)

ml,k,i√
vl,k,i

]
requires sophisticated derivation, we explain as follows. Before taking the expectation, we first
work on every possible realization of

∑d
l=1

∑n−1
i=0 ∂lf(xk,0)

ml,k,i√
vl,k,i

. We perform the following
decomposition for every l ∈ [1, d].

n−1∑
i=0

∂lf(xk,0)
ml,k,i√
vl,k,i

=

n−1∑
i=0

∂lf(xk,0)
√
vl,k,i

(∂lfi(xk,0) +ml,k,i − ∂lfi(xk,0))

=

[
n−1∑
i=0

∂lf(xk,0)
√
vl,k,i

∂lfi(xk,0)

]
︸ ︷︷ ︸

(a)

+

[
∂lf(xk,0)

n−1∑
i=0

1
√
vl,k,i

(ml,k,i − ∂lfi(xk,0))

]
︸ ︷︷ ︸

(b)

.

(26)

First of all, we introduce the following Lemma G.1 to further decompose (a) and (b). The intuition
of this decomposition is as follows: by increasing β2, we can control the movement of the moving
average factor vl,k,i (similar idea as (Shi et al., 2020; Zou et al., 2019; Chen et al., 2021)).
Lemma G.1. Under Assumption 2.1, for those l satisfying maxi |∂lfi(xk,0)| ≥ Qk :=

41
n
√
n√
k

32
√

2
(1−β2)nβn2

, we have the following lower bound for (a) in (26):

n−1∑
i=0

∂lf(xk,0)
√
vl,k,i

∂lfi(xk,0) ≥ ∂lf (xk,0)
2

√
vl,k,0

− δ1
∣∣∣∣∂lf(xk,0)
√
vl,k,0

∣∣∣∣∑
i

|∂lfi (xk,0)| , (27)

where δ1 = (1−β2)4nρ2

βn2
+

(
1√
βn2
− 1

)
. ρ2, ρ3 are constants satisfying ρ2 ≥ |maxi ∂lfi(xk,0)|2

1
n

∑n
i=1|∂lfi(xk,0)|2 ,

ρ3 ≥
|∑n

i=1 ∂lfi(xk,0)|√
1
n

∑n
i=1|∂lfi(xk,0)|2

. Note that δ1 → 0 when β2 → 1.

Under the same condition, we also have a lower bound for (b) in (26):
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n−1∑
i=0

∂lf (xk,0)
√
vl,k,i

(ml,k,i − ∂lfi(xk,0))

≥ ∂lf(xk,0)
√
vl,k,0

n−1∑
i=0

(ml,k,i − ∂lfi(xk,0))− δ1
∣∣∣∣∂lf(xk,0)
√
vl,k,0

∣∣∣∣ n−1∑
i=0

|ml,k,i − ∂lfi(xk,0)|. (28)

The proof can be seen in Appendix G.2 and it is motivated from (Shi et al., 2020). Lemma G.1
decomposes both (a) and (b): in the denominator, we approximate vl,k,i (which is changing with
i) by vl,k,0 (which is fixed). Accordingly, the approximation error can be controlled by increasing
β2 (since δ1 → 0 when β2 → 1). However, similiarly as (Shi et al., 2020), Lemma G.1 can only be
applied to those l with maxi |∂lfi(xk,0)| ≥ Qk, so we need to discuss two cases as below.

Case 1: unbounded gradient. Given xk,0, consider those l with maxi |∂lfi(xk,0)| ≥ Qk, we have
the following decomposition:

n−1∑
i=0

∂lf(xk,0)
ml,k,i√
vl,k,i

(26)
≥

[
n−1∑
i=0

∂lf(xk,0)
√
vl,k,i

∂lfi(xk,0)

]
︸ ︷︷ ︸

(a)

+

[
∂lf(xk,0)

n−1∑
i=0

1
√
vl,k,i

(ml,k,i − ∂lfi(xk,0))

]
︸ ︷︷ ︸

(b)

.

Lemma G.1
≥ ∂lf (xk,0)2

√
vl,k,0

− δ1
∣∣∣∣∂lf(xk,0)
√
vl,k,0

∣∣∣∣ n−1∑
i=0

|∂lfi (xk,0)|

+
∂lf(xk,0)
√
vl,k,0

n−1∑
i=0

(ml,k,i − ∂lfi(xk,0))− δ1
∣∣∣∣∂lf(xk,0)
√
vl,k,0

∣∣∣∣ n−1∑
i=0

|ml,k,i − ∂lfi(xk,0)|

Lemma G.10
≥

[
∂lf (xk,0)2

√
vl,k,0

]
︸ ︷︷ ︸

(a1)

−

[
δ1

√
2ρ2

3

βn2

n−1∑
i=0

|∂lfi (xk,0)|

]
︸ ︷︷ ︸

(a2)

+

[
∂lf(xk,0)
√
vl,k,0

n−1∑
i=0

(ml,k,i − ∂lfi(xk,0))

]
︸ ︷︷ ︸

(b1)

−

[
δ1

√
2ρ2

3

βn2

n−1∑
i=0

|ml,k,i − ∂lfi(xk,0)|

]
︸ ︷︷ ︸

(b2)

,

(29)

Case 2: bounded gradient. Given xk,0, consider those l with maxi |∂lfi(xk,0)| ≤ Qk, the analysis
degenerates to the “bounded gradient” scenario, we have the following lower bound:

n−1∑
i=0

∂lf(xk,0)
ml,k,i√
vl,k,i

≥ −
n−1∑
i=0

|∂lf(xk,0)|
∣∣∣∣ ml,k,i√
vl,k,i

∣∣∣∣
(21)
≥ −|∂lf(xk,0)| 1− β1√

1− β2

1

1− β1√
β2

n

(∗)
≥ −nQk

1− β1√
1− β2

1

1− β1√
β2

n

= −41
n2
√
n√
k

32
√

2

(1− β2)nβn2

1− β1√
1− β2

1

1− β1√
β2

n

:= −F1
1√
k
,
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where F1 := 41n
2
√
n 32

√
2

(1−β2)nβn2

1−β1√
1−β2

1

1− β1√
β2

n, (∗) is due to the fact that |∂lf(xk,0)| ≤

nmaxi |∂lfi(xk,0)| ≤ nQk.

Combining Case 1 & 2 together, we have the following result (note that (a1), (a2), (b1), (b2) vary
with l. A more precise notation will be (a1)l, etc. We drop the subscript for brevity).

d∑
l=1

n−1∑
i=0

∂lf(xk,0)
ml,k,i√
vl,k,i

≥
∑
l large

{(a1)− (a2) + (b1)− (b2)}︸ ︷︷ ︸
unbounded gradient

−
∑
l small

F1
1√
k︸ ︷︷ ︸

bounded gradient

≥
∑
l large

{(a1)− (a2) + (b1)− (b2)}︸ ︷︷ ︸
unbounded gradient

−
d∑
l=1

{
F1

1√
k

}
︸ ︷︷ ︸

bounded gradient

≥

∑
l large

(a1)

+

∑
l large

(b1)

−
∑
l large

{(a2) + (b2)}

− dF1
1√
k
,

(30)

where “l large” stands for the gradient component in Case 1 and “l small” indicates those in Case 2.
We assume “l large” is not an empty set, otherwise the analysis degenerates to the case with bounded
gradient assumption.

Now we take expectation on (30). The expectation is taken on all the possible trajectories up to the
i-th iteration in k-th epoch.

E

[
d∑
l=1

n−1∑
i=0

∂lf(xk,0)
ml,k,i√
vl,k,i

]
(30)
≥ E

∑
l large

(a1) +
∑
l large

(b1)−
∑
l large

{(a2) + (b2)}

− dF1
1√
k
,

(31)

In the following context, we will discuss how to bound all terms in (31), respectively. First and
foremost, we derive a lower bound for E

[∑
l large(b1)

]
. Since E

[∑
l large(b1)

]
contains all the

historical gradient information, it involves great effort to handle it. We will show that the lower bound
of E

[∑
l large(b1)

]
will vanish when β2 is large and k goes to infinity.

Recall E
[∑

l large(b1)
]

= E
[∑

l large
∂lf(xk,0)√
vl,k,0

∑n−1
i=0 (ml,k,i − ∂lfi(xk,0))

]
. When β1 is large,

ml,k,i contains heavy historical signals. It seems unclear how large E
[∑

l large(b1)
]

would be
when β1 goes to 1. Existing literatures (Zaheer et al., 2018; De et al., 2018; Shi et al., 2020) take
a naive approach: they set β1 ≈ 0 so that mk,i ≈ ∇fτk,i(xk,i). Then we get δ(β1) ≈ 0. However,
this naive method cannot be applied here since we are interested in practical cases where β1 is large
in [0, 1). We emphasize the following technical difficulties in bounding E

[∑
l large(b1)

]
for any

β1 ∈ [0, 1):

• Issue (i) In order to bound E
[∑

l large(b1)
]
, we need to first know how to bound its simpler

version: E
[∑n−1

i=0 (ml,k,i − ∂lfi(xk,0))
]
. This term measures the difference between the current

gradient and weighted historical gradients. It seems unclear that how large this term could be
when β1 goes to 1.
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• Issue (ii) Even if we can bound E
[∑n−1

i=0 (ml,k,i − ∂lfi(xk,0))
]
, it is still unclear how to bound

E
[
∂lf(xk,0)√
vl,k,0

∑n−1
i=0 (ml,k,i − ∂lfi(xk,0))

]
, which is further multiplied by a random variable

∂lf(xk,0)√
vl,k,0

.

• Issue (iii) Even if we can bound E
[
∂lf(xk,0)√
vl,k,0

∑n−1
i=0 (ml,k,i − ∂lfi(xk,0))

]
, it is still dif-

ferent from E
[∑

l large(b1)
]

which contains additional operation “
∑
l large" inside the ex-

pectation. Note that the set “l large" is a random variable which changes along differ-
ent trajectories, so there is still non-negligible gap between bounding E

[∑
l large(b1)

]
and

E
[
∂lf(xk,0)√
vl,k,0

∑n−1
i=0 (ml,k,i − ∂lfi(xk,0))

]
.

To our best knowledge, there is no general approach to tackle the above issues. In the following
content, we will overcome difficulties (i), (ii) and (iii) in Step 1, 2 and 3 respectively. In Step 1, we
will discuss how to bound E

[∑n−1
i=0 (ml,k,i − ∂lfi(xk,0))

]
, which is a simplified version of E [(b1)].

Bounding this term will shed light on bounding the whole term E
[∑

l large(b1)
]
. Then in Step 2 and

3, we will prove several technical lemmas to handle the effect of ∂lf(xk,0)√
vl,k,0

and “
∑
l large", by which

we can tackle (ii) and (iii). Combining all together we can bound E
[∑

l large(b1)
]
.

Bounding E
[∑

l large(b1)
]
: Step 1. We now introduce the key idea of bounding

E
[∑n−1

i=0 (ml,k,i − ∂lfi(xk,0))
]
. In Appendix A, we distill our idea into a toy example called "the

color-ball model of the 1st kind" and thus we prove Lemma A.1. This lemma is crucial for bounding
E
[∑n−1

i=0 (ml,k,i − ∂lfi(xk,0))
]
. We refer the readers to Appendix A for more explanation.

Lemma A.1 can provide insights in bounding E
[∑n−1

i=0 (ml,k,i − ∂lfi(xk,0))
]
. However, there is

still certain gap between E
[∑n−1

i=0 (ml,k,i − ∂lfi(xk,0))
]

and the quantities in Lemma A.1. We
elaborate as follows:

• To mimic the color-ball example, we need to expand
∑n−1
i=0 ∂lfi(xk,0) into an infinite sum

sequence:
∑n−1
i=0 ∂lfi(xk,0)(1 − β1)(1 + β1 + · · ·β∞1 ). However,

∑n−1
i=0 ml,k,i is a finite sum

sequence up to the order of βkn. In contrast, both sequences in the color-ball example are “finite
sum”. As such, there is an error term caused by “finite sum v.s. infinite sum”.

• When taking the expectation, the variable x in each possible trajectory is different. In contrast, in
the color-ball example, {ai}2i=0 are fixed in all shuffling order (so it is much easier to calculate
the expectation by summing them up).
To mimic the color-ball example, we repeatedly take conditional expectation at the beginning of
each k-th epoch. In this way, xk,0 will be fix. Despite xk,i is still changing across the trajectory,
we can transform xk,i into xk,0 by using Lipschitz property.

• In each trajectory of
∑n−1
i=0 ml,k,i, the variable x in the summand of ml,k,i varies with k and i;

while the variable in ∂lfi(xk,0) is fixed to be xk,0. In contrast, in the color-ball example, {ai}2i=0
are the same across the epoch.
To mimic the final step in the color-ball example (Figure 6), at each step of conditional expectation,
we need to simultaneously move the variables in ml,k,i and ∂lfi(xk,0) (using Lipschitz property)
so that they can match and cancel out with each other. This operation will introduce new error
terms and it is our duty to put them under control.

We omit the proof for bounding E
[∑n−1

i=0 (ml,k,i − ∂lfi(xk,0))
]

since this is not our actual goal.
Instead, we will directly use the above ideas to bound E [(b1)]. To do so, we need to further tackle
the issue (ii) and (iii) mentioned before. We explain as follows.
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Bounding E
[∑

l large(b1)
]
: Step 2. We now resolve issue (ii), i.e., handle the effect of ∂lf(xk,0)√

vl,k,0
.

The key idea is as follows: when we calculate E [(b1)], we sequentially take conditional expectation
Ek(·), Ek−1(·), etc.. When taking Ek(·), we will fix all the historical information up to k-th epoch,
so ∂lf(xk,0)√

vl,k,0
can be regarded as a constant. In this sense, Ek

[
∂lf(xk,0)√
vl,k,0

∑n−1
i=0 (ml,k,i − ∂lfi(xk,0))

]
can be calculated following the same idea as color-ball toy example.

However, when taking Ek−1(·), ∂lf(xk,0)√
vl,k,0

will become a random variable which changes with different
trajectories. In this case, the color-ball method cannot be applied. To fix this issue, we introduce
the following lemma to change ∂lf(xk,0)√

vl,k,0
into ∂lf(xk−1,0)√

vk−1,0
, which can again be regarded as a fixed

constant when taking Ek−1(·).
Lemma G.2. Suppose Assumption 2.1 holds and β1 <

√
β2. For any integer j ∈ [0, k], if

maxi |∂lfi(xk,0)| ≥ Qk, maxi |∂lfi(xk−1,0)| ≥ Qk−1, · · · , maxi |∂lfi(xk−j,0)| ≥ Qk−j (where
Qk := 41

n
√
n√
k

32
√

2
(1−β2)nβn2

), then we have the following result:

∣∣∣∣∂lf(xk,0)
√
vl,k,0

− ∂lf(xk−j,0)
√
vl,k−j,0

∣∣∣∣ ≤ 1

1− 1√
βn2

n24n(k−j)√
vl,k−j,0

+ j

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1,
where δ1 is defined in (17).

The proof of Lemma G.2 can be seen in Appendix G.3. To proceed, we combine Lemma G.2 and the
“color-ball method of the 2nd kind", and thus we can prove Lemma A.2. This lemma is crucial for
our current goal: bounding E(b1). We refer the readers to Appendix A for more information.

We emphasize that here are still the following gap between Lemma A.2 and our goal E(b1).

• We have the similar gap as discussed at the end of the Step 1.
• The condition in Lemma G.2 has requirement on the gradient norm, while this requirement is

temporarily ignored in the color-ball method of the 2nd kind.

• The result in Lemma G.2 has additional error terms other thanO(1/
√
k). This is slightly different

from the setting in Lemma A.2.

It requires some technical lemmas to handle these gaps. We fill in these gaps in Lemma G.4. The
technical details can be seen Appendix G.4.

Bounding E
[∑

l large(b1)
]
: Step 3. Now we shift gear to tackle (iii): handling the random variable

“ l large". We rewrite “ l large" into the indicator function as follows:

E

∑
l large

(b1)

 = E

∑
l large

∂lf(xk,0)
√
vl,k,0

n−1∑
i=0

(ml,k,i − ∂lfi(xk,0))

 = E

[
d∑
l=1

Ik
∂lf(xk,0)
√
vl,k,0

n−1∑
i=0

(ml,k,i − ∂lfi(xk,0))

]
,

where Ik := I
(

maxi |∂lfi(xk,0)| ≥ Qk := 41
n
√
n√
k

32
√

2
(1−β2)nβn2

)
is the indicator function (I(A) = 1

when event A holds and I(A) = 0 otherwise.) Similarly as before, when taking Ek(·), “ Ik" can
be regarded as a constant index. Therefore, Ek

[∑d
l=1 Ik

∂lf(xk,0)√
vl,k,0

∑n−1
i=0 (ml,k,i − ∂lfi(xk,0))

]
can

be calculated following the same idea as color-ball model of the 1st kind. However, when taking
Ek−1(·), Ik will become a random variable which changes with different trajectories. In this case,
the color-ball method cannot be applied. Similarly as in Step 2, we introduce the following lemma to
change Ik into Ik−1 (defined later), which can again be regarded as a fixed when taking Ek−1(·).
Lemma G.3. Suppose Assumption 2.1 holds and β1 <

√
β2. For 0 ≤ j ≤ k, we define

Ik−j := I
(

maxi |∂lfi(xk−j,0)| ≥
∑k
p=k−j Qp

)
, where Qk := 41

n
√
n√
k

32
√

2
(1−β2)nβn2

, then we have
the following results.
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Ik = I

max
i
|∂lfi(xk,0)| ≥ Qk and max

i
|∂lfi(xk−j,0)| ≥

k∑
p=k−j

Qp


+ I

max
i
|∂lfi(xk,0)| ≥ Qk and max

i
|∂lfi(xk−j,0)| ≤

k∑
p=k−j

Qp

 , (32)

I

max
i
|∂lfi(xk,0)| ≥ Qk and max

i
|∂lfi(xk−j,0)| ≥

k∑
p=k−j

Qp

 = I

max
i
|∂lfi(xk−j,0)| ≥

k∑
p=k−j

Qp

 = Ik−j .

(33)

Proof. Equation (32) is straightforward, we only prove (33) here. Under Assumption 2.1, we have
|∂lfi(xk,0)− ∂lfi(xk−j,0)| ≤ n4n(k−1) + · · · + n4n(k−j) ≤ Qk−1 + · · · + Qk−j . To show the
second inequality, it requires comparing the value between Qk and n4n(k), which are both problem-
dependent constants. Here, the inequality holds when n4n(k) ≤ Qk. If otherwise, we can always
define Q̃k := max{Qk, n4n(k)} and the inequality still holds by changing all the Qk into Q̃k. We
temporarily omit this step for now.

Since |∂lfi(xk,0)− ∂lfi(xk−j,0)| ≤ Qk−1 + · · · + Qk−j , the event{
maxi |∂lfi(xk−j,0)| ≥

∑k
p=k−j Qp

}
implies the event {maxi |∂lfi(xk,0)| ≥ Qk}, so the

proof is completed.

Now we are ready to bound E
[∑

l large(b1)
]
. Combining Step 1, 2 and 3 together, we prove the

following Lemma G.4.
Lemma G.4. Under Assumption 2.1, consider β1 <

√
β2, when k is large such that: k ≥ 4;

β
(k−1)n
1 ≤ βn1√

k−1
, we have the following result:

E

∑
l large

(b1)

 ≥ −O( 1√
k

)
−O

(
δ1E

[
d∑
l=1

n−1∑
i=0

|∂lfi(xk,0)|

])
,

where δ1 = (1−β2)4nρ2

βn2
+

(
1√
βn2
− 1

)
, which goes to 0 when β2 goes to 1.

Proof can be seen in Appendix G.4. Now we bound the error terms: E
[∑

l large {(a2) + (b2)}
]
.

Since they are multiplied by δ1, these two terms vanish when β2 → 1.

Bounding E
[∑

l large {(a2) + (b2)}
]
. We bound these two terms in the following Lemma G.5.

Lemma G.5. Given all the history up to xk,0, we denote α as the index of the coordinate with the
greatest gradient: α = arg maxl=1,2,··· ,d |∂lf (xk,0)| . Under Assumption 2.1 and 2.2, consider
β1 <

√
β2, when k is large such that: k ≥ 4; β(k−1)n

1 ≤ βn1√
k−1

, we have the following results:

E

∑
l large

(a2)

 := E

∑
l large

δ1

√
2ρ2

3

βn2

n−1∑
i=0

|∂lfi (xk,0)|

 (24)
≤ O (δ1E |∂αf (xk,0)|) +O

(
δ1
√
D0

)
,

E

∑
l large

(b2)

 := E

∑
l large

δ1

√
2ρ2

3

βn2

n−1∑
i=0

|ml,k,i − ∂lfi(xk,0)|

 ≤ O (δ1E |∂αf (xk,0)|) +O
(
δ1
√
D0

)
+O

(
1√
k

)
,
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where δ1 is defined in (17), D0 is defined in Assumption 2.2.

Detailed proof of Lemma G.5 is shown in Appendix G.8.

Bounding E
{∑

l large(a1) +
∑
l large(b1)−

∑
l large {(a2) + (b2)}

}
. With the help of Lemma

G.4 and G.5, we can bound E
{∑

l large(a1) +
∑
l large(b1)−

∑
l large {(a2) + (b2)}

}
. The intuition

is as follows:

• (a1) is in the order of |∂lf(xk,0)|, multiplied by some positive constant;
•
∑
l large{(a2) + (b2)} vanishes when β2 → 1.

• E
{∑

l large(b1)
}

vanishes when β2 → 1 and k goes to infinity.

Therefore, E
{∑

l large(a1) +
∑
l large(b1)−

∑
l large {(a2) + (b2)}

}
is still in the order of |∂lf(xk,0)|

(multiplied by a positive constant when β2 is large). More formal results are shown in Lemma G.6.
Lemma G.6. Under Assumption 2.1 and 2.2, when the hyperparameters satisfy: i) β1 <

√
β2 < 1,

ii) β2 is large enough such that A(β2) is small enough to satisfy (34), where A(β2) is a non-negative
constant that approaches 0 when β2 approaches 1. More Specifically, A(β2) needs to satisfy (ρ1, ρ2

and ρ3 are defined in Appendix F.1).

A(β2) :=

{
(1− β2)4nρ2

βn2

+

(
1√
βn2

− 1

)}
√√√√ 2ρ2

3

βn2

4n +


√√√√ 2ρ2

3

βn2

3n(
1− (1−β2)4nρ2

βn2

)
 1

(1− βn1 )

√D1ρ1d

≤
1

√
10D1d

, (34)

Then, we have the following result when k is large enough such that β(k−1)n
1 ≤ βn1√

k−1
and k ≥ 4:

E

∑
l large

(a1) +
∑
l large

(b1)−
∑
l large

{(a2) + (b2)}


:= E

∑
l large

∂lf (xk,0)2

√
vl,k,0

+ E

∑
l large

∂lf(xk,0)
√
vl,k,0

n−1∑
i=0

(ml,k,i − ∂lfi(xk,0))


−dδ1

√
2ρ2

3

βn2
E

[
n−1∑
i=0

|∂lfi (xk,0)|

]
− dδ1

√
2ρ2

3

βn2
E

[
n−1∑
i=0

|ml,k,i − ∂lfi(xk,0)|

]

≥ 1

d
√

10D1d
Emin

{√
2D1d

D0
‖∇f(xk,0)‖22, ‖∇f(xk,0)‖1

}

−O(
1√
k

)−O(
√
D0).

Proof of Lemma G.6 can be seen in Appendix G.9.
Remark G.7. Condition (34) specifies the smallest threshold of β2 to ensure the convergence. This
condition can be translated into the threshold funtion γ1(n) mentioned in Theorem 3.1. As a rough
estimate, Lemma G.6 requires β2 ≥ γ1(n) = 1 − O

(
(1− βn1 )/(n2ρ)

)
, where ρ = ρ1ρ2ρ3. As

discussed in Appendix F.1, we have 0 ≤ ρ3 ≤
√
nρ1 ≤ n. When ρ1, ρ2, ρ3 achieve their upper bound

at the same time, we get the worst case bound β2 ≥ γ1(n) = 1−O
(
(1− βn1 )/n4.5

)
. However, ρ is

highly dependent on the problem instance f(x) and training process. Our experiments in Appendix B
shows that ρ is often much smaller than its worst case bound, making the threshold of β2 lower than
it appears to be. Note that for adaptive gradient methods, we are not the first to provide the threshold
on β2 for convergence guarantee: a similar threshold on β2 was firstly provided for RMSProp by (Shi
et al., 2020). We prove that the threshold also exists for Adam, but with extra dependence on β1.
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Remark G.8. We emphasize that the constant term O(
√
D0) will vanish to 0 as β2 goes to 1. This

can be seen in the proof in Appendix G.9 (the definition of F4) and Remark G.14.

Based on Lemma G.6, we can further rewrite (31) as follows.

E

[
d∑
l=1

n−1∑
i=0

∂lf(xk,0)
ml,k,i√
vl,k,i

]
(31)
≥ E

∑
l large

(a1) +
∑
l large

(b1)−
∑
l large

{(a2) + (b2)}

− dF1
1√
k
,

Lemma G.6
≥ 1

d
√

10D1d
Emin

{√
2D1d

D0
‖∇f(xk,0)‖22, ‖∇f(xk,0)‖1

}

−O(
1√
k

)−O(
√
D0)− d F1√

k
(35)

The proof of Theorem 3.1 is concluded by plugging (35) into Descent Lemma (25) and then taking
telescope some from k = t0 to k = T . These steps are quite standard in non-convex optimization.
We finish these calculation in Lemma G.9

Lemma G.9. When inequality (35) holds, we have the following results based on Descent Lemma
(25):

min
k∈[1,T ]

E

[
min

{√
2D1d

D0
‖∇f(xk,0)‖22, ‖∇f(xk,0)‖1

}]

= O
(

log T√
T

)
+O(

√
D0).

Proof of Lemma G.9 can be seen in Appendix G.10. Now, the whole proof of Theorem 3.1 is
completed.

G.2 Proof of Lemma G.1

To prove Lemma G.1, we only prove (28). The proof for (27) can be analogized from the proof of
(28). We discuss the following two cases:

Case 1: When ∂lf (xk,0) (ml,k,i − ∂lfi(xk,0)) ≤ 0, we have

∂lf (xk,0) (ml,k,i − ∂lfi(xk,0))
√
vl,k,i

(a)

≥ ∂lf(xk,0)(ml,k,i−∂lfi(xk,0))√
vl,k,0

1√
βi2
,

where (a) is because of√vl,k,i ≥
√
βi2
√
vl,k,0.

Case 2: When ∂lf (xk,0) (ml,k,i − ∂lfi(xk,0)) ≥ 0, we have

∂lf (xk,0) (ml,k,i − ∂lfi(xk,0))
√
vl,k,i

=
∂lf (xk,0) (ml,k,i − ∂lfi(xk,0))

√
vl,k,0

1√
(1 + (vl,k,i − vl,k,0)/vl,k,0)

(∗)
≥ ∂lf (xk,0) (ml,k,i − ∂lfi(xk,0))

√
vl,k,0

(
1− |vl,k,i − vl,k,0|

2vl,k,0

)
(36)

where (∗) is due to 1√
1+x
≥ 1− x

2 . We further have
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|vl,k,i − vl,k,0| = (1− β2)(∂lfτk,i(xτk,i)
2 + β2∂lfτk,i−1(xτk,i−1)2 + · · ·+ βi−1

2 ∂lfτk,1(xτk,1)2

+(βi2 − 1)∂lfτk,0(xτk,0)2 + (βi+1
2 − 1)∂lfτk−1,n−1(xτk−1,n−1)2 + · · ·)

since βi2−1<0

≤ (1− β2)

i−1∑
j=0

βj2∂lfτk,i−j (xτk,i−j )
2

≤ (1− β2)

i−1∑
j=0

βj2
(
∂lfτk,i−j (xτk,0)2 + 2(i− j)4nk|∂lfτk,i−j (xτk,0)|+ (i− j)242

nk

)
≤ (1− β2)

i−1∑
j=0

βj2

(
max
i
|∂lfi(xτk,0)|2 + 2(i− j)4nk max

i
|∂lfi(xτk,0)|+ (i− j)242

nk

)
(**)
≤ (1− β2)

i−1∑
j=0

βj2

(
max
i
|∂lfi(xτk,0)|2 + 2 max

i
|∂lfi(xτk,0)|2 + max

i
|∂lfi(xτk,0)|2

)
≤ (1− β2)4nmax

i
|∂lfi(xτk,0)|2

where (∗∗) is due to the condition in the Lemma maxi |∂lfi(xτk,0)| ≥ Qk ≥ n4nk. Plug the above
result into (36) we have

∂lf (xk,0) (ml,k,i − ∂lfi(xk,0))
√
vl,k,i

≥ ∂lf (xk,0) (ml,k,i − ∂lfi(xk,0))
√
vl,k,0

(
1−

(1− β2)4nmaxi |∂lfi(xτk,0)|2

2vl,k,0

)

≥ ∂lf (xk,0) (ml,k,i − ∂lfi(xk,0))
√
vl,k,0

(
1−

(1− β2)4nρ2

∑n−1
i=0 |∂lfi(xτk,0)|2/n

2vl,k,0

)
(∗∗∗)
≥ ∂lf (xk,0) (ml,k,i − ∂lfi(xk,0))

√
vl,k,0

(
1− (1− β2)4nρ2

βn2

)
(37)

In the last step (∗ ∗ ∗), we use the following Lemma G.10, which is based on (Shi et al., 2020).

Lemma G.10. Under Assumption 2.1, if the l-th component of ∇fi(xk,0) satisfies
maxi |∂lfi(xk,0)| ≥ Qk := 41

n
√
n√
k

32
√

2
(1−β2)nβn2

, we have

vl,k,0
1
n

∑
i ∂lfτk,i(xk,0)2

≥ βn2
2
,

vl,k,0

(∂lf (xk,0))
2 ≥

βn2
2ρ2

3

.

Proof. The proof idea of Lemma G.10 is similar as Lemma F.1 in (Shi et al., 2020), but with the
following differences:

1. The condition of Lemma F.1 in (Shi et al., 2020) both require the full batch gradient |∂lf(xk,0)| ≥
nQk, which is different from our condition. Here, we choose the condition of Lemma G.10
because it meets the need of our decomposition strategy in (31) .

2. The constant Qk is different. The difference is due to the different update formula of RMSProp
and general Adam.

Anyhow, Lemma G.10 can be easily proved following most of the steps in Lemma F.1 in (Shi et al.,
2020). We omit the proof for brevity.

Combining the above Case 1 and Case 2, we have

39



∑ ∂lf (xk,0) (ml,k,i − ∂lfi(xk,0))
√
vl,k,i

≥
∑
i−

∂lf (xk,0) (ml,k,i − ∂lfi(xk,0))
√
vl,k,0

1√
βi2

+
∑
i+

∂lf (xk,0) (ml,k,i − ∂lfi(xk,0))
√
vl,k,0

(
1− (1− β2)4nρ2

βn2

)

=

n−1∑
i=0

∂lf (xk,0) (ml,k,i − ∂lfi(xk,0))
√
vl,k,0

+
∑
i−

∂lf (xk,0) (ml,k,i − ∂lfi(xk,0))
√
vl,k,0

(
1√
βi2
− 1

)

+
∑
i+

∂lf (xk,0) (ml,k,i − ∂lfi(xk,0))
√
vl,k,0

(
− (1− β2)4nρ2

βn2

)

≥
n−1∑
i=0

∂lf (xk,0) (ml,k,i − ∂lfi(xk,0))
√
vl,k,0

−δ1
∣∣∣∣∂lf (xk,0)
√
vl,k,0

∣∣∣∣ n−1∑
i=0

|ml,k,i − ∂lfi (xk,0)| ,

where δ1 = (1−β2)4nρ2

βn2
+

(
1√
βn2
− 1

)
. Proof is completed.

G.3 Proof of Lemma G.2

We first prove the result for j = 1. We discuss the following two cases.

Case 1: when ∂lf(xk,0)√
vl,k,0

≥ ∂lf(xk−1,0)√
vl,k−1,0

: when ∂lf(xk,0) ≤ 0, we have

∂lf(xk,0)
√
vl,k,0

(37)
≤ ∂lf(xk,0)
√
vl,k−1,0

(
1− (1− β2)4nρ2

βn2

)
.

When ∂lf(xk,0) > 0, we have

∂lf(xk,0)
√
vl,k,0

≤ ∂lf(xk,0)
√
vl,k−1,0

1√
βn2

.

In conclusion, we have:

∂lf(xk,0)
√
vl,k,0

≤ max

{
∂lf(xk,0)
√
vl,k−1,0

(
1− (1− β2)4nρ2

βn2

)
,
∂lf(xk,0)
√
vl,k−1,0

1√
βn2

}

≤ ∂lf(xk,0)
√
vl,k−1,0

+ max

{
∂lf(xk,0)
√
vl,k−1,0

(
− (1− β2)4nρ2

βn2

)
,
∂lf(xk,0)
√
vl,k−1,0

(
1√
βn2
− 1

)}

≤ ∂lf(xk,0)
√
vl,k−1,0

+
|∂lf(xk,0)|
√
vl,k−1,0

(
1√
βn2
− 1 +

(1− β2)4nρ2

βn2

)
(37)
≤ ∂lf(xk,0)

√
vl,k−1,0

+
|∂lf(xk,0)|
√
vl,k,0

(
1√
βn2
− 1 +

(1− β2)4nρ2

βn2

)
1(

1− (1−β2)4nρ2
βn2

)
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Lemma G.10
≤ ∂lf(xk,0)

√
vl,k−1,0

+

√
2ρ2

3

βn2

(
1√
βn2
− 1 +

(1− β2)4nρ2

βn2

)
1(

1− (1−β2)4nρ2
βn2

)
=

∂lf(xk,0)
√
vl,k−1,0

+

√
2ρ2

3

βn2

δ1(
1− (1−β2)4nρ2

βn2

) ,
where δ1 =

(
1√
βn2
− 1 + (1−β2)4nρ2

βn2

)
is a constant that goes to 0 when β2 goes to 1. Therefore, we

have

∂lf(xk,0)
√
vl,k,0

− ∂lf(xk−1,0)
√
vl,k−1,0

≤ ∂lf(xk,0)− ∂lf(xk−1,0)
√
vl,k−1,0

+

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1
Lemma F.2
≤

n24n(k−1)√
vl,k−1,0

+

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1.
Note that

Case 2: when ∂lf(xk,0)√
vl,k,0

≤ ∂lf(xk−1,0)√
vl,k−1,0

: when ∂lf(xk,0) ≥ 0, we have

∂lf(xk,0)
√
vl,k,0

(37)
≥ ∂lf(xk,0)
√
vl,k−1,0

(
1− (1− β2)4nρ2

βn2

)
.

When ∂lf(xk,0) < 0, we have

∂lf(xk,0)
√
vl,k,0

≥ ∂lf(xk,0)
√
vl,k−1,0

1√
βn2

.

Following the same strategy as in Case 1, we can show that

∂lf(xk,0)
√
vl,k,0

≥ ∂lf(xk,0)
√
vl,k−1,0

−

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1,
which further implies

∂lf(xk,0)
√
vl,k,0

− ∂lf(xk−1,0)
√
vl,k−1,0

≥ ∂lf(xk,0)− ∂lf(xk−1,0)
√
vl,k−1,0

−

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1
Lemma F.2
≥ −

n24n(k−1)√
vl,k−1,0

−

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1.
Case 1 and Case 2 together, we have

∣∣∣∣∂lf(xk,0)
√
vl,k,0

− ∂lf(xk−1,0)
√
vl,k−1,0

∣∣∣∣ ≤ n24n(k−1)√
vl,k−1,0

+

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1.
Now we consider the case when j > 1. Based on the above inequality, we have
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∣∣∣∣∂lf(xk,0)
√
vl,k,0

− ∂lf(xk−j,0)
√
vl,k−j,0

∣∣∣∣ ≤ (
n24n(k−1)√
vl,k−1,0

+
n24n(k−2)√
vl,k−2,0

+ · · ·+
n24n(k−j)√
vl,k−j,0

)
+ j

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1
≤

 1√
βjn2

+
1√

β
(j−1)n
2

+ · · ·+ 1

 n24n(k−j)√
vk−j,0

+ j

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1
≤ 1

1− 1√
βn2

n24n(k−j)√
vl,k−j,0

+ j

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1.
The proof is completed.

G.4 Proof of Lemma G.4

To prove Lemma G.4, we need to further decompose E[
∑
l large(b1)]. First and foremost, we write∑n−1

i=0 ml,k,i in an explicit form.

ml,k,i = (1− β1){∂lfτk,i(xk,i) + · · ·+ βi1∂lfτk,0(xk,0)

+βi+1
1 fτk−1,n−1(xk−1,n−1) + · · ·+ βi+n1 fτk−1,0(xk−1,0)

+

...
+

+β
(k−2)n+i+1
1 ∂lfτ1,n−1(x1,n−1) + · · ·+ β

(k−1)n+i
1 ∂lfτ1,0(x1,0)}

+β
(k−1)n+i+1
1 ∂lf(x1,0) (38)

Since ∂lf(x1,0) = ∂lf(x1,0)(1 − β1)(1 + β1 + · · · + β∞1 ) and ∂lf(x1,0) =
∑n−1
i=0 ∂lfi(x1,0), we

have

β
(k−1)n+i+1
1 ∂lf(x1,0) = (1− β1){β(k−1)n+i+1

1 ∂lf0(x1,0) + · · ·+ β
(k−1)n+i+1
1 ∂lfn−1(x1,0)

+β
(k−1)n+i+2
1 ∂lf0(x1,0) + · · ·+ β

(k−1)n+i+2
1 ∂lfn−1(x1,0)

+

...
+

+β∞1 ∂lf0(x1,0) + · · ·+ β∞1 ∂lfn−1(x1,0)} (39)

Plugging (39) into (38), we have

ml,k,i = (1− β1){∂lfτk,i(xk,i) + · · ·+ βi1∂lfτk,0(xk,0)

+βi+1
1 fτk−1,n−1(xk−1,n−1) + · · ·+ βi+n1 fτk−1,0(xk−1,0)

+ · · ·
+β

(k−2)n+i+1
1 ∂lfτ1,n−1(x1,n−1) + · · ·+ β

(k−1)n+i
1 ∂lfτ1,0(x1,0)

+β
(k−1)n+i+1
1 ∂lf0(x1,0) + · · ·+ β

(k−1)n+i+1
1 ∂lfn−1(x1,0)

+β
(k−1)n+i+2
1 ∂lf0(x1,0) + · · ·+ β

(k−1)n+i+2
1 ∂lfn−1(x1,0)

+ · · ·
+β∞1 ∂lf0(x1,0) + · · ·+ β∞1 ∂lfn−1(x1,0)} (40)
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Using (40), we have (For each ‘epoch’, we suggest readers to read from bottom to the top.)

Ml,k :=

n−1∑
i=0

ml,k,i = ml,k,n−1 + · · ·+ml,k,0

= (1− β1){
∂lfτk,n−1(xk,n−1) + · · ·+ βn−1

1 ∂lfτk,0(xk,0)

+∂lfτk,n−2(xk,n−2) + · · ·+ βn−2
1 ∂lfτk,0(xk,0)

+ · · ·
+∂lfτk,0(xk,0)︸ ︷︷ ︸

k-th epoch

+βn1 ∂lfτk−1,n−1(xk−1,n−1) + · · ·+ βn+n−1
1 ∂lfτk−1,0(xk−1,0)

+βn−1
1 ∂lfτk−1,n−1(xk−1,n−1) + · · ·+ βn+n−2

1 ∂lfτk−1,0(xk−1,0)

+ · · ·
+β1∂lfτk−1,n−1(xk−1,n−1) + · · ·+ βn1 ∂lfτk−1,0(xk−1,0)︸ ︷︷ ︸

k−1-th epoch

+

...
+

+β
(k−1)n
1 ∂lfτ1,n−1(x1,n−1) + · · ·+ β

(k−1)n+n−1
1 ∂lfτ1,0(x1,0)

+β
(k−2)n+n−1
1 ∂lfτ1,n−1(x1,n−1) + · · ·+ β

(k−1)n+n−2
1 ∂lfτ1,0(x1,0)

+ · · ·
+β

(k−2)n+1
1 ∂lfτ1,n−1(x1,n−1) + · · ·+ β

(k−1)n
1 ∂lfτ1,0(x1,0)︸ ︷︷ ︸

1-th epoch

+β
(k−1)n+n
1 ∂lf0(x1,0) + · · ·+ β

(k−1)n+n
1 ∂lfn−1(x1,0)

+β
(k−1)n+n−1
1 ∂lf0(x1,0) + · · ·+ β

(k−1)n+n−1
1 ∂lfn−1(x1,0)

+ · · ·
+β

(k−1)n+1
1 ∂lf0(x1,0) + · · ·+ β

(k−1)n+1
1 ∂lfn−1(x1,0)+︸ ︷︷ ︸

0-th epoch

...} (41)

Note that in (41), the power of β1 grows slower in the blue part (when k = 0), such a transition will
cause trouble in bounding the

∑n−1
i=0 (ml,k,i − ∂lfi(xk,0)). Therefore, we need to define an auxillary

sequence M ′l,k which does not involve such a phase transition. We define M ′l,k as follows. (For each
‘epoch’, we suggest readers to read from bottom to the top.)

M ′l,k := (1− β1){
∂lfτk,n−1(xk,n−1) + · · ·+ βn−1

1 ∂lfτk,0(xk,0)

+∂lfτk,n−2(xk,n−2) + · · ·+ βn−2
1 ∂lfτk,0(xk,0)

+ · · ·
+∂lfτk,0(xk,0)︸ ︷︷ ︸

k-th epoch
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+βn1 ∂lfτk−1,n−1(xk−1,n−1) + · · ·+ βn+n−1
1 ∂lfτk−1,0(xk−1,0)

+βn−1
1 ∂lfτk−1,n−1(xk−1,n−1) + · · ·+ βn+n−2

1 ∂lfτk−1,0(xk−1,0)

+ · · ·
+β1∂lfτk−1,n−1(xk−1,n−1) + · · ·+ βn1 ∂lfτk−1,0(xk−1,0)︸ ︷︷ ︸

k−1-th epoch

+

...
+

+β
(k−1)n
1 ∂lfτ1,n−1(x1,n−1) + · · ·+ β

(k−1)n+n−1
1 ∂lfτ1,0(x1,0)

+β
(k−2)n+n−1
1 ∂lfτ1,n−1(x1,n−1) + · · ·+ β

(k−1)n+n−2
1 ∂lfτ1,0(x1,0)

+ · · ·
+β

(k−2)n+1
1 ∂lfτ1,n−1(x1,n−1) + · · ·+ β

(k−1)n
1 ∂lfτ1,0(x1,0)︸ ︷︷ ︸

1-th epoch

+β
(k−1)n+n
1 ∂lf0(x1,0) + · · ·+ β

(k−1)n+n+n−1
1 ∂lfn−1(x1,0)

+β
(k−1)n+n−1
1 ∂lf0(x1,0) + · · ·+ β

(k−1)n+2(n−1)
1 ∂lfn−1(x1,0)

+ · · ·
+β

(k−1)n+1
1 ∂lf0(x1,0) + · · ·+ β

(k−1)n+n
1 ∂lfn−1(x1,0)+︸ ︷︷ ︸

0-th epoch

...} (42)

Now we bound
∑n−1
i=0 (ml,k,i − ∂lfi(xk,0)) with the help of M ′l,k. Denoting Fl,k :=∑n−1

i=0 ∂lfi(xk,0), we have:

n−1∑
i=0

(ml,k,i − ∂lfi(xk,0)) =

n−1∑
i=0

ml,k,i −
n−1∑
i=0

∂lfi(xk,0)

:= Ml,k − Fl,k
≥ −|Ml,k −M ′l,k|+M ′l,k − Fl,k (43)

To proceed, we use the relation 1 = (1− β1)(1 + β1 + β2
1 + · · · ) to rewrite Fl,k.

Fl,k :=

n−1∑
i=0

∂lfi(xk,0) = (1− β1){

∂lfn−1(xk,0) + · · ·+ βn−1
1 ∂lfn−1(xk,0)

+∂lfn−2(xk,0) + · · ·+ βn−1
1 ∂lfn−2(xk,0)

+ · · ·
+∂lf0(xk,0) + · · ·+ βn−1

1 ∂lf0(xk,0)︸ ︷︷ ︸
k-th epoch

+
...
+
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+β
(k−1)n
1 ∂lfn−1(xk,0) + · · ·+ β

(k−1)n+n−1
1 ∂lfn−1(xk,0)

+β
(k−1)n
1 ∂lfn−2(xk,0) + · · ·+ β

(k−1)n+n−1
1 ∂lfn−2(xk,0)

+ · · ·
+β

(k−1)n
1 ∂lf0(xk,0) + · · ·+ β

(k−1)n+n−1
1 ∂lf0(xk,0)︸ ︷︷ ︸

1-th epoch

+βkn1 ∂lfn−1(xk,0) + · · ·+ βkn+n−1
1 ∂lfn−1(xk,0)

+βkn1 ∂lfn−2(xk,0) + · · ·+ βkn+n−1
1 ∂lfn−2(xk,0)

+ · · ·
+βkn1 ∂lf0(xk,0) + · · ·+ βkn+n−1

1 ∂lf0(xk,0)︸ ︷︷ ︸
0-th epoch

...} (44)

For the sake of better presentation, we rewrite Fl,k and M ′l,k as follows:

Fl,k := (Fl,k)k + · · ·+ (Fl,k)1 + (Fl,k)0 + (Fl,k)−1 + · · · ,

M ′l,k :=
(
M ′l,k

)
k

+ · · ·+
(
M ′l,k

)
1

+
(
M ′l,k

)
0

+
(
M ′l,k

)
−1

+ · · · ,

where (Fl,k)j contains the summand of Fl,k in the j-th epoch, j = k, k − 1, · · · −∞. Similarly for
M ′l,k. Now, we separate M ′l,k − Fl,k into two parts.

M ′l,k − Fl,k =
[(
M ′l,k

)
k
− (Fl,k)k + · · ·

(
M ′l,k

)
1
− (Fl,k)1

]
+
[(
M ′l,k

)
0
− (Fl,k)0 + · · ·

(
M ′l,k

)
−∞ − (Fl,k)−∞

]
Now, we rewrite E[

∑
l large(b1)]:

E

∑
l large

∂lf(xk,0)
√
vk,0

n−1∑
i=0

(ml,k,i − ∂lfi(xk,0))


= E

∑
l large

∂lf(xk,0)
√
vk,0

(Ml,k − Fl,k)



≥ −E

∑
l large

|∂lf(xk,0)|
√
vk,0

|Ml,k −M ′l,k|

+ E

∑
l large

∂lf(xk,0)
√
vk,0

(M ′l,k − Fl,k)


≥ −E

∑
l large

|∂lf(xk,0)|
√
vk,0

|Ml,k −M ′l,k|


︸ ︷︷ ︸

(1)
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+E

∑
l large

∂lf(xk,0)
√
vk,0

((
M ′l,k

)
k
− (Fl,k)k + · · ·+

(
M ′l,k

)
1
− (Fl,k)1

)
︸ ︷︷ ︸

(2)

−E

∑
l large

|∂lf(xk,0)|
√
vk,0

∣∣∣(M ′l,k)0 − (Fl,k)0 + · · ·
(
M ′l,k

)
−∞ − (Fl,k)−∞

∣∣∣


︸ ︷︷ ︸
(3)

(45)

We bound (1), (2) and (3) respectively. We bound (1) and (3) in the following Lemma G.11 and
Lemma G.12. Since the difference of Ml,k −M ′l,k only occurs in the high order terms of the infinite
sum sequence, (1) is expected to vanish as k grows. Similarly for (3).

Lemma G.11. When k is large enough such that: β(k−1)n
1 ≤ βn1√

k−1
and k ≥ 4, then we have

E

∑
l large

|∂lf(xk,0)|
√
vk,0

∣∣Ml,k −M ′l,k
∣∣ ≤ G4

1√
k
, (46)

where G4 = d
√

2ρ2
3

βn2
βn1
√

2n(n− 1)
∑n−1
i=0 E (|∂αfi(x1,0)|) .

Lemma G.12. When k is large enough such that: β(k−1)n
1 ≤ βn1√

k−1
and k ≥ 4, then we have

E

∑
l large

|∂lf(xk,0)|
√
vk,0

∣∣∣(M ′l,k)0 − (Fl,k)0 + · · ·
(
M ′l,k

)
−∞ − (Fl,k)−∞

∣∣∣
 ≤ G5

1√
k
, (47)

where G5 = d
√

2ρ2
3

βn2

(
β2n

1 2n341

√
2√

n
1−β1

(1−βn1 )2 + n
(
1− βn−1

1

)∑n−1
i=0 E|∂αfi(x1,0)| (1−β1)βn1

√
2

1−βn1

)
.

We relegate the proof of Lemma G.11 and G.12 to Appendix G.5 and G.6.

Now we bound (2). This part involves the difficulties (i), (ii) and (iii) mentioned in Appendix G.1.
We bound (2) in Lemma G.13.

Lemma G.13. When k is large enough such that: β(k−1)n
1 ≤ βn1√

k−1
and k ≥ 2, then we have

E

∑
l large

∂lf(xk,0)
√
vk,0

((
M ′l,k

)
k
− (Fl,k)k + · · ·+

(
M ′l,k

)
1
− (Fl,k)1

)
≥ −G6√

k
−G7δ1E

(
d∑
l=1

n−1∑
i=0

|∂lfi(xk,0)|

)
.

The constant terms G6 and G7 are specified in Appendix G.7.

Proof is shown in Appendix G.7.

Combining Lemma G.11, G.12 and G.13 together, we conclude the proof.

E[
∑
l large

(b1)] ≥ − 1√
k

(G4 +G5 +G6)−G7δ1E

(
d∑
l=1

n−1∑
i=0

|∂lfi(xk,0)|

)
.
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G.5 Proof of Lemma G.11

By definition of Ml,k and M ′l,k (see (41) and (42)), they only differ when k ≤ 0. More specifically,
We have (For each ‘epoch’, we suggest readers to read from bottom to the top.)

Ml,k −M ′l,k
1− β1

=
(
β

(k−1)n+n
1 − β(k−1)n+n+1

1

)
∂lf1(x1,0) + · · ·+

(
β

(k−1)n+n
1 − β(k−1)n+n+n−1

1

)
∂lfn−1(x1,0)

+ · · ·
+
(
β

(k−1)n+2
1 − β(k−1)n+3

1

)
∂lf1(x1,0) + · · ·+

(
β

(k−1)n+2
1 − β(k−1)n+n+1

1

)
∂lfn−1(x1,0)

+
(
β

(k−1)n+1
1 − β(k−1)n+2

1

)
∂lf1(x1,0) + · · ·+

(
β

(k−1)n+1
1 − β(k−1)n+n

1

)
∂lfn−1(x1,0)︸ ︷︷ ︸

0-th epoch

+
(
β

(k−1)n+n+1
1 − βkn+n

1

)
∂lf0(x1,0) + · · ·+

(
β

(k−1)n+n+1
1 − βkn+n+n−1

1

)
∂lfn−1(x1,0)

+ · · ·
+
(
β

(k−1)n+3
1 − βkn+2

1

)
∂lf0(x1,0) + · · ·+

(
β

(k−1)n+3
1 − βkn+n+1

1

)
∂lfn−1(x1,0)

+
(
β

(k−1)n+2
1 − βkn+1

1

)
∂lf0(x1,0) + · · ·+

(
β

(k−1)n+2
1 − βkn+n

1

)
∂lfn−1(x1,0)︸ ︷︷ ︸

-1-th epoch

+
(
β

(k−1)n+n+2
1 − β(k+1)n+n

1

)
∂lf0(x1,0) + · · ·+

(
β

(k−1)n+n+2
1 − β(k+1)n+n+n−1

1

)
∂lfn−1(x1,0)

+ · · ·
+
(
β

(k−1)n+4
1 − β(k+1)n+2

1

)
∂lf0(x1,0) + · · ·+

(
β

(k−1)n+4
1 − β(k+1)n+n+1

1

)
∂lfn−1(x1,0)

+
(
β

(k−1)n+3
1 − β(k+1)n+1

1

)
∂lf0(x1,0) + · · ·+

(
β

(k−1)n+3
1 − β(k+1)n+n

1

)
∂lfn−1(x1,0)︸ ︷︷ ︸

-2-th epoch

+ · · · (48)

We start with the 1st column in the ‘0-th epoch’ (from the bottom to the top).

The 1st column in the ‘0-th epoch’ = β
(k−1)n+1
1 (1− β1)|∂lf1(x1,0)|

+β
(k−1)n+2
1 (1− β1)|∂lf1(x1,0)|

+ · · ·
+β

(k−1)n+n
1 (1− β1)|∂lf1(x1,0)|

≤ β
(k−1)n+1
1 n(1− β1)|∂lf1(x1,0)| (49)

Similarly, we can bound every column in the in the ‘0-th epoch’, e.g. last (n− 1-th) column can be
bounded as follows.

The last column in the ‘0-th epoch’ = β
(k−1)n+1
1 (1− βn−1

1 )|∂lfn−1(x1,0)|

+β
(k−1)n+2
1 (1− βn−1

1 )|∂lfn−1(x1,0)|
+ · · ·
+β

(k−1)n+n
1 (1− βn−1

1 )|∂lfn−1(x1,0)|

≤ β
(k−1)n+1
1 n(n− 1)(1− β1)|∂lfn−1(x1,0)| (50)

Summing up all the columns, we have
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The ‘0-th epoch’ ≤ β
(k−1)n+1
1 n(n− 1)(1− β1)

n−1∑
i=1

|∂lfi(x1,0)|

≤ β
(k−1)n+1
1 n(n− 1)(1− β1)

n−1∑
i=0

|∂lfi(x1,0)| (51)

Using the same technique, it can be shown that

The ‘-1-th epoch’ ≤ β
(k−1)n+2
1 2n(n− 1)(1− β1)

n−1∑
i=0

|∂lfi(x1,0)|, (52)

The ‘-2-th epoch’ ≤ β
(k−1)n+3
1 3n(n− 1)(1− β1)

n−1∑
i=0

|∂lfi(x1,0)| (53)

· · ·

Plugging all these results in (48), we have

∣∣Ml,k −M ′l,k
∣∣

1− β1
≤ β

(k−1)n+1
1 n(n− 1)(1− β1)

n−1∑
i=0

|∂lfi(x1,0)|
(
1 + 2β1 + 3β2

1 + · · ·
)

= β
(k−1)n+1
1 n(n− 1)

n−1∑
i=0

|∂lfi(x1,0)| 1

1− β1
.

≤ β
(k−1)n
1 n(n− 1)

n−1∑
i=0

|∂lfi(x1,0)| 1

1− β1
.

That is to say, when k is large enough such that β(k−1)n
1 ≤ βn1√

k−1
we have

∣∣Ml,k −M ′l,k
∣∣ ≤ βn1√

k − 1
n(n− 1)

n−1∑
i=0

|∂lfi(x1,0)| (54)

When k ≥ 2

≤ βn1
√

2√
k
n(n− 1)

n−1∑
i=0

|∂lfi(x1,0)|. (55)

Combining with Lemma G.10, the proof is completed.

G.6 Proof of Lemma G.12

We start with
(
M ′l,k

)
0
− (Fl,k)0.

(
M ′l,k

)
0
− (Fl,k)0

1− β1
= β

(k−1)n+n
1 ∂lf0(x1,0) + · · ·+ β

(k−1)n+n+n−1
1 ∂lfn−1(x1,0)

+β
(k−1)n+n−1
1 ∂lf0(x1,0) + · · ·+ β

(k−1)n+2(n−1)
1 ∂lfn−1(x1,0)

+ · · ·
+β

(k−1)n+1
1 ∂lf0(x1,0) + · · ·+ β

(k−1)n+n
1 ∂lfn−1(x1,0)︸ ︷︷ ︸(

M′
l,k

)
0
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−
{
βkn1 ∂lfn−1(xk,0) + · · ·+ βkn+n−1

1 ∂lfn−1(xk,0)

+βkn1 ∂lfn−2(xk,0) + · · ·+ βkn+n−1
1 ∂lfn−2(xk,0)

+ · · ·
+βkn1 ∂lf0(xk,0) + · · ·+ βkn+n−1

1 ∂lf0(xk,0)︸ ︷︷ ︸
(Fl,k)0

}

:=

n−1∑
i=0

δi,

where

δi =

n∑
j=1

(
β

(k−1)n+j
1 ∂lfi(x1,0)− βkn+j−1

1 ∂lfi(xk,0)
)

=

n∑
j=1

(
β

(k−1)n+j
1 − βkn+j−1

1

)
∂lfi(x1,0)︸ ︷︷ ︸

δai

+

n∑
j=1

βkn+j−1
1 (∂lfi(x1,0)− ∂lfi(xk,0))︸ ︷︷ ︸

δbi

.

We further have

δai =

n∑
j=1

β
(k−1)n+j
1

(
1− βn−1

1

)
∂lfi(x1,0)

≤ nβ
(k−1)n+1
1

(
1− βn−1

1

)
|∂lfi(x1,0)|

(56)

δbi ≤
n∑
j=1

βkn+j−1
1

41(k − 1)2n√
n(k − 1)− 1

≤ βkn1
41(k − 1)2n2√
n(k − 1)− 1

. (57)

Therefore,

∣∣(M ′l,k)0 − (Fl,k)0

∣∣
1− β1

=

∣∣∣∣∣
n−1∑
i=0

δi

∣∣∣∣∣
≤

n−1∑
i=0

(
nβ

(k−1)n+1
1

(
1− βn−1

1

)
|∂lfi(x1,0)|+ βkn1

41(k − 1)2n2√
n(k − 1)− 1

)

= βkn1
41(k − 1)2n3√
n(k − 1)− 1

+ nβ
(k−1)n+1
1

(
1− βn−1

1

) n−1∑
i=0

|∂lfi(x1,0)| (58)

Using the same calculation, we can get the following result:

∣∣∣(M ′l,k)−1
− (Fl,k)−1

∣∣∣
1− β1

≤ β
(k+1)n
1

41k2n3√
n(k − 1)− 1

+ nβkn+1
1

(
1− βn−1

1

) n−1∑
i=0

|∂lfi(x1,0)|.

Repeat this calculation, we have
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1

1− β1

[(
M ′l,k

)
0
− (Fl,k)0 + · · ·

(
M ′l,k

)
−∞ − (Fl,k)−∞

]
≤ β2n

1 2n341√
n(k − 1)− 1

(
β

(k−2)n
1 (k − 1) + β

(k−1)n
1 k + · · ·

)
+n
(
1− βn−1

1

) n−1∑
i=0

|∂lfi(x1,0)|
(
β

(k−1)n+1
1 + βkn+1

1 + · · ·
)

≤ β2n
1 2n341√
n(k − 1)− 1

(1 + βn1 2 + · · · )

+n
(
1− βn−1

1

) n−1∑
i=0

|∂lfi(x1,0)|
(
β

(k−1)n+1
1 + βkn+1

1 + · · ·
)

Lemma F.1
≤ β2n

1 2n341√
n(k − 1)− 1

1

(1− βn1 )2

+n
(
1− βn−1

1

) n−1∑
i=0

|∂lfi(x1,0)|β
(k−1)n
1

1− βn1

When β(k−1)n
1 ≤ βn1√

k−1
, we further have:

1

1− β1

[(
M ′l,k

)
0
− (Fl,k)0 + · · ·

(
M ′l,k

)
−∞ − (Fl,k)−∞

]
≤ β2n

1 2n341√
n(k − 1)− 1

1

(1− βn1 )2

+n
(
1− βn−1

1

) n−1∑
i=0

|∂lfi(x1,0)| βn1
1− βn1

1√
k − 1

1√
k−1
≤
√

2
k

≤ β2n
1 2n341√
n(k − 1)− 1

1

(1− βn1 )2

+n
(
1− βn−1

1

) n−1∑
i=0

|∂lfi(x1,0)| βn1
1− βn1

√
2

k

(∗)
≤ β2n

1 2n341

√
2√

nk

1

(1− βn1 )2

+n
(
1− βn−1

1

) n−1∑
i=0

|∂lfi(x1,0)| βn1
1− βn1

√
2

k
,

where (∗) : 1√
n(k−1)−1

≤
√

2
nk when k ≥ 4. Therefore, we have

∣∣∣(M ′l,k)0 − (Fl,k)0 + · · ·
(
M ′l,k

)
−∞ − (Fl,k)−∞

∣∣∣ ≤ 1√
k
G̃5

,

G̃5 =
β2n

1 2n341

√
2√

n
1−β1

(1−βn1 )2 + n
(
1− βn−1

1

)∑n−1
i=0 |∂lfi(x1,0)| (1−β1)βn1

√
2

1−βn1
.

Combining with Lemma G.10, the proof is completed with constant G5 defined in Lemma G.12.

G.7 Proof of Lemma G.13

In this section, we derive a lower bound for E
[∑

l large
∂lf(xk,0)√

vk,0

((
M ′l,k

)
k
− (Fl,k)k + · · ·+

(
M ′l,k

)
1
− (Fl,k)1

)]
.

We will use the ideas mentioned in Appendix G.1 (i.e., Step 1,2 and 3). We first rewrite “l large" into
indicator function as follows:
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E

∑
l large

∂lf(xk,0)
√
vk,0

((
M
′
l,k

)
k
−
(
Fl,k

)
k

+ · · · +
(
M
′
l,k

)
1
−
(
Fl,k

)
1

) = E

 d∑
l=1

Ik
∂lf(xk,0)
√
vk,0

((
M
′
l,k

)
k
−
(
Fl,k

)
k

+ · · · +
(
M
′
l,k

)
1
−
(
Fl,k

)
1

) ,

where Ik := I
(

maxi |∂lfi (xk,0)| ≥ Qk := 41
n
√
n√
k

32
√

2
(1−β2)nβn2

)
. We also define Ik−j :=

I
(

maxi |∂lfi (xk−j,0)| ≥
∑k
p=k−j Qp

)
, it will be used later.

We take the conditional expectation over the history before xk,0. We first focus on

Ek
[∑d

l=1 Ik
∂lf(xk,0)√

vk,0

((
M ′l,k

)
k
− (Fl,k)k

)]
and we delegate the history part for later analysis.

For each possible
(
M ′l,k

)
k
− (Fl,k)k, we first convert all xk,i into xk,0 using Lemma F.2. Since(

M ′l,k

)
k

contains (n− 1) + · · ·+ 1 = n(n−1)
2 terms of xk,i (with i 6= 0), we have

(
M ′l,k

)
k

Lemma F.2
≥ − (1− β1)n2(n− 1)4nk

2
+ (1− β1){

∂lfτk,n−1
(xk,0) + · · ·+ βn−1

1 ∂lfτk,0(xk,0)

+∂lfτk,n−2
(xk,0) + · · ·+ βn−2

1 ∂lfτk,0(xk,0)

+ · · ·
+∂lfτk,0(xk,0)︸ ︷︷ ︸

k-th epoch

}

:= − (1− β1)n2(n− 1)4nk
2

+ Ml,k.

Using the same strategy for analyzing the color-ball toy example, we have

Ek
[
Ml,k − (Fl,k)k

]
1− β1

=
1

n!

(
−(n− 1)!β1 − 2(n− 1)!β2

1 − · · · − (n− 1)(n− 1)!βn−1
1

) n−1∑
i=0

∂lfi(xk,0)

=

(
− 1

n
β1 −

2

n
β2

1 − · · · −
n− 1

n
βn−1

1

) n−1∑
i=0

∂lfi(xk,0)

Ek

 d∑
l=1

Ik
∂lf(xk,0)
√
vk,0

((
M
′
l,k

)
k
−
(
Fl,k

)
k

) ≥ −d

√√√√ 2ρ2
3

βn2

(1− β1)n2(n− 1)4nk
2

+ Ek

 d∑
l=1

Ik
∂lf(xk,0)
√
vk,0

(
Ml,k −

(
Fl,k

)
k

)
= −d

√√√√ 2ρ2
3

βn2

(1− β1)n2(n− 1)4nk
2

+
d∑
l=1

Ik(1− β1)

(
−

1

n
β1 −

2

n
β

2
1 − · · · −

n− 1

n
β
n−1
1

)n−1∑
i=0

∂lfi(xk,0)

:= −d

√√√√ 2ρ2
3

βn2

(1− β1)n2(n− 1)4nk
2

+
d∑
l=1

Ik
∂lf(xk,0)
√
vk,0

(1− β1)J1

n−1∑
i=0

∂lfi(xk,0)

We denote J1 :=
(
− 1
nβ1 − 2

nβ
2
1 − · · · − n−1

n βn−1
1

)
, it will be used repeatedly in the following

derivation.

51



Now we move one step further exert Ek−1(·). In particular, we need to calculate

Ek−1

{
Ek

[
d∑
l=1

Ik
∂lf(xk,0)
√
vk,0

((
M ′l,k

)
k
− (Fl,k)k

)
+

d∑
l=1

Ik
∂lf(xk,0)
√
vk,0

((
M ′l,k

)
k−1
− (Fl,k)k−1

)]}

≥ Ek−1


d∑
l=1

Ik
∂lf(xk,0)
√
vk,0

(1− β1)J1

n−1∑
i=0

∂lfi(xk,0)︸ ︷︷ ︸
(a)

+

d∑
l=1

Ik
∂lf(xk,0)
√
vk,0

((
M ′l,k

)
k−1
− (Fl,k)k−1

)
︸ ︷︷ ︸

(b)


−d

√
2ρ2

3

βn2

(1− β1)n2(n− 1)4nk
2

. (59)

The blue term is the residue from the k-th epoch. The red term is the main component in the (k−1)-th
epoch. Before calculating Ek−1(·), we need to convert all the variable x into xk−1,0 using Lipschitz
property. First of all, we work on (a).

(a) =

d∑
l=1

Ik
∂lf(xk,0)
√
vk,0

(1− β1)J1

n−1∑
i=0

∂lfi(xk,0)

Lemma G.3
=

d∑
l=1

Ik,k−1
∂lf(xk,0)
√
vk,0

(1− β1)J1

n−1∑
i=0

∂lfi(xk,0)

+

d∑
l=1

Ĩk,k−1
∂lf(xk,0)
√
vk,0

(1− β1)J1

n−1∑
i=0

∂lfi(xk,0)

Lemma G.10
≥

d∑
l=1

Ik,k−1
∂lf(xk,0)
√
vk,0

(1− β1)J1

n−1∑
i=0

∂lfi(xk,0)−
d∑
l=1

Ĩk,k−1

√
2ρ2

3

βn2
(1− β1)|J1||

n−1∑
i=0

∂lfi(xk,0)|

≥
d∑
l=1

Ik,k−1
∂lf(xk,0)
√
vk,0

(1− β1)J1

n−1∑
i=0

∂lfi(xk,0)−
d∑
l=1

Ĩk,k−1

√
2ρ2

3

βn2
(1− β1)|J1|

(
n−1∑
i=0

|∂lfi(xk−1,0)|+ n24n(k−1)

)

≥
d∑
l=1

Ik,k−1
∂lf(xk,0)
√
vk,0

(1− β1)J1

n−1∑
i=0

∂lfi(xk,0)

−
d∑
l=1

Ĩk,k−1

√
2ρ2

3

βn2
(1− β1)|J1|

n−1∑
i=0

|∂lfi(xk−1,0)| − d

√
2ρ2

3

βn2
(1− β1)|J1|n24n(k−1)

Lemma G.10 and F.2
≥

d∑
l=1

Ik,k−1
∂lf(xk,0)
√
vk,0

(1− β1)J1

n−1∑
i=0

∂lfi(xk−1,0)

−(1− β1)d

√
2ρ2

3

βn2
|J1|n24n(k−1) − (1− β1)d

√
2ρ2

3

βn2
|J1|n(Qk +Qk−1)− (1− β1)d

√
2ρ2

3

βn2
|J1|n24n(k−1)

≥
d∑
l=1

Ik,k−1
∂lf(xk−1,0)
√
vk−1,0

(1− β1)J1

n−1∑
i=0

∂lfi(xk−1,0)

−
d∑
l=1

Ik,k−1

∣∣∣∣∂lf(xk−1,0)
√
vk−1,0

− ∂lf(xk,0)
√
vk,0

∣∣∣∣ (1− β1)|J1|

∣∣∣∣∣
n−1∑
i=0

∂lfi(xk−1,0)

∣∣∣∣∣
−2(1− β1)d

√
2ρ2

3

βn2
|J1|n24n(k−1) − (1− β1)d

√
2ρ2

3

βn2
|J1|n(Qk +Qk−1)
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Lemma G.2
≥

d∑
l=1

Ik,k−1
∂lf(xk−1,0)
√
vk−1,0

(1− β1)J1

n−1∑
i=0

∂lfi(xk−1,0)

−
d∑
l=1

Ik,k−1(1− β1)|J1|

∣∣∣∣∣
n−1∑
i=0

∂lfi(xk−1,0)

∣∣∣∣∣
 1

1− 1√
βn2

n24n(k−1)√
vk−1,0

+

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1


−2(1− β1)d

√
2ρ2

3

βn2
|J1|n24n(k−1) − (1− β1)d

√
2ρ2

3

βn2
|J1|n(Qk +Qk−1)

where Ik,k−j := I
(

maxi |∂lfi(xk,0)| ≥ Qk and maxi |∂lfi(xk−j,0)| ≥
∑k
p=k−j Qp

)
and

Ĩk,k−j := I
(

maxi |∂lfi(xk,0)| ≥ Qk and maxi |∂lfi(xk−j,0)| ≤
∑k
p=k−j Qp

)
. By Lemma G.3,

we know Ik,k−1 = Ik−1, so we have:

(a)
Lemma G.10
≥

d∑
l=1

Ik−1
∂lf(xk−1,0)
√
vk−1,0

(1− β1)J1

n−1∑
i=0

∂lfi(xk−1,0)

−d(1− β1)|J1|
1

1− 1√
βn2

n24n(k−1)

√
2

nβn2

−
d∑
l=1

(1− β1)|J1|

∣∣∣∣∣
n−1∑
i=0

∂lfi(xk−1,0)

∣∣∣∣∣
√2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1


−2(1− β1)d

√
2ρ2

3

βn2
|J1|n24n(k−1) − (1− β1)d

√
2ρ2

3

βn2
|J1|n(Qk +Qk−1)

Lemma F.2
≥

d∑
l=1

Ik−1
∂lf(xk−1,0)
√
vk−1,0

(1− β1)J1

n−1∑
i=0

∂lfi(xk−1,0)

−d(1− β1)|J1|
1

1− 1√
βn2

n24n(k−1)

√
2

nβn2

−
d∑
l=1

(1− β1)|J1|

(∣∣∣∣∣
n−1∑
i=0

∂lfi(xk,0)

∣∣∣∣∣+ n24n(k−1)

)√2ρ2
3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1


−2(1− β1)d

√
2ρ2

3

βn2
|J1|n24n(k−1) − (1− β1)d

√
2ρ2

3

βn2
|J1|n(Qk +Qk−1).

The blue term will be handled using color-ball method when taking conditional expectation Ek−1(·).
Now we derive a lower bound for (b). Similarly as before, we rewrite

(
M ′l,k

)
k−1

and (Fl,k)k−1 as

follows.

(
M ′l,k

)
k−1

Lemma F.2
≥ Ml,k−1 − (1− β1)β1n

34n(k−1);

(Fl,k)k−1

Lemma F.2
≥ (Fl,k−1)k−1 − (1− β1)βn1 n

34n(k−1);

where
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Ml,k−1 := (1− β1){
+βn1 ∂lfτk−1,n−1

(xk−1,0) + · · ·+ βn+n−1
1 ∂lfτk−1,0

(xk−1,0)

+βn−1
1 ∂lfτk−1,n−1

(xk−1,0) + · · ·+ βn+n−2
1 ∂lfτk−1,0

(xk−1,0)

+ · · ·
+β1∂lfτk−1,n−1

(xk−1,0) + · · ·+ βn1 ∂lfτk−1,0
(xk−1,0)︸ ︷︷ ︸

k−1-th epoch

}

(Fl,k−1)k−1 :=

n−1∑
i=0

∂lfi(xk−1,0) = (1− β1)βn1 {

∂lfn−1(xk−1,0) + · · ·+ βn−1
1 ∂lfn−1(xk−1,0)

+∂lfn−2(xk−1,0) + · · ·+ βn−1
1 ∂lfn−2(xk−1,0)

+ · · ·
+∂lf0(xk−1,0) + · · ·+ βn−1

1 ∂lf0(xk−1,0)︸ ︷︷ ︸
(k−1)-th epoch

}

We now calculate (b). Using the same idea as in (a), we have

(b) =

d∑
l=1

Ik
∂lf(xk,0)
√
vk,0

((
M ′l,k

)
k−1
− (Fl,k)k−1

)
Lemma G.10 and F.2

≥
d∑
l=1

Ik
∂lf(xk,0)
√
vk,0

(
Ml,k−1 − (Fl,k−1)k−1

)
− d

√
2ρ2

3

βn2
(1− β1) (β1 + βn1 )n34n(k−1)

Lemma G.3
=

d∑
l=1

Ik,k−1
∂lf(xk,0)
√
vk,0

(
Ml,k−1 − (Fl,k−1)k−1

)
+

d∑
l=1

Ĩk,k−1
∂lf(xk,0)
√
vk,0

(
Ml,k−1 − (Fl,k−1)k−1

)
−d

√
2ρ2

3

βn2
(1− β1) (β1 + βn1 )n34n(k−1)

Lemma G.10
≥

d∑
l=1

Ik,k−1
∂lf(xk,0)
√
vk,0

(
Ml,k−1 − (Fl,k−1)k−1

)
−

d∑
l=1

Ĩk,k−1

√
2ρ2

3

βn2

∣∣Ml,k−1 − (Fl,k−1)k−1

∣∣
−d

√
2ρ2

3

βn2
(1− β1) (β1 + βn1 )n34n(k−1)

Def of Ĩk,k−1

≥
d∑
l=1

Ik,k−1
∂lf(xk,0)
√
vk,0

(
Ml,k−1 − (Fl,k−1)k−1

)
− d

√
2ρ2

3

βn2
(1− β1)(β1 + βn1 )n2 (Qk +Qk−1)

−d

√
2ρ2

3

βn2
(1− β1) (β1 + βn1 )n34n(k−1)

Lemma G.2
≥

d∑
l=1

Ik,k−1
∂lf(xk−1,0)
√
vk−1,0

(
Ml,k−1 − (Fl,k−1)k−1

)
−

d∑
l=1

 1

1− 1√
βn2

n24n(k−1)√
vk−1,0

+

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1
∣∣Ml,k−1 − (Fl,k−1)k−1

∣∣
−d

√
2ρ2

3

βn2
(1− β1)(β1 + βn1 )n2 (Qk +Qk−1)− d

√
2ρ2

3

βn2
(1− β1) (β1 + βn1 )n34n(k−1)

54



To proceed, we derive an upper bound for
∣∣∣Ml,k−1 − (Fl,k−1)k−1

∣∣∣.

∣∣∣Ml,k−1 − (Fl,k−1)k−1

∣∣∣ ≤ |Ml,k−1|+
∣∣∣(Fl,k−1)k−1

∣∣∣
≤ (1− β1)β1n

n−1∑
i=0

|∂lfi(xk−1,0)|+ (1− β1)βn1 n

n−1∑
i=0

|∂lfi(xk−1,0)|

Therefore, we have:

(b) ≥
d∑
l=1

Ik,k−1
∂lf(xk−1,0)
√
vk−1,0

(
Ml,k−1 − (Fl,k−1)k−1

)
−

d∑
l=1

 1

1− 1√
βn2

n24n(k−1)√
vk−1,0

+

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1
 (1− β1)(β1 + βn1 )n

n−1∑
i=0

|∂lfi(xk−1,0)|

−d

√
2ρ2

3

βn2
(1− β1)(β1 + βn1 )n2 (Qk +Qk−1)− d

√
2ρ2

3

βn2
(1− β1) (β1 + βn1 )n34n(k−1)

Lemma G.10 and G.3
≥

d∑
l=1

Ik−1
∂lf(xk−1,0)
√
vk−1,0

(
Ml,k−1 − (Fl,k−1)k−1

)
−d

 1

1− 1√
βn2

√
2

nβn2

 (1− β1)(β1 + βn1 )n34n(k−1)

−
d∑
l=1

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1(1− β1)(β1 + βn1 )n

n−1∑
i=0

(|∂lfi(xk−1,0)|)

−d

√
2ρ2

3

βn2
(1− β1)(β1 + βn1 )n2 (Qk +Qk−1)− d

√
2ρ2

3

βn2
(1− β1) (β1 + βn1 )n34n(k−1)

The red term will be handled using color-ball method when taking conditional expectation Exk−1(·).
Now we have derived lower bounds for both (a) and (b). Combining together, we have:
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Ek−1

{
Ek

[
d∑
l=1

Ik
∂lf(xk,0)
√
vk,0

((
M ′l,k

)
k
− (Fl,k)k

)
+

d∑
l=1

Ik
∂lf(xk,0)
√
vk,0

((
M ′l,k

)
k−1
− (Fl,k)k−1

)]}

(59)
≥ Ek−1


d∑
l=1

Ik
∂lf(xk,0)
√
vk,0

(1− β1)J1

n−1∑
i=0

∂lfi(xk,0)︸ ︷︷ ︸
(a)

+

d∑
l=1

Ik
∂lf(xk,0)
√
vk,0

((
M ′l,k

)
k−1
− (Fl,k)k−1

)
︸ ︷︷ ︸

(b)


−d

√
2ρ2

3

βn2

(1− β1)n2(n− 1)4nk
2

≥ Ek−1

{
d∑
l=1

Ik−1
∂lf(xk−1,0)
√
vk−1,0

(1− β1)J1

n−1∑
i=0

∂lfi(xk−1,0) +

d∑
l=1

Ik−1
∂lf(xk−1,0)
√
vk−1,0

(
Ml,k−1 − (Fl,k−1)k−1

)}

−d(1− β1)|J1|
1

1− 1√
βn2

n24n(k−1)

√
2

nβn2

−
d∑
l=1

(1− β1)|J1|

(∣∣∣∣∣
n−1∑
i=0

∂lfi(xk,0)

∣∣∣∣∣+ n24n(k−1)

)√2ρ2
3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1


−2(1− β1)d

√
2ρ2

3

βn2
|J1|n24n(k−1) − (1− β1)d

√
2ρ2

3

βn2
|J1|n(Qk +Qk−1)

−d

 1

1− 1√
βn2

√
2

nβn2

 (1− β1)(β1 + βn1 )n24n(k−1)

−
d∑
l=1

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1(1− β1)(β1 + βn1 )n

(
n−1∑
i=0

|∂lfi(xk,0)|+ n34n(k−1)

)

−d

√
2ρ2

3

βn2
(1− β1)(β1 + βn1 )n2 (Qk +Qk−1)− d

√
2ρ2

3

βn2
(1− β1) (β1 + βn1 )n34n(k−1)

−d

√
2ρ2

3

βn2

(1− β1)n2(n− 1)4nk
2

For the first term in the above inequality, we can calculate it using the idea in the color-ball toy
example:

Ek−1

{
d∑
l=1

Ik−1
∂lf(xk−1,0)
√
vk−1,0

(1− β1)J1

n−1∑
i=0

∂lfi(xk−1,0) +

d∑
l=1

Ik−1
∂lf(xk−1,0)
√
vk−1,0

(
Ml,k−1 − (Fl,k−1)k−1

)}

=
d∑
l=1

Ik−1
∂lf(xk−1,0)
√
vk−1,0

(1− β1)βn1 J1

n−1∑
i=0

∂lfi(xk−1,0).

To proceed, we further take Ek−2(·) and bound

Ek−2


d∑
l=1

Ik−1
∂lf(xk−1,0)
√
vk−1,0

(1− β1)βn1 J1

n−1∑
i=0

∂lfi(xk−1,0)︸ ︷︷ ︸
(a)

+
d∑
l=1

Ik
∂lf(xk,0)
√
vk,0

((
M ′l,k

)
k−2
− (Fl,k)k−2

)
︸ ︷︷ ︸

(b)

 .

Repeat this process until k = 1, we have:
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E

∑
l large

∂lf(xk,0)
√
vk,0

((
M ′l,k

)
k
− (Fl,k)k + · · ·+

(
M ′l,k

)
1
− (Fl,k)1

)
≥ (1− β1)βkn1 J1E

[
d∑
l=1

I1
∂lf(x1,0)
√
v1,0

n−1∑
i=0

∂lfi(x1,0)

]
+Error1 + Error2 + Error3

(∗)
≥ − βn1√

k − 1
(1− β1)

∣∣∣∣∣J1E

[
d∑
l=1

I1
∂lf(x1,0)
√
v1,0

n−1∑
i=0

∂lfi(x1,0)

]∣∣∣∣∣
+Error1 + Error2 + Error3

where (∗) holds for large k such that β(k−1)n ≤ βn1√
k−1

. We specify Error1,Error2,Error3 as follows.

Error1 = −d(1− β1)|J1|
1

1− 1√
βn2

n2

√
2

nβn2

(
∞∑
j=0

βjn1 4n(k−j)

)

−
d∑
l=1

(1− β1)|J1|

(∣∣∣∣∣
n−1∑
i=0

∂lfi(xk,0)

∣∣∣∣∣
)√2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1
( ∞∑

j=0

βjn1 (j + 1)

)

−d(1− β1)4n(k−1)|J1|n2

√2ρ2
3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1
( ∞∑

j=0

βjn1 (j + 1)2

)

−2(1− β1)d

√
2ρ2

3

βn2
|J1|n2

(
∞∑
j=0

βjn1 4n(k−1−j)

)

−(1− β1)d

√
2ρ2

3

βn2
|J1|n [Qk +Qk−1 + βn1 (Qk +Qk−1 +Qk−2) + · · · ]

Since δ2 = limk→∞
∑k−1
j=1 (βn1 )j

√
k
k−j is a finite constant, we have

∑∞
j=0 β

jn
1 4n(k−j) = 41δ2√

nk
. In

addition, we have

[Qk +Qk−1 + βn1 (Qk +Qk−1 +Qk−2) + · · · ]
(∗)
≤ Qk(1 + βn1 + · · · )

+Qk−1 + βn1 (Qk−1 +Qk−2) + β2n
1 (Qk−1 +Qk−2 +Qk−3) + · · ·

(∗)
≤ Qk(1 + βn1 + · · · ) + 2Qk−1 + 2

(
βn1 2Qk−1 + β2n

1 3Qk−1 + · · ·
)

Lemma F.1
≤ Qk

1

(1− βn1 )
+ 2Qk−1

1

(1− βn1 )2

≤ 5Qk
1

(1− βn1 )2

where (∗) uses the following fact: consider integers k > J > 0, we have
∑J
j=1

1√
k−j ≤ 2 J√

k−1
.

This inequality can be simply proved by taking the integral over 1√
k

. The final inequality is due to
Qk−1 < 2Qk. Now, we have
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Error1 ≥ −d(1− β1)|J1|
1

1− 1√
βn2

n2

√
2

nβn2

41δ2√
nk

−
d∑
l=1

(1− β1)|J1|

(∣∣∣∣∣
n−1∑
i=0

∂lfi(xk,0)

∣∣∣∣∣
)√2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1
 1

(1− βn1 )2

−2d(1− β1)|J1|n2

√2ρ2
3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1
 1 + βn1

(1− βn1 )3

41√
n(k − 1)

−(1− β1)d

√
2ρ2

3

βn2
|J1|n2 41δ2√

n(k − 1)
−(1− β1)d

√
2ρ2

3

βn2
|J1|n5Qk

1

(1− βn1 )2

Error2 = −d

 1

1− 1√
βn2

√
2

nβn2

 (1− β1)(β1 + βn1 )n3

 ∞∑
j=0

βjn1 4n(k−1−j)


−

d∑
l=1

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1(1− β1)(β1 + βn1 )n

(
n−1∑
i=0

|∂lfi(xk,0)|

) ∞∑
j=0

(j + 1)βnj1


−d

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1(1− β1)(β1 + βn1 )n34n(k−1)

 ∞∑
j=0

(j + 1)2βnj1


−d

√
2ρ2

3

βn2
(1− β1)(β1 + βn1 )n2 ((Qk +Qk−1) + βn1 (Qk +Qk−1 +Qk−2) + · · · )

−d

√
2ρ2

3

βn2
(1− β1) (β1 + βn1 )n3

 ∞∑
j=0

βjn1 4n(k−1−j)


Based on the calculation in Lemma F.1, we have

Error2 ≥ −d

 1

1− 1√
βn2

√
2

nβn2

 (1− β1)(β1 + βn1 )n341√
n

δ2√
k

−
d∑
l=1

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1(1− β1)(β1 + βn1 )n

(
n−1∑
i=0

|∂lfi(xk,0)|

)
1

(1− βn1 )2

−d

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1(1− β1)(β1 + βn1 )n3 1 + βn1
(1− βn1 )3

41δ2√
n(k − 1)

−d

√
2ρ2

3

βn2
(1− β1)(β1 + βn1 )n22Qk

1

βn1 (1− βn1 )2

−d

√
2ρ2

3

βn2
(1− β1) (β1 + βn1 )n341√

n

δ2√
k
.

Error3 = −d

√
2ρ2

3

βn2
(1− β1)n3

 ∞∑
j=0

βjn1 4n(k−j)

 = −
d
√

2ρ2
3

βn2
(1− β1)n3

√
k

41√
n
δ2,
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Since 1−β1

1−βn1
≤ 1 and |J1| ≤ n, we have

|J1|

√2ρ2
3

βn2

1(
1− (1−β2)4nρ2

βn2

)
 1− β1

(1− βn1 )2
+

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

) 2n(1− β1)

(1− βn1 )2

≤

√2ρ2
3

βn2

3n(
1− 1−β2

2

(
−1 + 4ρ2n

βn2

))
 1

(1− βn1 )
.

Using the fact that 1√
k−1
≤
√

2√
k

(for k ≥ 2), we have:

E

∑
l large

∂lf(xk,0)
√
vk,0

((
M ′l,k

)
k
− (Fl,k)k + · · ·+

(
M ′l,k

)
1
− (Fl,k)1

)
≥ − βn1√

k − 1
(1− β1)

∣∣∣∣∣J1E

[
d∑
l=1

I1
∂lf(x1,0)
√
v1,0

n−1∑
i=0

∂lfi(x1,0)

]∣∣∣∣∣
+Error1 + Error2 + Error3

≥ −G6√
k
−G7δ1E

(
d∑
l=1

n−1∑
i=0

|∂lfi(xk,0)|

)
,

where

G6 := βn1 (1− β1)
√

2 |J1|

√
2ρ2

3

βn2
E

[
d∑
l=1

∣∣∣∣∣I1
n−1∑
i=0

∂lfi(x1,0)

∣∣∣∣∣
]

+
41√
n
δ2d

√
2ρ2

3

βn2
(1− β1)n3

+d(1− β1)|J1|
1

1− 1√
βn2

n2

√
2

nβn2

41δ2√
n

+d(1− β1)|J1|n2

√2ρ2
3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1
 1 + βn1

(1− βn1 )3

41

√
2√

n

+2(1− β1)d

√
2ρ2

3

βn2
|J1|n241δ2

√
2√

n
−5(1− β1)d

√
2ρ2

3

βn2
|J1|n

1

(1− βn1 )2
∆1n
√
n

32
√

2

(1− β2)
n
βn2

+d

 1

1− 1√
βn2

√
2

nβn2

 (1− β1)(β1 + βn1 )n341√
n
δ2

+d

√
2ρ2

3

βn2

1(
1− (1−β2)4nρ2

βn2

)δ1(1− β1)(β1 + βn1 )n3 1 + βn1
(1− βn1 )3

41δ2
√

2√
n

+2d

√
2ρ2

3

βn2
(1− β1)(β1 + βn1 )n2 1

βn1 (1− βn1 )2
∆1n
√
n

32
√

2

(1− β2)
n
βn2

+d

√
2ρ2

3

βn2
(1− β1) (β1 + βn1 )n341√

n
δ2,

G7 :=

√2ρ2
3

βn2

3n(
1− 1−β2

2

(
−1 + 4ρ2n

βn2

))
 1

(1− βn1 )
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where J1 =
(
− 1
nβ1 − 2

nβ
2
1 − · · · − n−1

n βn−1
1

)
, δ2 = limk→∞

∑k−1
j=1 (βn1 )j

√
k
k−j (if needed, we

can further bound J1 by n for simplicity). This conclude the proof.

G.8 Proof of Lemma G.5

We now derive upper bounds for
∑
l large (a2) and

∑
l large (b2). The upper bound for

∑
l large (a2) is

very straightforward using inequality (24).

∑
l large

(a2) = δ1

√
2ρ2

3

βn2

∑
l large

n−1∑
i=0

|∂lfi (xk,0)|
(24)
≤ δ1

√
2ρ2

3

βn2

√
D1ρ1d

(
|∂αf (xk,0)|+

√
D0

D1d

)
.

Now we shift gear to
∑
l large (b2) := δ1

√
2ρ2

3

βn2

∑
l large

∑n−1
i=0 |ml,k,i − ∂lfi(xk,0)|. To proceed, we

need an upper bound for
∑
l large

∑n−1
i=0 |ml,k,i − ∂lfi(xk,0)|. For each i, we perform the following

decomposition.

∑
l large

|ml,k,i − ∂lfi(xk,0)| ≤
d∑
l=1

|(1− β1)
[
βi1∂lfτk,0(xk,0) + · · ·+ ∂lfτk,i(xk,i)

]
− ∂lfi(xk,0)|︸ ︷︷ ︸

(d1)

+

d∑
l=1

∣∣βi+1
1 ml,k−1,n−1

∣∣
︸ ︷︷ ︸

(d2)

. (60)

To start, we bound (d1).

(d1) ≤
d∑
l=1

{
|∂lfτk,0(xk,0)|+ |∂lfτk,1(xk,1)|+ · · ·+ |∂lfτk,i(xk,i)|+ |∂lfi(xk,0)|

}
≤

d∑
l=1

{
|∂lfτk,0(xk,0)|+ |∂lfτk,1(xk,1)|+ · · ·+ |∂lfτk,n−1

(xk,n−1)|+ |∂lfi(xk,0)|
}

≤
d∑
l=1

n−1∑
i=0

{
|∂lfi(xk,0)|

}
+

d∑
l=1

|∂lfi(xk,0)|+ d4nk + · · ·+ nd4nk

(24)
≤ 2

√
D1ρ1d

(
|∂αf (xk,0)|+

√
D0

D1d

)
+
n(n+ 1)d

2
4nk

= 2
√
D1ρ1d

(
|∂αf (xk,0)|+

√
D0

D1d

)
+

(n+ 1)
√
nd

2
√
k

41. (61)

Now, we bound (d2). Recall
∑n−1
i=0 ∂lfi(x1,0) = ∂lf(x1,0), we have

|ml,k−1,n−1| ≤ (1− β1)
[
|∂lfτk−1,n−1

(xk−1,n−1)|+ β1|∂lfτk−1,n−2
(xk−1,n−2)|+ · · ·

]
+β

(k−1)n
1

n−1∑
i=0

|∂lfi(x1,0)| (62)

Note that for any i ∈ [0, n− 1], j ∈ [0, n− 1], t ∈ [1, k − 1], we have the following result.
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|∂lfi(xk−t,j)| ≤ |∂lfi(xk,0)|+ |∂lfi(xk,0)− ∂lfi(xk−t,j)|
Lemma F.2
≤ |∂lfi(xk,0)|+ (n− j)4(k−t)n + n4(k−t+1)n + · · ·+ n4(k−1)n

≤ |∂lfi(xk,0)|+4(k−1)n +4(k−1)n−1 + · · ·+4(k−1)n−[(n−j)+(t−1)n−1]

≤ |∂lfi(xk,0)|+4(k−1)n−1 +4(k−1)n−2 + · · ·+4(k−1)n−[(n−j)+(t−1)n]

(∗)
≤ |∂lfi(xk,0)|+ 2[(n− j) + (t− 1)n]41√

n(k − 1)− 1
, (63)

where (∗) uses the following fact: consider integers k > J > 0, we have
∑J
j=1

1√
k−j ≤ 2 J√

k−1
.

Plugging (63) into (62) and re-arranging the index, we have

d∑
l=1

|ml,k−1,n−1|
(62)
≤ (1− β1)

d∑
l=1

[
|∂lfτk−1,n−1(xk−1,n−1)|+ β1|∂lfτk−1,n−2(xk−1,n−2)|+ · · ·

]
+β

(k−1)n
1

d∑
l=1

n−1∑
i=0

|∂lfi(x1,0)|

(24),(63)
≤ (1− β1)

(k−1)n∑
q=1

βq−1
1

[
√
D1ρ1d

(
|∂αf (xk,0)|+

√
D0

D1d

)
+

2qd41√
n(k − 1)− 1

]

+β
(k−1)n
1

d∑
l=1

n−1∑
i=0

|∂lfi(x1,0)|

≤ (1− β1)

∞∑
q=1

βq−1
1

[
√
D1ρ1d

(
|∂αf (xk,0)|+

√
D0

D1d

)
+

2qd41√
n(k − 1)− 1

]

+β
(k−1)n
1

d∑
l=1

n−1∑
i=0

|∂lfi(x1,0)|

Lemma F.1
≤

√
D1ρ1d

(
|∂αf (xk,0)|+

√
D0

D1d

)
+

1

1− β1

2d41√
n(k − 1)− 1

+β
(k−1)n
1

d∑
l=1

n−1∑
i=0

|∂lfi(x1,0)|

When k ≥ 4

≤
√
D1ρ1d

(
|∂αf (xk,0)|+

√
D0

D1d

)
+

1

1− β1

2
√

2d41√
nk

+β
(k−1)n
1

d∑
l=1

n−1∑
i=0

|∂lfi(x1,0)|

(i)

≤
√
D1ρ1d

(
|∂αf (xk,0)|+

√
D0

D1d

)
+

1

1− β1

2
√

2d41√
nk

+

√
2βn1√
k

d∑
l=1

n−1∑
i=0

|∂lfi(x1,0)| (64)

where the second last inequality holds because: when k ≥ 4, 1√
n(k−1)−1

≤
√

2√
nk

. (i) holds when k

is large enough such that β(k−1)n
1 ≤ βn1√

k−1
. Further, βn1√

k−1
≤
√

2βn1√
k

when k ≥ 2.

Now, we have derived upper bounds for (d1) and (d2). Plugging (64) and (61) into (60), we conclude
the proof.
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d∑
l=1

n−1∑
i=0

|ml,k,i − ∂lfτk,i(xk,0)|
(61),(64)
≤ 3n

√
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)
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(n+ 1)nd
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+
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2
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+

√
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k

d∑
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=
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)
. (65)

∑
l large
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√
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∑
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3
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∆1 +

d2
√

2
√
n41

1− β1
+
√

2nβn1

n−1∑
i=0
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√
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) }
.

The proof is concluded by adding expectation on both sides of the inequality.

G.9 Proof of Lemma G.6

E

∑
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(a1) +
∑
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(b1)−
∑
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{(a2) + (b2)}


= E
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2

√
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+ E

∑
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
−dδ1

√
2ρ2

3

βn2
E

[
n−1∑
i=0
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]
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E
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|ml,k,i − ∂lfi(xk,0)|

]
Lemma G.4 and G.5 and F.3

≥ E

∑
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√
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[
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3
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E‖∇fi(x1,0)‖1

]
1√
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√
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(
E |∂αf (xk,0)|+

√
D0
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)
,

where constant terms G4, G5, G6, G7 can be seen at the end of Appendix G.7.

Since α = arg maxl=1,2,··· ,d |∂lf (xk,0)| and
∑
l large

∂lf(xk,0)2

√
vl,k,0

≥ ∂αf(xk,0)2

√
vα,k,0

, we have
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E

∑
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(a1) +
∑
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(b1)−
∑
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{(a2) + (b2)}


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= E
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∂αf (xk,0)

2
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}
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− F3E |∂αf (xk,0)| − F4, (66)

where F2 := δ1

√
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3

βn2

[
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3
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√
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(√
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)√
D1ρ1d

√
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D1d
.

Now, we discuss two cases.

Case (a): when |∂αf (xk,0)| ≥ 4
√

2 ∆1

(1−β2)
√
D1nkd

. In this case, we have the following result.
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)
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|∂αf (xk,0)|2 + D0

D1d

)
D1d+ 4

√
2j4nk

√
|∂αf (xk,0)|2 + D0

D1d

√
D1d+ 8j242

nk

))
Lemma F.1
≥ ∂αf(xk,0)2√

D1d
((
|∂αf (xk,0)|2 + D0

D1d

)
+
√
|∂αf (xk,0)|2 + D0

D1d
4
√

24nk
(1−β2)

√
D1d

+
1642

nk
D1d(1−β2)2

)
Case (a)
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5
2
D1d

(
|∂αf (xk,0)|2 + D0
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) ,
Now we consider the following two sub-cases.

• When ∂αf(xk,0)2 ≤ D0

D1d
:

∂αf (xk,0)
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√
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1√
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√
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• When ∂αf(xk,0)2 ≥ D0

D1d
:
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Combining together, we have the following results for Case (a).
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Case (b): When |∂αf (xk,0)| < 4
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where G1 := F2 + F34
√

2 ∆1
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√
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. Now, the following two claims are both true.
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Combining Claim 1 and Claim 2, we have
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where G2 := max


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4
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, 4
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Combining Case (a) and Case (b) together, we have

E
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∑
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∑
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where the last inequality is because of ‖∇f(xk,0)‖22 ≤ d∂αf (xk,0)
2, ‖∇f(xk,0)‖1 ≤ d|∂αf (xk,0) |.

Recall F3 → 0 when β2 → 1, so there exists an interval (1− ε, 1], such that 1√
5D1d

−F3 ≥ 1√
10D1d

,
or equivalently F3 ≤ 1√

10D1d
(note that F3 is the same as “A(β2)” stated in the condition of Lemma

G.6). With such a choice of β2, we have the following results by changing all the F3 into 1√
10D1d

:
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∑
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In inequality (∗), we change F4 into F5 :=
√

D0

D1d
1√

10D1d
. This is because: first, F4 = F3

√
D0

D1d
;

second, F3 ≤ 1√
10D1d

.

The proof of Lemma G.6 is completed.

We restate all the constants as follows (G4, G5, G6 are specified in Appendix G.7):

G2 := max
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√
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√
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√
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D1d
1√
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.

Remark G.14. We comment that we can always replace F5 in the final result by F4, i.e., we can choose
not to apply the last inequality (∗) in the proof. The benefit of using F4 is that F4 monotonously
decrease to 0 when increasing β2 to 1. This monotone property is not shown in the notation of F5.
Nevertheless, we choose to use F5 since it is a much cleaner constant.
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G.10 Proof of Lemma G.9

Based on Descent Lemma, we have

T∑
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nk

(r.h.s. of (35)) ≤
T∑

k=t0
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Plugging in the r.h.s. of (35), we have the following relation after rearranging.
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(69)

We specify all the constant as follows. For all the following constants, We keep the same notation as
their appearance in their corresponding lemmas.
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√
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√
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. If
needed, we can further bound J1 by n for simplicity.

Further, ρ1, ρ2, ρ3 are constants satisfying the following conditions for ∀l = 1, · · · , d. Usually, these
constants can be different for different problems. In the worst case, we have 0 ≤ ρ3 ≤

√
nρ1 ≤ n.

ρ3 is larger when ∂lfi(xk,0) are more aligned.

ρ1 ≥
∑n
i=1|∂lfi(xk,0)|√∑n
i=1|∂lfi(xk,0)|2

;
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1
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.

The proof of Lemma G.9 is now completed. This also concludes the whole proof of Theorem 3.1.

G.11 Dissussion on Bias Correction Terms and Non-Zero ε (Hyperparameter for Numerical
Stability)

In the above analysis, we focus on Adam without bias correction terms and we consider ε = 0 (ε
is the hyperparameter for numerical stability in Algorithm 1). For completeness, we now briefly
discuss how to incorperate the bias correction terms and non-zero ε into our analysis above. Based on
the current convergence proof, we only requires several additional simple changes. We list them as
follows.
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Adam with bias correction terms: This bias correction terms are introduced by (Kingma & Ba,

2014)). It can be implemented by (1) changing the stepsize ηk into η̂k =

√
1−βk1

1−βk1
ηk =

√
1−βk1

1−βk1
η0√
k

;
(2) change the initialization of Algorithm 1 into m1,−1 = v1,−1 = 0. More details can be seen in
(Kingma & Ba, 2014)). We now explain how to inlcude this two changes into our analysis.

(1) Change of stepsize: We observe that the new stepsize η̂k is well bounded around the old stepsize
ηk, i.e., η̂k ∈ [

√
1− β2ηk,

1
1−β1

ηk]. Therefore, to prove the convergence of Adam with η̂k, we add
the follwing steps into the current proof.

• Whenever we need an upper bound on η̂k, we use η̂k ≤ 1
1−β1

ηk. Then we follow the original
analysis with an extra constant 1

1−β1
. This step will appear in Lemma F.2. It turns out we only

need to change the constant 4nk in Lemma F.2 into 1
1−β1

η0√
nk

L
√
d√

1−β2

1−β1

1− β1√
β2

. The rest of the

analysis remains the same.
• Whenver we need a lower bound on η̂k, we use η̂k ≥

√
1− β2ηk. Then we follow the original

analysis with an extra constant
√

1− β2. This step will appear in Lemma G.9 and we only need
to change the constant terms in the final result. The rest of the analysis remains the same.

(2) Change of initialization: In our current analysis, we use initialization m1,−1 = ∇f(x0) and
v1,−1 = maxi ∇fi(x0) ◦ ∇fi(x0). Now we explain how to prove convergence with initialization
m1,−1 = v1,−1 = 0.

• We use m1,−1 = ∇f(x0) at Lemma G.11, in which we bound the difference between Ml,k and
M ′l,k. The goal of this lemma is to control Ml,k −M ′l,k = O(β

(k−1)n
1 ).

As explained in the proof of Lemma G.11, after expanding Ml,k and M ′l,k into serieses, they only
differ when “k ≤ 0” (as shown in equation (48)). When we use m1,−1 = 0, half of the terms in
equation (48) will become 0. However, it does not affect the result of Lemma G.11 since all the
terms in equation (48) are (at least) weighted by β(k−1)n

1 . So even if half of them to be 0, the
rest of the terms is still in the order of β(k−1)n

1 . Therefore, Lemma G.11 still holds with a few
changes on the constant terms.

• We use v1,−1 = maxi ∇fi(x0) ◦ ∇fi(x0) at Lemma G.1,which is mainly based on Lemma
F.1 in (Shi et al., 2020). According to (Shi et al., 2020): to include bias correction terms into
analysis, we just need to add one more constraint k > 8

√
2

1−βn2
+ 1 and then we can reach the same

conclusion.

Adam with non-zero ε: In our current analysis, we consider ε = 0. In practice, ε is often set to
be a small postive number such as 10−8. Proving convergence with ε > 0 is strictly simpler. It only
requires a few simple changes based on the current proof. We explain as below.

When ε 6= 0, the new 2nd-order momentum becomes v̂k,0 :=
√
vk,0 + ε. This brings the following

changes:

• Whenever we want an upper bound on v̂k,0, we can choose one of the following upper bound.
– When √vk,0 ≥ ε, we have v̂k,0 ≤ 2

√
vk,0. Then, we follow the same steps in the current

proof with minor changes on the constant.
– When √vk,0 < ε, we have v̂k,0 ≤ 2ε. This step, again, decouple the statistical dependency

between ∇fτk,0(x) and √vk,0. It changes Adam into SGD and thus simplifies the proof.
Many technical lemmas could be skipped in this case.

• Whenever we want a lower bound on v̂k,0, we have v̂k,0 ≥ ε. This step decouples the statistical
dependency between ∇fτk,0(x) and √vk,0. It changes Adam into SGD and thus simplifies the
proof. Many technical lemmas could be skipped in this case.
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