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ABSTRACT
Recently, the text-to-3D task has developed rapidly due to the ap-
pearance of the SDS method. However, the SDS method always
generates 3D objects with poor quality due to the over-smooth issue.
This issue is attributed to two factors: 1) the DDPM single-step infer-
ence produces poor guidance gradients; 2) the randomness from the
input noises and timesteps averages the details of the 3D contents.
In this paper, to address the issue, we propose DreamLCM which
incorporates the Latent Consistency Model (LCM). DreamLCM
leverages the powerful image generation capabilities inherent in
LCM, enabling generating consistent and high-quality guidance, i.e.,
predicted noises or images. Powered by the improved guidance,
the proposed method can provide accurate and detailed gradients
to optimize the target 3D models. In addition, we propose two
strategies to enhance the generation quality further. Firstly, we
propose a guidance calibration strategy, utilizing Euler solver to
calibrate the guidance distribution to accelerate 3D models to con-
verge. Secondly, we propose a dual timestep strategy, increasing the
consistency of guidance and optimizing 3D models from geometry
to appearance in DreamLCM. Experiments show that DreamLCM
achieves state-of-the-art results in both generation quality and
training efficiency.

CCS CONCEPTS
• Information systems→Multimedia content creation.

KEYWORDS
Text-to-3D Generation, Diffusion Model, Gaussian Splatting, Latent
Consistency Model

1 INTRODUCTION
Recent advancements in Diffusion Models (DMs) [34, 35, 37] have
made progress in satisfying the needs of synthesizing high-quality
images given text descriptions. Besides, by training on large-scale
image datasets [38] where images are coupled with detailed texts,
DMs achieve powerful ability in generating all kinds of 3D contents
conditioned on the given text prompts. Existing works [3, 17, 22,
23, 27, 32, 44, 47] have been proposed to apply well-trained diffu-
sion models to the task of text-to-3D generation. Conditioned on
text prompts, DMs can generate guidance information in the latent
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                     (a) DreamFusion                                              (b) LucidDreamer                                             (c) DreamLCM
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Guidance
Calibration

Figure 1: Illustration of different guidance generation ap-
proaches. 𝑥 and 𝜖 indicates the rendered image and the guid-
ance, respectively. (a) SDS generates guidance via a single
diffusion model while producing over-smooth results. (b) Lu-
cidDreamer utilizes the DDIM inversion technique, forward-
ing Diffusion Models multiple times where 𝑁 = {2, 3, 4, 5}.
(c) The proposed DreamLCMmethod incorporates LCM as
the guidance model. We also propose a guidance calibration
strategy that uses Euler Solver to refine the guidance 𝜖𝑠0 to 𝜖𝑡0.
Our method generates higher-quality guidance compared to
(a) and (b).

space. This latent guidance can be utilized to supervise the carving
process of the target 3D objects. Thus, this alternative approach
tackles the challenge of 3D object generation without large-scale
3D models for training. For example, the Score Distillation Sam-
pling (SDS) objective is introduced in DreamFusion [32] to leverage
the robust prior knowledge acquired by text-to-image diffusion
models [35, 37]. The SDS backpropagates the gradients from the
2D diffusion model to 3D objects and bridges the gap between the
diffusion models and the 3D representations, as shown in Fig. 1(a).
The acquired prior knowledge is utilized to optimize the 3D objects
represented by Neural Radiance Fields (NeRF) [28] conditioned on
a single text prompt.

However, SDS is limited in generating fine details as it pro-
duces over-smooth results. This effect has been noted by previous
works [17, 22, 45]. These works attempt to improve SDS and achieve
good results in increasing the quality of 3D models. For instance,
ProlificDreamer [45] optimizes multiple 3D models simultaneously.
These models are mutually benefited and merged by finetuning a
LoRA model [12]. The LoRA thus reserves the details of the 3D
model. Nevertheless, extra resources are needed to regenerate the
lost details. In this paper, we think that the problem of the over-
smooth issue stems from two factors. Firstly, the guidance of SDS
is derived by the DDPM [9] single-step inference, which leads to
low-quality guidance and blurred details. Secondly, the rendered im-
ages of the target 3D object act as conditions and are fed into DMs

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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after adding random noises. Besides, DMs need to sample timesteps
randomly for the diffusion process. The randomness from both
the added noises and timesteps directly results in the inconsistent
guidance between different iterations. This inconsistency ultimately
averages the details of 3D models and leads to the over-smooth
issue.

This paper endeavors to tackle the over-smooth issue by han-
dling the factors above accordingly. We propose a novel approach to
generate clear guidance for the low-quality guidance issue. Inspired
by Latent Consistency Model (LCM) [26], we propose DreamLCM
by incorporating LCM as a guidance model to fully utilize the capa-
bility to generate high-quality guidance in a single-step inference.
Notably, LCM generates high-quality images in a single-step in-
ference, rather than gradually approaching to the origin along the
probably flowODE (PF-ODE) trajectory [42] bymulti-step inference
like DDIM [40]. Therefore, DreamLCM merely predicts guidance
of a rendered image by directly denoising the noisy latent from an
arbitrary timestep along the PF-ODE trajectory to keep fine details
of the target 3D models. For the inconsistency issue, we observe
that LCM generates consistent guidance regardless of the random-
ness. To solve the issue, a similar method has been proposed in
LucidDreamer [22], which uses the DDIM inversion technique [40]
to improve the consistency of the guidance. However, different
from LucidDreamer, the proposed DreamLCM method provides
two merits: 1) DreamLCM only needs a single-step inference to
compute the guidance while LucidDreamer forwards the U-Net [36]
in DM multiple times; 2) DreamLCM keeps the original SDS loss.
Since LCM can resolve the two issues causing the over-smooth
issue, there is no need to change the loss forms. On the contrary,
LucidDreamer utilizes a complex objective function to adapt the
DDIM Inversion method. The difference is shown in Fig. 1(b)(c).

In addition, to further improve generation quality, we propose
two novel strategies, i.e., Guidance Galibration and Dual Timestep
Strategy. For Guidance Calibration, we propose a two-stage strat-
egy that repeats the perturbing and denoising steps to calibrate
the distribution of the guidance. In this way, the disturbing infor-
mation can be gradually removed. In the first stage, we perturb
a rendered image and predict the corresponding guidance. This
guidance is consistent with the rendered image, i.e., the 3D object,
as the added noise and timestep are small. In the second stage, we
run a discretization step of a numerical ODE solver, where we use
the Euler Solver to obtain a latent with relatively large noises. The
large noises and timestep can provide a more reasonable optimiza-
tion direction. Consequently, the calibrated guidance is ensured to
be consistent with both the rendered image and the highest data
density conditioned on the text prompt, effectively improving the
guidance’s quality. We calculate SDS loss and back-propagate the
gradient using the calibrated guidance to optimize the 3D models.
For Dual Timestep Strategy, we utilize the timestep sampling strat-
egy to enable dreamLCM to optimize the geometry and appearance
of 3D objects in separate phases. In particular, in the initial phase,
we apply large timesteps to guide the 3D model in producing large
deformations. In this case, DreamLCM tends to optimize geometry,
where the position of Gaussian Splatting is greatly updated. In the
refinement phase, we use small timesteps to optimize the appear-
ance because small timesteps help DreamLCM generate guidance
with fine details. Besides, we sample monotonically decreasing

timesteps to increase the consistency of the guidance. Overall, our
proposed dual timestep strategy is the combination of the timestep
strategy in HiFA [49] and ProlificDreamer [45].

We apply the Gaussian Splatting [18] as the 3D representation
to form the 3D target objects. The proposed DreamLCM achieves
the state-of-the-art results. As shown in Fig. 3, we can see that
DreamLCM generates high-quality 3D objects with fine details.
Besides, our model trains end-to-end, reducing training costs and
maintaining a streamlined training pipeline. Overall, our contribu-
tions can be summarized as follows:

• We resolve the over-smooth issue of SDS in a new perspective
by proposing DreamLCM. We analyze the two weaknesses
in the generated guidance of diffusion models, i.e., low qual-
ity and low consistency. In response to the two issues, we
incorporate LCM as our guidance model to make full use
of the ability in LCM and generate high-quality, consistent
guidance in a single inference step.
• We propose two novel strategies to further improve the qual-
ity of the guidance for 3D generation. A guidance calibra-
tion strategy is proposed, using Euler solver to obtain an
improved sample, which subsequently generates calibrated
guidance to help 3D models converge accurately. Besides, a
dual timestep strategy is proposed, enabling DreamLCM to
optimize the geometry and the appearance in two phases.
We prove the effectiveness of the two strategies in Sec.6.4.
• We conduct experiments to demonstrate that DreamLCM
significantly outperforms the state-of-the-art methods in
terms of both quality and training efficiency.

2 RELATEDWORK
2.1 Diffusion Models
Diffusion Models(DMs) have emerged as powerful tools for image
generation [10, 29, 31, 34, 40, 42], excelling in denoising noise-
corrupted data and estimating data distribution scores. The stable
ability of DMs for generating high-quality images led to multiple
applications in various domains, including video [8, 11, 19] and
3D [32, 44], 𝑒𝑡𝑐 . During inference, these models employ reverse dif-
fusion processes to gradually denoise data points and generate sam-
ples. In comparison to Variational Autoencoders (VAEs) [20, 39] and
Generative Adversarial Networks (GANs) [7], diffusion models of-
fer enhanced training stability and likelihood estimation. However,
their sampling efficiency is often hindered. Discretizing reverse-
time SDE [6, 42] or ODE [42] are proposed to handle the challenge,
various techniques such as ODE solvers [24, 25, 40, 48], adaptive
step size solvers [14], and predictor-corrector methods [42] have
been proposed. Notably, the Latent Diffusion Model(LDM) [35]
conducts forward and reverse diffusion processes in the latent
data space, leading to more efficient computation. The Consistency
model [26, 41] demonstrates promising potential as a rapid sam-
pling generative model for generating high-quality images in a
single-step inference. In this paper, we transfer the ability of LCM
to text-to-3D task to generate high-quality guidance. Meanwhile,
we use Euler Solver as the numerical ODE Solver to further calibrate
the guidance for higher quality.
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2.2 Text-to-3D Generation.
This task targets generating 3D contents from given text prompts.
The 3D contents are parameterized by various 3D representations,
including implicit representations [1, 2, 5, 16], 3D Gaussians [4,
21, 22, 43, 46], 𝑒𝑡𝑐 . Existing methods includes 3D generative meth-
ods [15, 30]. However, these methods can only generate objects
within limited categories due to the lack of large-scale datasets. Our
method uses DMs to guide the 3D optimization. DreamField [13]
represent pioneering efforts in training Neural Radiance Fields
(NeRF) [28] with guidance from CLIP [33]. Dreamfusion [32] firstly
employs Score Distillation Sampling (SDS) to distil 3D assets from
pretrained text-to-image diffusion models. SDS has become inte-
gral to subsequent works, with endeavours aiming at enhancing
3D representations, addressing inherent challenges such as the
Janus problem, and mitigating the over-smooth effect observed
in SDS. Recent studies like ProlificDreamer [45], HiFA [49], and
LucidDreamer [22] have made significant strides in improving the
SDS loss. Concurrent methods such as CSD [47] and NFSD [17]
provide empirical solutions to enhance SDS. In our novel approach,
DreamLCM, we resolve the over-smooth problem in a new perspec-
tive of the guidance model, showing that it is possible to generate
high-quality 3D models without any alterations to SDS.

3 REVISITING CONSISTENCY MODELS
The core idea of the Consistency Model (CM) and Latent Consis-
tency Model (LCM) is to learn a function that maps any points on a
trajectory of PF-ODE [42] to that trajectory origin, i.e., the solution
of PF-ODE. The trajectory origin indicates the real data distribution
region, which has the highest data density. Besides, LCM extends
the denoising process to the latent space. LCM predicts the solution
of PF-ODE by introducing a consistency function in a single-step
inference. LCM is a text-to-image DM 𝒇𝜙 parameterized by 𝜙 . The
objective is to fulfill the mapping: 𝒇𝜙 (𝒙𝑡 ,𝒚, 𝑡) → 𝒙0, where 𝒙𝑡 is
the noisy latent while 𝒚 is the text prompt. The self-consistency
property of LCM is expressed in Eq. (1) as

𝒇𝜙 (𝒙𝑡 ,𝒚, 𝑡) = 𝒇𝜙 (𝒙𝑡 ′ ,𝒚, 𝑡 ′),∀𝑡, 𝑡 ′ ∈ [𝛿,𝑇 ], (1)
where 𝛿 is a fixed small positive number. The formula shows the
consistency of the perturbed images between different timesteps.

Overall, LCM has two benefits: 1) generating 𝒇𝜙 (𝒙𝑡 ,𝒚, 𝑡) with
high quality in a single-step inference. 2) different 𝒙𝑡 between dif-
ferent 𝑡 generate consistent guidance. We attribute the over-smooth
issue in SDS loss to two factors in Sec. 1. The first is the low-quality
guidance issue, which can be resolved by utilizing LCM to gener-
ate high-quality guidance. The second is the inconsistency issue.
The issue is mitigated because the guidance generated via LCM is
consistent between different timesteps. Therefore, we incorporate
LCM into the text-to-3D task as the guidance model. The guidance
generated by LCM exhibits high quality and high consistency.

4 METHOD
In this section, we present DreamLCM for high-quality text-to-3D
synthesis. First, we formulate the entire 3D generation process and
analyze the issues in recent works. Then, we propose DreamLCM,
Guidance Calibration, and Dual Timestep Strategy. We explain how
these methods benefit the generation quality.

A Minion wearing magic hat, HDR, photorealistic, 8K.”Point-E/Shap-E

Dual Timestep
Strategy t

Noise
� ∼�(0,1)

��

update

LCM U-Net

Initialization

Euler 
Solver

Guidance Calibration

refinement phase

initial phase

��′

SDS

�̀� LCM U-Net

Figure 2: Illustration of DreamLCM. DreamLCM initializes
the 3D model 𝜃 via text-to-3D generator [15, 30]. We utilize
the proposed timestep strategy to divide the training into two
phases. In the initial phase, we directly generate guidance via
a single LCM network. In the refinement phase, we utilize
another LCM network and an Euler Solver to calibrate the
guidance. We calculate the original SDS loss to update 𝜃 .

4.1 The Problem Definition
Dreamfusion [32] proposes a general framework for the text-to-3D
generation task. It has two important components. The first is a 3D
representation, e.g., NeRF [28], 3D Gaussian Splatting [18], that is
parameterized by 𝜃 for depicting the target 3D objectΘ. The second
is a pretrained text-to-image diffusionmodel for providing guidance
information and supervising the target Θ. To bridge the 3D object
and its guidance model, a differentiable renderer 𝒈 is utilized to
obtain the rendered image 𝒙 , which is formulated as 𝒙 = 𝒈(𝜃, 𝑐)
with camera pose 𝑐 . Then 𝒙 is fed into a VAE encoder [20] and
perturbed by noise 𝜖 . Here, we denote the latent embedding as 𝒙 for
simplification. Given noisy latent 𝒙𝑡 , timestep 𝑡 , and text prompt
𝒚 as inputs, the guidance model predicts guidance gradients for
updating the 3D object. The guidance prediction of DM can be
expressed by two equivalent forms, i.e., 𝜖-prediction 𝜖𝜙 (𝒙𝑡 ,𝒚, 𝑡)
and 𝑥-prediction �̂�𝑡0 in Eq (2) following SDS [32].

∇𝜃LSDS (𝜙,𝒈)= E𝑡,𝜖,𝑐
[
𝜔 (𝑡)

(
𝜖𝜙 (𝒙𝑡 ,𝒚, 𝑡) − 𝜖

)
𝜕𝒈 (𝜃,𝑐 )

𝜕𝜃

]
,

= E𝑡,𝝐,𝑐

[
𝜔 (𝑡)
𝛾 (𝑡)

(
𝒙0 − �̂�𝑡0

) 𝜕𝒈(𝜃, 𝑐)
𝜕𝜃

]
.

(2)

Here �̂�𝑡0 =
𝒙𝑡−
√

1−𝛼𝑡𝜖𝜙 (𝒙𝑡 ,𝒚,𝑡 )√
𝛼𝑡

,
√
𝛼𝑡 is the noiseweight,which shows

that 𝜖𝜙 (𝒙,𝒚, 𝑡) and �̂�𝑡0 are equivalent, and we consider them both as
guidance.𝜔 (𝑡) is a weighting function that depends on the timestep
𝑡 . 𝛾 (𝑡) =

√
1−𝛼𝑡√
𝛼𝑡

. The gradient leads the 3D model closer to the
corresponding text prompt.

Previous works ProlificDreamer [45] and LucidDreamer [22] ob-
serve that SDS generates over-smooth 3D models. We attribute this
issue to two factors: 1) DMs [35, 37] generate low quality guidance
because �̂�𝑡0 are obtained from DDPM single-step inference [9], as
shown in Fig. 1(a); 2) DMs are sensitive to the randomness in noise
𝜖 and timestep 𝑡 . Especially, a large 𝑡 is hard to generate �̂�𝑡0 con-
sistent with 𝒙0, which averages the appearance of the 3D models
during optimization. Overall, the weakness in DMs generates poor
guidance, resulting in over-smooth outcomes.
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4.2 DreamLCM
The proposed DreamLCM method aims at resolving the aforemen-
tioned over-smooth issue by incorporating LCMand further enhanc-
ing the generation quality by proposing two effective strategies, i.e.,
Guidance Calibration and a dual timestep strategy. The overall
framework is shown in Fig. 2. The entire DreamLCM approach is
depicted in Algorithm 1.

For the low-quality guidance issue, DreamLCM utilizes the pow-
erful ability of LCM to generate high-quality guidance. LCM trains
a function 𝒇𝜙 in Eq. 1, which can be seen as guidance, to map any 𝒙𝑡
to its PF-ODE trajectory origin, i.e.. Consequently, LCM is capable
of generating high-quality guidance in a single-step inference.

For the inconsistency issue, we utilize the important property of
LCM in Eq. 1, highlighting the consistency of guidance between dif-
ferent timesteps. When guided by DMs, rendered image 𝒙0 is added
random noise 𝜖 , which is further weighted by different timesteps
𝑡 . The randomness in 𝜖 and 𝑡 directly results in inconsistent �̂�𝑡0,
eventually resulting in a feature-average outcome. However, due to
LCM’s property, LCM can generate consistent �̂�𝑡0 regardless of the
randomness.

Overall, given a timestep 𝑠 , we integrate LCM and SDS by gen-
erating guidance 𝜖𝜙 (𝒙𝑠 ,𝒚, 𝑠) via LCM to calculate the the SDS loss
:

∇𝜃LSDS (𝜙,𝒈) = E𝑠,𝜖,𝑐
[
𝑤 (𝑠)

(
𝜖𝜙 (𝒙𝑠 ,𝒚, 𝑠) − 𝜖

) 𝜕𝒈(𝜃, 𝑐)
𝜕𝜃

]
, (3)

where 𝜖𝜙 (𝒙𝑠 ,𝒚, 𝑠) is obtained in a single-step inference with high
quality and fine details. It enables the 3D model to have fine details,
mitigate the over-smooth issue, and save training costs.

Unfortunately, it is difficult to resolve the two issues perfectly
due to the nature of diffusion models. The images generated by
LCM with a single-step inference are always blurred, and the high-
quality images are derived from four-step inferences iteratively.
This fact is also stated in LCM [26]. For the first issue, if we directly
utilize LCM’s single-step inference results, the guidance would be
blurred and not conducive to generating high-quality 3D models.
Therefore, we further resolve this weakness by proposing a guidance
calibration strategy. For the second issue, during the training of
LCM, the two noisy latents in Eq. (1) are limited to be on the same
PF-ODE trajectory, rather than two arbitrary noisy latents. We
follow this protocol during the inference by fixing the noise 𝜖′

to perturb the rendered image, reducing the randomness in noise.
Besides, we propose a decreasing timestep strategy, wherewe utilize
monotonically decreasing timesteps during training, to reduce the
randomness in timesteps.
Guidance Calibration.We further dive into the principle when
LCM generates guidance. We first review that in DMs, the denoising
process follows a reverse stochastic differential equation(SDE):

dx = −¤𝜎𝑡𝜎𝑡∇ log 𝑝𝑡 (x)d𝑡 +
√
¤𝜎𝑡𝜎𝑡 dw, (4)

where 𝑝𝑡 (𝒙𝑡 ) ∼ N (𝒙0, 𝜎2
𝑡 I),𝜎𝑡 varies along timestep 𝑡 , ¤𝜎𝑡 is the time

derivative of 𝜎𝑡 , w is the standard Wiener process and ∇ log𝑝𝑡 (x)
is the score function which indicates the direction towards highest
data density. And there exists a corresponding reverse ordinary
deterministic equation(ODE) defined below:

dx = −¤𝜎𝑡𝜎𝑡∇ log𝑝𝑡 (x)d𝑡 . (5)

where ∇ log 𝑝𝑡 (x) is estimated as − 1√
1−𝛼𝑡

𝜖𝑡0. LCM can map any 𝒙𝑡

on a trajectory of the PF-ODE to the origin 𝒙∗0 , which indicates the
highest-data-density region. However, the mapped origin, i.e., �̂�𝑡0
derived from single-step inference is always shifted. We attribute
the shifting to the insufficient training of 𝒇𝝓 . Our goal is to calibrate
�̂�𝑡0 to get closer to 𝒙∗0 . We consider the insufficient training in LCM
and rationally assume that the denoising process of LCM follows
a smooth PF-ODE trajectory with a small slope. This assumption
allows us to calibrate the guidance from the perspective of PF-ODE.

Based on the analysis, we propose our guidance calibration strat-
egy, which is a two-stage strategy. We repeat the perturbing and
denoising steps to calibrate the guidance distribution. In the first
stage, given a perturbed sample 𝒙𝑠 at timestep 𝑠 , we first predict
guidance 𝜖𝜙 (𝒙𝑠 ,𝒚, 𝑠), where 𝑠 is set to a small number to make
the guidance more consistent with 𝒙0 than large 𝑠 . In the second
stage, since the denoising process of LCM follows PF-ODE, we run
a discretization step of a numerical ODE solver. we use Euler Solver
to get another sample 𝒙𝑡 :

𝒙𝑡 =

√︃
1 − 𝜎2

𝑠 𝒙𝑠 + (𝜎𝑡 − 𝜎𝑠 )𝜖𝜙 (𝒙𝑠 ,𝒚, 𝑠)√︃
1 − 𝜎2

𝑡

(6)

where 𝑡 > 𝑠 . We then fed 𝒙𝑡 to LCM network to obtain the final
calibrated guidance 𝜖𝜙 (𝒙𝑡 ,𝒚, 𝑡). Compared to 𝜖𝜙 (𝒙𝑠 ,𝒚, 𝑠), the guid-
ance 𝜖𝜙 (𝒙𝑡 ,𝒚, 𝑡) has two advantages: 1) it is consistent with the
original rendered image 𝒙0 because the Euler solver makes 𝒙𝑡 and
𝒙𝑠 on the same PF-ODE trajectory; 2) large timestep 𝑡 provides
more reasonable optimization direction conditioned on 𝒚, leading
�̂�𝑡0 closer to 𝒙

∗
0 . Overall, �̂�

𝑡
0 is ensured to be consistent with both the

rendered image and the PF-ODE trajectory origin conditioned on
the text prompt, effectively improving the quality of the guidance.
We optimize 𝜃 using the final guidance �̂�𝑡0 to calculate SDS loss
following Eq. (7) as

∇𝜃LSDS (𝜙,𝒈) = E𝑡,𝜖,𝑐
[
𝑤 (𝑡)

(
𝜖𝜙 (𝒙𝑡 ,𝒚, 𝑡) − 𝜖

) 𝜕𝒈(𝜃, 𝑐)
𝜕𝜃

]
. (7)

Dual Timestep Strategy. In this paper, we incorporates 3D Gaus-
sians [18] as the 3D representation, which requires initialization
models, i.e., PointE [30], Shap-E [15] to initialize the geometry.
However, these models sometimes initialize badly, especially when
given complex text prompts. Thus, properly updating the geometry
positions of the 3D model is crucial in 3D generation. We propose
a two-phase strategy, optimizing the geometry and appearance of
3D objects in separate phases. In the initial phase, we use large
timesteps to predict large deformations to the 3D model since large
timesteps keep less information in the rendered image. As a result,
the guidance includes global geometry features, leading DreamLCM
to optimize the geometry, where the position of Gaussian Splatting
is greatly updated. In the refinement phase, we use small timesteps
to optimize the appearance because small timesteps keep more
information on the rendered image, generating guidance with fine
local features.

We propose a dual timestep strategy combining the decreasing
timestep strategy with the two-phase strategy. Specifically, we
define a cut-off iteration 𝑇𝑐𝑢𝑡 and a cut-off timestep 𝑡𝑐𝑢𝑡 , in each
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Algorithm 1 DreamLCM

1: Initialization: 3D model parameters 𝜃 , training iteration 𝑛,
LCM network𝜙 denoising timestep from𝑁𝑚𝑖𝑛 to𝑁𝑚𝑎𝑥 , cut-off
iteration 𝑇𝑐𝑢𝑡 and timestep 𝑡𝑐𝑢𝑡 , text prompt 𝒚, fixed noise 𝜖′.

2: for 𝑖 = [0, ..., 𝑛 − 1] do
3: if 𝑖 ≤ 𝑇𝑐𝑢𝑡 then
4: 𝑡𝑚𝑎𝑥 ← 𝑁𝑚𝑎𝑥 , 𝑡𝑚𝑖𝑛 ← 𝑡𝑐𝑢𝑡 , 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ← 𝑇𝑐𝑢𝑡 , 𝑖𝑑 ← 𝑖

5: else
6: 𝑡𝑚𝑎𝑥 ← 𝑡𝑐𝑢𝑡 , 𝑡𝑚𝑖𝑛 ← 𝑁𝑚𝑖𝑛, 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ← 𝑛 −𝑇𝑐𝑢𝑡 ,

𝑖𝑑 ← 𝑖 − 𝑡𝑐𝑢𝑡
7: end if
8: Sample: 𝑐𝑎𝑚𝑒𝑟𝑎 𝑝𝑜𝑠𝑒 𝑐, 𝒙0 = 𝑔(𝜃, 𝑐)
9: 𝑠 ← 𝑡max − (𝑡max − 𝑡min)

√︁
𝑖𝑑/𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 , 𝑡 ← 2𝑠

10: 𝒙𝑠 ← 𝒙0 + 𝜎𝑠𝜖′

11: predict 𝜖𝜙 (𝒙𝑠 ,𝒚, 𝑠)
12: if 𝑖 ≤ 𝑇𝑐𝑢𝑡 then
13: calculate SDS loss:
14: ∇𝜃𝐿SDS = 𝜔 (𝑠)

(
𝝐𝜙 (𝒙𝑠 ,𝒚, 𝑠) − 𝜖

)
, update 𝜃 .

15: else
16: use Euler Solver to obtain 𝑥𝑡 .
17: predict 𝜖𝜙 (𝒙𝑡 ,𝒚, 𝑡) then calculate SDS loss:

18: ∇𝜃𝐿SDS = 𝜔 (𝑡)
(
𝝐𝜙 (𝒙𝑡 ,𝒚, 𝑡) − 𝜖

)
, update 𝜃 .

19: end if
20: end for

stage, the timestep is calculated as follows :

𝑡 = 𝑡max − (𝑡max − 𝑡min)
√︁
𝑇 /𝑁, (8)

where 𝑇 and 𝑁 are the current iteration and total iteration. For the
first 𝑇𝑐𝑢𝑡 iterations, we optimize geometry using timesteps larger
than 𝑡𝑐𝑢𝑡 . For the remaining iterations, we use timesteps less than
𝑇𝑐𝑢𝑡 to optimize appearance. Overall, we can see that the timestep
strategy in HiFA [49] and ProlificDreamer [45] are two special
cases of our timestep strategy. Experiments demonstrate that the
strategy can generate high-quality 3D models with fine geometry
and appearance, as shown in Fig. 5.

5 DISCUSSION
Similar to the proposed DreamLCM method, ProlificDreamer [45]
and LucidDreamer [22] targets resolving the over-smooth issue in
SDS. They refine the SDS loss with different loss functions to alle-
viate the over-smoothed and over-saturated results based on SDS.
We will revisit these two losses to show the relationship between
DreamLCM and the two works and demonstrate that our work is
more effective than theirs.
ProlificDreamer is based on the SDS loss. It handles the over-
smooth issue by training an additional LoRA [12] network denoted
as 𝜖𝐿𝑜𝑅𝐴 . ProlificDreamer optimizes multiple 3D models simultane-
ously. It aggregates and estimates their distributions by finetuneing
𝜖𝐿𝑜𝑅𝐴 . The VSD loss for the 𝑖𝑡ℎ 3D model is as follows:

∇𝜃 (𝑖 )LVSD (𝜃 (𝑖 ) ) = E𝑡,𝝐,𝑐
[
𝜔 (𝑡)

(
𝜖𝜙

(
𝒙 (𝑖 )𝑡 ,𝒚, 𝑡

)
− 𝜖𝐿𝑜𝑅𝐴

(
𝒙 (𝑖 )𝑡 ,𝒚, 𝑡, 𝑐

))
𝜕𝒈 (𝜃 (𝑖 ) ,𝑐 )

𝜕𝜃 (𝑖 )

]
, (9)

where 𝒙 (𝑖 )𝑡 is the rendered image of the 𝑖𝑡ℎ 3D model and 𝑐 is the
camera condition. 𝜖𝐿𝑜𝑅𝐴

(
𝒙 (𝑖 )𝑡 ,𝒚, 𝑡, 𝑐

)
indicates the distribution of

the rendered image.When ProlificDreamer optimizes one 3Dmodel,
the distribution of the rendered image can be estimated as 𝜖 , where
𝜖 is the noise added to the rendered image. We consider the SDS
gradient as the vector starting from 𝜖 and 𝜖𝐿𝑜𝑅𝐴 to 𝜖𝜙 . Since 𝜖𝐿𝑜𝑅𝐴
contains information from multiple 3D models, 𝜖𝐿𝑜𝑅𝐴 is a steadier
and more robust starting point than 𝜖 , averaging the random and
inconsistent features in the optimization process of each 3D model.

We observe that the essential problem is the randomness and
inconsistency when optimizing a single 3D model. Besides, 𝜖𝐿𝑜𝑅𝐴
introduces extra parameters and trains several 3D models simulta-
neously, leading to high training costs. However, the proposed
DreamLCM method incorporates LCM as the guidance model,
greatly mitigating the inconsistent issue when optimizing one 3D
model. As a result, there is no need for DreamLCM to train another
𝜖𝐿𝑜𝑅𝐴 to decrease the training costs for generating high-quality 3D
models.
LucidDreamer proposes ISM [22] loss, which employsDDIM Inver-
sion to enhance the quality and consistency of the guidance. Specifi-
cally, it predicts a invertible noisy latent trajectory

{
𝒙𝛿𝑇 , 𝒙2𝛿𝑇 , . . . , 𝒙𝑡

}
,

iteratively following Eq. (10),

𝒙𝑡 =
√
𝛼𝑡 �̂�

𝑠
0 +
√

1 − 𝛼𝑡𝝐𝜙 (𝒙𝑠 , ∅, 𝑠) , (10)

where 𝑠 = 𝑡 − 𝛿𝑡 . The guidance is obtained by a multi-step DDIM
denoising process i.e., iterating

�̃�𝑡−𝛿𝑇 =
√︁
𝛼𝑡−𝛿𝑇

(
�̂�𝑡0 + 𝛾 (𝑡 − 𝛿𝑇 ) 𝝐𝜙 (𝒙𝑡 ,𝒚, 𝑡)

)
, (11)

where 𝜂 (𝑡) = 1−
√
𝛼𝑡√

𝛼𝑡
. Next, by replacing �̂�𝑡0 in Eq. (2) with �̃�0, the

SDS loss can be rewrote as ∇𝜃L(𝜃 ) = E𝑐
[
𝜔 (𝑡 )
𝛾 (𝑡 )

(
𝒙0 − �̃�𝑡0

)
𝜕𝒈 (𝜃,𝑐 )

𝜕𝜃

]
.

LucidDreamer then unifies the iterative process in Eq. (10) and
Eq. (11), proposing ISM loss as follows:

∇𝜃L(𝜃 ) = E𝑡,𝑐
[
𝜔 (𝑡 )
𝛾 (𝑡 )

(
𝛾 (𝑡)

[
𝝐𝜙 (𝒙𝑡 ,𝒚, 𝑡) − 𝝐𝜙 (𝒙𝑠 , ∅, 𝑠)

]
+ 𝜂𝑡

)
𝜕𝒈 (𝜃,𝑐 )

𝜕𝜃

]
≈ E𝑡,𝑐

[
𝜔 (𝑡)

(
𝝐𝜙 (𝒙𝑡 ,𝒚, 𝑡) − 𝝐𝜙 (𝒙𝑠 , ∅, 𝑠)

)
𝜕𝒈 (𝜃,𝑐 )

𝜕𝜃

]
.

(12)

where 𝜂𝑡 includes a series of neighboring interval scores with op-
posing scales, which can be disregarded. ISM essentially substitutes
DDPM single-step inference [9] for DDIM multi-step inference [40]
to generate high-quality and high-fidelity guidance �̃�𝑡0.

However, themulti-step inference needs to forward the U-Net [36]
in DMs multiple times, increasing training costs. Moreover, we can
see that a key improvement in ISM is the quality and consistency
of the guidance. Compared to LucidDreamer, DreamLCM is capa-
ble of generating high-quality and high-consistency guidance in a
single-step inference. Consequently, DreamLCM is more effective
with fewer training costs.

To sum up, we observe that the principal cause of the over-
smooth issue in SDS is the inadequate quality of the guidance. These
two methods tackle the issue by utilizing extra resources, e.g., train-
ing multiple NeRFs and DDIM Inversions, which is time-consuming.
Differently, DreamLCM can resolve the over-smooth issue by taking
full advantage of LCM, while saving training costs.



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anon. Submission Id: 1610

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

A portrait of the Ghost Rider, head, 
HDR, photorealistic, 8K.

A portrait of The Wolverine, blonde 
hair, head, HDR, photorealistic, 8K.

A portrait of Harry Potter, white 
hair, head, HDR, photorealistic, 8K.

A portrait of Elsa, the princess from Frozen, icy blue 
eyes, fair complexion, head, HDR, photorealistic, 8K.

A knight holding a lance and 
sitting on an armored horse.

Viking axe, fantasy, 
weapon, blender, 8k, HDR.

A portrait of Groot, head, 
HDR, photorealistic, 8K.

A portrait of captain Jack Sparrow, 
buzz cut, head, HDR, photorealistic, 8K.

A bear dressed in 
medieval armor.

A blue motorcycle.

A DSLR photo of a old-fashioned 
clock decorated with roses.

A phoenix, reborn from flames, 
adorned with vibrant plumage of 
crimson and gold.

A vine-crafted lantern, intricately 
woven with delicate tendrils, 
HDR, photorealistic, 8K.

A corgi wearing a top hat. A wide angle DSLR photo 
of a colorful rooster.

An mini garden.A forbidden castle high up in the mountain. An astronaut riding a horse

Mount Fuji, snow-capped peak, HDR, 
photorealistic, 8K.

A round marble fountain with multiple tiers, 
spraying arcs of water.

A massive ocean-going yacht, with polished hull 
and towering decks.

Sydney opera house be brightly lit at 
night, aerial view.

Figure 3: Examples generated by DreamLCM. We incorporate the Latent Consistency Model (LCM) as a guidance model, with
two proposed strategies to further enhance the generation quality (See section 4 for details). DreamLCM generates high-quality
results with fine details.

6 EXPERIMENTS
6.1 Implementation Details
We train our end-to-end network for 5000 iterations overall. We
employ 3D Gaussian Splatting [18] as our 3D representation and
3D point cloud generation models Shap-E [15] and Point-E [30]
for initialization. The rendering resolution is 512 × 512. As for the
guidance calibration strategy, we use it in appearance optimization.
We practically consider 𝑠 = 350 as the cut-off timestep. Unless stated
otherwise, we train the first 1000 iters for geometry optimization
using timesteps 𝑠 fulfilling 350 ≤ 𝑠 ≤ 980 and the remaining
4000 iters for appearance optimization using timesteps 𝑠 fulfilling

20 ≤ 𝑠 ≤ 350. Since we assume that LCM follows a smooth PF-ODE,
the interval between 𝑠 and 𝑡 is less limited. Practically, we choose
𝑡 = 2𝑠 . We use SDS with a normal CFG scale of 7.5. All experiments
are performed and measured with an RTX 3090 (24G) GPU. We
train about 50 min per sample.

6.2 Text-to-3D Generation.
In Fig. 4, we show the generated results of DreamLCM. We gen-
erate all examples using the original LCM without LoRA and any
finetuned checkpoints. We can see that DreamLCM can generate
photo-realistic 3D objects with fine details. The 3D objects are cre-
ative and highly consistent with the text prompts. Especially, we
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DreamGaussian GaussianDreamer LucidDreamer DreamLCM(ours)

A portrait of a unicorn, head, shimmering silver horn, gentle eyes, and a flowing mane of pink hues.

A white seashell adorned with a brilliant blue sapphire.

A sleek, aerodynamic race car adorned with vibrant colors.

A silver platter piled high with fruits.

An airplane made out of wood.

 A Spanish galleon.

        ( ~ 2 mins)                          ( ~ 15 mins)                                    ( ~ 1h)                                          ( ~ 50 mins)        

Figure 4: Comparison with the state-of-the-art text-to-3D generation methods with Gaussian Splatting as 3D representations.
Experiments show that the proposed DreamLCM generates photo-realistic 3D objects with high quality and fine details. The
models generated by DreamLCM are more consistent with the text prompt. The training time is measured with a single RTX
3090 GPU.

can see that DreamLCM can generate different and amazing avatar
heads conditioned on text prompts, such as "A portrait of Harry Pot-
ter, white hair, head, HDR, photorealistic, 8K". Besides, the proposed
DreamLCM method is good at generating objects conditioned on
complex text prompts, like "the fuji mountain", "the massive yacht",
and "the fountain". These examples demonstrate that DreamLCM
well resolves the over-smooth issue in SDS. Besides, these examples
show great potential in generating all kinds of complex objects with
different LCM finetuned checkpoints.

6.3 Qualitative Comparison
We compare our method with the current SoTA baselines which
generate 3D Gaussian Objects [22, 43, 46]. As shown in Fig. 4, our
model generates more photo-realistic results than other works,
exhibiting high quality and fine details. For example, "A portrait of
a unicorn" is more photo-realistic, and the fur is more silky than
the results from the other three approaches. As for the results
conditioned on the text "A Spanish galleon", our model generates
the most intact galleon, and the details of the hull are the finest
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       (1) original(SD), SDS(CFG=100)                (2) + LCM , SDS (CFG=7.5)   (3) + Decreasing Timestep
 Strategy 

 (4) + Two-phase 
Strategy

         (5) + Guidance Calibration

               Dual Timestep Strategy

            (6) + Fixed Noise(full)

Figure 5: Ablation Study of DreamLCM. The proposed components are effective and can improve the text-to-3D generation
quality. (1) The results of SDS with a large CFG scale of 100. (2) We incorporate LCM as a guidance model with a small CFG of
7.5. (3)(4) The results after adding the Dual Timestep Strategy. It includes two parts, the Decreasing Timestep Strategy to reduce
the randomness in timesteps and the Two-phases Strategy to improve geometry. Both parts are effective. (5) The results after
adding Guidance Calibration to further improve the generation quality. (6) We use fixed noise to perturb the samples to reduce
the randomness in noises to improve the details. We highlight some improved details in cyan. The prompts corresponding to
the four examples are "a green dragon breathing fire", "a squirrel in samurai armor wielding a katana", "a delicious hamburger"
and "A warrior with red cape riding a horse".

among all the shown methods. Notably, compared to LucidDreamer,
we generate higher quality objects with less training costs.

6.4 Ablation Study
Fig. 5 depicts the ablation experiments of different baseline meth-
ods. In Fig. 5(b) and (c), we utilize timesteps between 20 and 500
to generate high-quality images. Other settings are the same as
the final settings 6.1. Starting from the original SDS loss, guided
by Stable Diffusion [35], with a large CFG scale(100). We first in-
corporate LCM as the guidance model to demonstrate that LCM
is a superior guidance model to DMs [35]. We can see that LCM
makes a huge improvement in generation quality. We then add our
Dual Timestep Strategy. We divide the strategy into two parts. We
demonstrate the effectiveness of Decreasing Time Strategy and the
Two-phase Strategy, as shown in Fig. 5(c) and (d). We can see that
the hamburger adding Decreasing Time strategy shows a quality
improvement. Based on (c), the hamburger adding the two-phase
strategy shows a geometric advancement of the bread at the bot-
tom of the hamburger. Besides, due to the two-phase strategy, the
worrier example is deformed to be less close to the horse, since

this 3D model is initialized by the prompt "a wolf". Then, we add
the guidance calibration strategy which smooths the appearance
and improves the details, making the objects more photo-realistic.
Finally, we add fixed noises to improve the consistency of guidance
between different timesteps. As shown in Fig. 5, the ability to im-
prove details is demonstrated in cyan, such as the eye, legs, and
cushion on the horse back in the worrier sample, the katana in the
squirrel sample and the shadow in the dragon sample.

7 CONCLUSION
In this paper, we propose DreamLCMmethod to improve the text-to-
3D object task.We incorporate LCMas a guidancemodel to generate
high-quality guidance to resolve the two factors that cause the over-
smooth issue. Besides, we introduce two techniques, i.e., Guidance
Calibration and Dual Timestep Strategy, to further improve the
generation quality. Experiments show superior performance of
our method. Our method achieves state-of-the-art results in both
generation and training efficiency.
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