
Appendix

A The Proof of Prop. 1

Denote PεQ and Pε as the optimal solution of RE-OT and entropic regularized OT, respectively. Then
we can get the following two results.

1) When ε → +∞, the RE-OT’s optimal solution PεQ will converge to Q̃ where Q̃ has the form
Q̃ = diag(u′)Qdiag(v′) with two uniquely defined non-negative vectors u′ and v′.

Proof. While ε→ +∞, one should rather consider the problem

min
P∈U(a,b)

−HQ(P) =
∑
ij

Pij

(
log

(
Pij
Qij

)
− 1

)
. (19)

We can use the Lagrange methods

L = −HQ(P)− < f ′,P1m − a > − < g′,P>1n − b > (20)

Then we can get
∂L(P)

∂Pij
= (logPij − logQij)− f ′i − g′j = 0. (21)

Then we have Pij = ef
′
i/Qije

g′j . By setting u′ = ef
′

and v′ = eg
′
, we have the optimal solution

Q̃ = P = diag(u′)Qdiag(v′). So Q̃ can be calculated by the iterations of row normalization to a
and column normalization to b from Q. Specially, when Q = 1n×m, we find u′ = a and v′ = b is
one of the solution for Eq. 3 under U(a,b). And due to the convex of the objective function, the
solution is unique thus Q̃ = diag(u′)1n×m diag(v′) = a⊗ b

2) With the prior Q and its corresponding Q̃ as defined in (1), we have PεQ = Pε
Q̃

, and when

Q̃ = a⊗ b, we have Pε = Pε
Q̃

.

Proof. We first get the optimal solution PεQ. Consider the problem

min
P∈U(a,b)

< C,P > −εHQ(P). (22)

We can use the Lagrange methods:

L =< C,P > −εHQ(P)− < f ,P1m − a > − < g,P>1n − b > . (23)

Then we can get
∂L(P)

∂Pij
= Cij + ε (logPij − logQij)− fi − gj = 0. (24)

So we have the solution form

(PεQ)ij = efi/εQije
(−Cij/ε)egj/ε. (25)

And thus we have the PεQ = diag(u)Qdiag(v) where u = ef/ε and v = eg/ε.

Similarly, for the optimization

min
P∈U(a,b)

< C,P > −εHQ̃(P), (26)

we also have the solution form

(Pε
Q̃

)ij = ef̃i/εQ̃ije
(−Cij/ε)eg̃j/ε. (27)

According the Proof 1, we have
Q̃ij = ef

′
i/εQije

g′j/ε (28)

15

With Eq. 27 and Eq. 28, we have

(Pε
Q̃

)ij = ef̃i/εef
′
iQije

(−Cij/ε)eg
′
jeg̃j/ε

= ef̃i/ε+f ′iQije
(−Cij/ε)eg̃j/ε+g′j .

(29)

Compared with Eq. 25 and Eq. 29, we find Pε
Q̃

and PεQ are both the projection of K = Qije
(−Cij/ε)

onto U(a,b) and thus have the same solutions.

When Q = 1n×m, we can get PεQ = Pε. As discussed in Proof 1, we know that Q̃ = a× b. Then
we can get

Pε = PεQ = Pε
Q̃

(30)

for Q = 1n×m and Q̃ = a× b. Fig. 5 is the toy experiment with histograms and cost matrix in the
first row. The second and third row are Sinkhorn results of PQε and PQ̃ε when ε = 0.01, 0.1, 1 and
10. We can see the approximate solutions.

Figure 5: The results of RE-OT PεQ and Pε
Q̃

by varying ε = 0.01, 0.1, 1 and 10 where Q is set to
1n×m.

B The proof of Prop. 2

Proof. From the definition of K̃L and Kij = Qije
−Cij/ε, we have

min
P∈U(a,b)

K̃L(P|K) =P∈U(a,b)

∑
ij

(
Pij logPij −Pij −Pij logQij −Pij log e−Cij/ε

)
= min

P∈U(a,b)

∑
ij

(
Pij

(
log

Pij
Qij
− 1

)
+

1

ε
PijCij

)
= min

P∈U(a,b)

1

ε
LεQ.

(31)

So the optimizations in Eq. 6 and Eq. 8 are equal.

16

C The Sinkhron Algorithm and its proof for RE-OT

As discussed in Appendix A, we have P = diag(ef/ε)Kdiag(eg/ε) ∈ U(a,b). Due to P1m = a
and P>1n = b, we have

u�Kv = a and v �K>u = b, (32)

so we can update u and v by

u(l+1) =
a

Kv(l)
and v(l+1) =

a

K>v(l+1)
, (33)

initialized with an arbitrary positive vector v(0) = 1n. The algorithm is shown below.

Algorithm 1 Sinkhorn Algorithm for RE-OT
Input: Cost matrix C, histograms a and b, Prior Q
Output: P

Initialize K = Q� e−C/ε and l = 0, v(l) = 1n
while v(l) and u(l) not converge do
u(l+1) = a

Kv(l)

v(l+1) = a
K>v(l+1)

l+ = 1
end while
return P = diag(u(l))Kdiag(v(l))

D Dual for RE-OT

Proof. As discussed in Appendix A, we have Pij = efi/εKije
gj/ε = efi/εQije

−Cij/εegj/ε. Then
the optimization in Eq. 6 is equal to

LεQ =< ef/ε,K�Ceg/ε > −εHQ(diag(ef/ε)Kdiag(eg/ε)). (34)

For the regularization term εHQ(P) = ε < P, log(P)− log(Q)− 1n×m >, we have

εHQ(P) = f>(P1m − a)− g>(P>1n − b)

=< diag(ef/ε)Kdiag(eg/ε), f1>m + ε logQ + 1ng
> −C− ε logQ− ε1n×m >

=< ef/ε,K�Ceg/ε > + < f ,a > + < g,b > −ε < ef/ε,Keg/ε >,

(35)

where � is the element-wise product. So the optimization equals to

max
f∈Rn,g∈Rm

< f ,a > + < g,b > −ε < ef/ε,Keg/ε >, (36)

which is the dual formulation.

E The setting for Q in Long-tailed Learnig

We set Q by varying over epochs:

Q = (1− λ(t)) Uniform +λ(t)r, (37)

where we let λ(t) be a piece-wise linear function:

λ(t) =


0 if t < t1
t−t1
t2−t if t1 < t < t2
1 if t2 < t < T

. (38)

Here t is the training epoch number and t1, t2, t3 are hyper-parameters. And for the setting of r, a
simple set is the balanced ratio as used in [45] which is specified as

rij =
nj∑
k nk

, (39)

17

where nj is the number of samples in j class. Or we can set r as

rij =
nbj
n

(40)

where nbj is the mini-bath samples’ number in j class and n is the batchsize. We can also adopt the
interpolation of Eq. 39 and Eq. 40, which is specified as

r = γ × nj∑
k nk

+ (1− γ)×
nbj
n
, (41)

where γ is a smoothing parameter determining the degree of blending between Eq. 40 and Eq. 39.
The above three are all class-wise and we can also define r with class-sample-wise form with

rij =
elij∑
k e

lik
∗ nj∑

k nk
, (42)

where elij∑
k e

lik
is used to control the simple-wise factor with different sample confidences.

F Proof when P in U(a)

Now we show the softmax with the constraints:
U(a) = {P ∈ Rn×m+ |P1m = a} (43)

where a = 1/n and 1m is the m-dimensional column vector whose elements are all ones. With the
objective of the RE-OT:

Pθ = arg min
P∈U(a)

< Cθ,P > −εHQ(P), (44)

We introduce the dual variable f ∈ Rn. The Lagrangian of the above equation is:

L(P, f) =< C,P > −εHQ(P)−
n∑
i=1

fi ·

 m∑
j=1

Pij −
1

n

 (45)

The first order conditions then yield by:
∂L(P, f)

∂Pij
= Cij + ε(logPij − logQij)− fi = 0. (46)

Thus we have Pij = Qije
(fi−Cθij)/ε for every i and j, for optimal P coupling to the regularized

problem. Due to
∑
j Pij = 1/n for every i, we can calculate the Lagrangian parameter fi and the

solution of the coupling is given by:

Pij =
Qij exp (−Cθ

ij/ε)

n
∑m
k=1 Qik exp (−Cθ

it/ε)
. (47)

Then in outer minimization, if we set P̃ij = yij , the optimization in Eq. 14 is equal to

L = −
n∑
i=1

log

(
Qij exp (−Cθ

ij/ε)

n
∑m
k=1 Qik exp (−Cθ

ik/ε)

)
. (48)

G The triplet loss

When ε→ 0, we can find that

lim
ε→0+

− log
exp(−Cij/ε)

exp(−Cij/ε) +
∑
k 6=j exp(−Cik/ε)

= lim
ε→0+

+ log(1 +
∑
k 6=j

exp(Cij − Cik/ε))

≈ lim
ε→0+

+ log(1 +
∑

Cij>Cik

exp(Cij − Cik/ε))

≈1

ε
lim
ε→0+

min{Cij −max
k

Cij , 0}

(49)

18

Table 4: Top-1 accuracy (%) for long-tailed image classification with 10/100 imbalanced factor on CIFAR10-LT
and CIFAR100-LT.

Method CIFAR10-LT CIFAR100-LT

IF=10 IF=100 IF=10 IF=100

Vanilla Softmax 90.53 79.12 62.51 46.00

Focal Loss [35] 89.61 78.02 61.77 45.41

LDAM [3] 89.88 80.13 58.28 46.84

LogitAdjust [39] 88.85 73.71 58.89 39.61

CB-CE [8] 90.30 79.40 61.99 42.96

CB-FC [8] 90.37 79.31 62.43 42.57

Balanced Softmax [45] 91.00 82.85 64.59 61.57

Ours 91.83 83.79 64.65 51.79

So with a feature extractor f , if we define yij = 1 if xi and xj are positive pair and yij = 0 otherwise,
we can get the triplet loss from Eq. 16 that∑

ij

yij max{||f(xi)− f(xj)||2 −min
k
||f(xi)− f(xk)||2, 0} (50)

where P̃ij = yij and Cij = ||f(xi)− f(xj)||2 as the setting given in Tab. 1.

H More Experimental Setting and Results

H.1 Hardware and Software

We use Intel Core i9-10920X CPU @ 3.50GHz with Nvidia GeForce RTX 3090 GPU for model
training. We take single GPU to train models on CIFAR-10-LT, CIRFAR-100-LT, ImageNet-LT,
OGBG-MOLBBBP and OGBG-MOLBACE and 8 GPUs to train models on LVIS. We implement
our proposed algorithm with PyTorch-1.4.0 for all experiments.

H.2 More Experimental Setting Details and Results for Image Classification

We perform the long-tailed image classification task on CIFAR10-LT, CIFAR100-LT [30], and
Imagenet-LT [38] datasets, and evaluate on balanced testing data by reporting top-1 accuracy. For
CIFAR10 and CIFAR100, the experiments of image classificaiton tasks are based on ResNet32 [20]
as the backbone with 0.05 learning rate, while for Imagenet dataset, we use ResNet10 for training
with 0.2 learning rate. For the setting of Q, we adopt the Eq. 41 form where We train all the data with
15000 iterations on a single GPU and imbalanced ratio is set as 200, 100, 10, resp. The experimental
results are shown in Tab. 3 and Tab. 4.

H.3 More Setting Details for Unbalanced Molecule Classification

The molecule experiments are done in OGBG-MOLBBBP and OGBG-MILLRACE datasets from
the Open Graph Benchmark (OGB) [21], which are widely used in the molecular representation
learning field [17, 58]. The tasks are binary classification. OGBG-MOLBBBP is a dataset of Brain-
Blood Barrier Penetration and each molecule has a label indicating whether it can penetrate through
brain cell membrane to enter central nervous system. While OGBG-MILLRACE is a dataset of
blinding affinity against hunmanbeta-screatas. Label 1 represents the molecule can blind to human
beta-secretase 1. We use the default train/val/test split with ratio 8:1:1. In detail, OGBG-MOLBBBP
has 84.20% label 1 molecules for training , and 40.69, 52.94 for validation and testing. And for
OGBG-MOLBACE data, it has 84.20%, 86.09% and 53.29% label 1 data for training, validation
and testing data splits. Given the presence of class imbalance within the two datasets, we have
chosen to adhere to the precedent set by prior studies, also employing the ROC-AUC as the metric

19

for performance evaluation. The experiments are easily influenced by the parameter initialization. So
we repeat 5 times and report the mean and std in Tab. 2. We adopt 5 layer GCN with 0.1 drop ratio
and output 256 embedding dimensions to binary classification with linear projection. The batch size
was set to 32 with 0.001 learning rate. The AUC-ROC results are reported in Tab. 2.

H.4 More Setting Details for on Long-Tailed Instance Segmentation

The experiments of Instance Segmentation are based on LVIS v1.0 datasets [18], which is one
of the most challenging datasets in vision with a much higher imbalance factor compared to the
rest. We use the official splits and evaluation is conducted on validation set. The setting mainly
follows the experiments in [45]. We use the off-the-shelf model Mask R-CNN with the backbone
network ResNet-50 for LVIS, which is pre-trained on ImageNet. We use an SGD optimizer with
0.9 momentum, 0.02 initial learning rate, and 0.0001 weight decay. The model is trained for 22k
iterations with 8 images per mini-batch. The learning rate is dropped by a factor of 10 at both 11k
iterations and 18k iterations. The bounding box classifier consists of one fully connected layer. In
our method, λ(t) in this case is set to be the constant 0.1 and γ is set to be 0.5 in Eq. 41 and finally
the matrix r is normalized for training.

H.5 Experiments Setting and Results for Supervised Contrastive Learning

The experiments of Long-Tailed Contrastive Learning are performed on CIFAR10-LT, CIFAR100-LT
datasets and imbalanced ratio is set as 100. We use ResNet-50 as the encoder backbone. The
augmentation includes random cropping, horizontal flipping, color distortions and gray scale. The
architecture of network and training strategy mainly follow [27]. In the pertaining stage, we use an
SGD optimizer with 0.5 initial learning rate, 0.0001 weight decay, 0.9 momentum. The models are
trained for 500 epochs with a mini batch size of 512. The learning rate adjustment strategy follows
[27]. The temperature is set to be 0.1 for all contrastive losses. Then we evaluate the performance
of our pretrained model using linear classification and k-nearest neighbors classification. With all
convolutional layers frozen, we only train the last linear classifier using the SGD optimizer with 1
initial learning rate and 0.9 momentum for 100 epochs with a mini batch size of 512. We also use
the same learning rate adjustment strategy as [27]. We also compare k-nearest neighbors classifier
(k-NN,k= 5 here) with linear evaluation. We define the cost matrix as Cij = c− zi · z′j where zi and
z′j are the normalized features of sample i and feature of augmentational sample j. From Eq. 16, the
contrastive loss is specified as

Lconstrast = −
∑
i∈B

1

|P (i)|
∑
j∈P (i)

log
Qik exp(zi · z′j/ε)∑

j∈B,k 6=iQik exp(zi · z′k/ε)
, (51)

where B is the batch for constrastive learning as same in [5], P (i) is the collection where the samples
have the same label as the sample i. For the matrix Q, λ(t) in this case is set to be a constant and r is
defined as follows:

rij =
Ri ∗Rj

max {Rm ∗Rn}m,n
, where Rk = γ × nj∑

k nk
+ (1− γ)× nbk

n
. (52)

Here, nj and nbj are defined in Eq. 41 and γ is set as 0.5. We show the experiments in the following
table.

Table 5: Comparison on CIFAR10/100-LT with constrastive methods.Top-1 accuracy (%) is reported
with 100 imbalanced ratio.

Method CIFAR10-LT CIFAR100-LT

SimCLR [5] 56.70 29.27

SupCon [27] 72.60 41.16

Ours 73.94 40.92

H.6 Sinkhorn Inference with a trained model

We conducted a simple experiment to further demonstrate the usefulness of viewing classification as
OT. In the inference phase on the testing data, we replaced the softmax (i.e. constraints within U(a))

20

with Sinkhorn algorithm (i.e. constraints within U(a,b)), where b represents the assumed ratio in
the testing data (e.g., long-tailed, uniform, or reverse long-tailed distribution). The results are shown
below:

Table 6: Top-1 accuracy (%) classification with long-tailed, uniform and reverse long-tailed testing data given
the vanilla softmax and our loss trained models.

Method Model trained with Vanilla Softmax Model trained with our loss

LT Uniform Reverse LT LT Uniform Reverse LT

Inference with Softmax 58.7 40.8 23.5 60.4 47.4 35.1

Inference with Sinkhorn 59.1 46.6 39.6 60.4 47.9 40.9

In the above experiments, we reconfigured the testing data to have long-tailed (IF=10), uniform
(unchanged), and reverse long-tailed (IF=10) distributions. We found that using Sinkhorn as the
inference method during the testing process can lead to significant improvements, particularly
for models trained with vanilla softmax. These experiments validate the effectiveness of treating
classification as Optimal Transport during the testing inference stage.

21

	Introduction
	Preliminaries and Related Work
	Relative Entropy Regularization for Optimal Transport
	RE-OT for Long-tailed Recognition
	Generalization to a Family of Losses in Form of Softmax-based Cross-Entropy
	Bridging Regularized OT to Classification

	Experiments
	Conclusion
	The Proof of Prop. 1
	The proof of Prop. ??
	The Sinkhron Algorithm and its proof for RE-OT
	Dual for RE-OT
	The setting for Q in Long-tailed Learnig
	Proof when P in U(a)
	The triplet loss
	More Experimental Setting and Results
	Hardware and Software
	More Experimental Setting Details and Results for Image Classification
	More Setting Details for Unbalanced Molecule Classification
	More Setting Details for on Long-Tailed Instance Segmentation
	Experiments Setting and Results for Supervised Contrastive Learning
	Sinkhorn Inference with a trained model

