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Evolving Storytelling: Benchmarks and Methods for New
Character Customization with Diffusion Models

Anonymous Authors

Figure 1: Given a text-to-image story generation model trained on cartoons, we aim to customize the pretrained model so that
end users can create new storylines featuring unseen new characters specified by only one example story (i.e., 5 frames). For
example, the model pretrained on The Flintstones is capable of generating visual stories for existing characters such as Fred and
Wilma, who are frequently depicted in the training datasets (row (a)). However, it falls short when generating stories featuring
unseen new characters like Slaghoople because it has little prior knowledge of her (row (b)). Our customized model can take
only one story of Slaghoople and generate new stories involving both new and existing characters (row (c)).

ABSTRACT
Diffusion-based models for story visualization have shown promise
in generating content-coherent images for storytelling tasks. How-
ever, how to effectively integrate new characters into existing nar-
ratives while maintaining character consistency remains an open
problem, particularly with limited data. Two major limitations hin-
der the progress: (1) the absence of a suitable benchmark due to
potential character leakage and inconsistent text labeling, and (2)
the challenge of distinguishing between new and old characters,
leading to ambiguous results. To address these challenges, we in-
troduce the NewEpisode benchmark, comprising refined datasets
designed to evaluate generative models’ adaptability in generat-
ing new stories with fresh characters using just a single example
story. The refined dataset involves refined text prompts and elim-
inates character leakage. Additionally, to mitigate the character
confusion of generated results, we propose EpicEvo, a method that
customizes a diffusion-based visual story generation model with
a single story featuring the new characters seamlessly integrating
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them into established character dynamics. EpicEvo introduces a
novel adversarial character alignment module to align the gener-
ated images progressively in the diffusive process, with exemplar
images of new characters, while applying knowledge distillation
to prevent forgetting of characters and background details. Our
evaluation quantitatively demonstrates that EpicEvo outperforms
existing baselines on the NewEpisode benchmark, and qualitative
studies confirm its superior customization of visual story genera-
tion in diffusion models. In summary, EpicEvo provides an effective
way to incorporate new characters using only one example story,
unlocking new possibilities for applications such as serialized car-
toons.
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1 INTRODUCTION
Diffusion models have demonstrated impressive performance in
visual story generation tasks [19], holding promise for visual nar-
ratives, such as generating a new episode of existing comic books
while maintaining the storyline continuity. However, existing gener-
ative models [19, 23–25, 27, 30] are highly limited when visualizing
a story involving characters that appear infrequently or are ab-
sent from the training data. As illustrated in Fig. 1, existing visual
story generation models struggle to depict Slaghoople (a character
we held out from the training set) consistently, resulting in var-
ied appearances due to the lack of character priors. Moreover, this
generalization ability to unseen characters (referred to as story char-
acter customization in our paper) has not been adequately evaluated
due to the absence of proper benchmarks in previous works [19, 23–
25, 27, 30]. In this paper, we systematically investigate story
character customization by curating an appropriate dataset
and designing a new method tailored to this task.

Our NewEpisode Benchmark: To systematically address the
challenge of customizing visual story generation models, we identi-
fied a critical issue: the absence of datasets featuring new characters
in the testing split. To tackle this, we introduce the NewEpisode
benchmark, whose test set contains unseen characters that have not
appeared in the pretraining1 set. Refining existing datasets [19, 23],
we exclusively utilize stories with main characters for the pretrain-
ing and introduce minor supporting characters as new characters
in the test set. It is worth noting that this process is not merely a
re-dividing of existing datasets due to the ambiguous textual de-
scriptions in these datasets. Minor characters are often referred to
by a generic name in texts (e.g., "an alien” instead of its character
name), often causing the accidental inclusion of the unseen test
characters in the pretraining set. To prevent this leakage, we manu-
ally investigated every single image-text pair of existing datasets,
and even modified some textual descriptions to disambiguate the
referent characters (see Fig. 2 for details). In contrast to datasets for
general customization [3, 5, 15, 28, 35], which focus on personaliz-
ing a single concept and/or merging multiple concepts based on a
pretrained general text-to-image model [33, 36], our NewEpisode
benchmark is built for visual story generation models and offers
testing samples that focus more on story character dynamics. This
allows for in-depth exploration of how new characters can be inte-
grated into existing storylines while avoiding disrupting the estab-
lished character dynamics. NewEpisode benchmark thus provides
a more nuanced approach to story character customization, em-
phasizing the seamless integration of new characters into complex
narratives. We summarize some differences between NewEpisode
and datasets used in other model customization works in Table. 1.

Technical Challenges: How do existing off-the-shelf methods
[3, 15, 35] perform on our new dataset? Our preliminary studies
indicate that existing methods might fall short within the context
of story character customization. Specifically, we identify the core
challenge is that: compared to a general text-to-image model [33],
visual story generationmodels [27, 30] pretrained on a specific story
dataset have stronger priors of existing characters. For instance,
in Fig. 4-b, the model might be confused by the appearance of

1We use pretraining to refer to the process of training a visual story generation model
and customization to refer to the process of adding new characters.

the lizard-like creature, Rockzilla. As a result, the new character
might be straightly ignored, such as the case in Fig. 2-h, or the new
character might be rendered in a corrupted way, such as the case
in Fig.2-g.

Our EpicEvo Model: To address the aforementioned challenge,
we propose a story character customizationmethod, namely EpicEvo,
which is featured in Fig. 3. In order to mitigate the overly strong
influence of existing characters, we design an adversarial character
alignment mechanism. As the name suggests, this mechanism is
inspired by GANs[4], but we have devised it to be compatible with
modern diffusion models. Specifically, we train a discriminator to
judge whether the images generated by the visual story generation
network contain a certain character in the latent space of the fi-
nal step of the diffusion process. Our experiments show that this
alignment encourages the generation of both new and existing
characters whenever they appear in the captions. Additionally, we
empirically found that the diversity of output stories can decrease
if the model is extensively tuned on the customization samples.
To mitigate this decline in diversity, we introduce a distillation
loss, which effectively leverages both the pretrained model and
customized models to enhance the generation quality even further.

In summary, our main contributions are threefold:

(1) We propose the NewEpisode benchmark, which contains re-
fined datasets for pertaining visual story generation net-
works and a group of new characters available for the train-
ing and testing of story character customization methods.
The NewEpisode benchmark presents a non-trivial challenge
to existing visual story generation models and customization
methods.

(2) We introduce EpicEvo, our story character customization
method that enables the evolution of existing storylines by
allowing the model to learn to generate stories featuring ex-
isting and/or new characters. EpicEvo encourages the model
to generate characters distinctively using the adversarial
character alignment module and it preserves model priors
via distilling knowledge from a pretrained model.

(3) To the best of our knowledge, NewEpisode is the first bench-
mark specifically built for story character customization
within the context of visual story generation. Our method,
EpicEvo, is designed to tackle this challenging benchmark
such that it enables end-users to create their branch of new
stories with new characters using a few samples, making it
possible to continue the legend described by the canon.

2 RELATEDWORKS
Text-to-image Generation has been a heated topic in recent years.
Earlier generative models were mostly based on GAN [4]. Follow-
up works [1, 10, 11, 40] based on GAN [4] improved the model
complexity and led to noticeable improvements in the synthesized
image quality. Some other technical approaches featuring VAE [14]
and VQ-VAE [32] also demonstrated the abilities to generate realis-
tic images. Later, diffusion-based models [2, 8, 26, 31, 36] emerged
as promising ways of composing more complex and diverse images
based on text prompts. Recently, the emergence of latent diffusion
models, e.g., Stable Diffusion [33], demonstrated unprecedented



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Evolving Storytelling: Benchmarks and Methods for New Character Customization with Diffusion Models ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Fred and an old man 
with big mustache 
are talking outside. 

The martian talks 
to Fred in the car.

Stories of Main,         Main/Supporting, Supporting Characters

Fred and Uncle 
Tex Hardrock are 
talking outside. 

Gazoo talks to Fred
in the car.

An alien is floating 
in the air in the 

middle of a room 
and talking.

Gazoo is floating in 
the air in the 

middle of a room 
and talking.

MS

S

M

M
MS

S M

M

MS

S
M

M

MS

M

M

Train Val Test

AI Filtering Text Filtering Manual Filtering

M
M

M
M

S

S

Refined for pretraining For customization

MS

MS
S S

Fred and Barney are 
walking outside and 

Barneys tells Fred 
something.

Fred and Barney are 
walking outside and 

Barneys tells Fred 
something.

Train TrainTest TestVal

M

MS S

Prom
ptrefinem

ent

N
ew
E
pisode

(O
urs)

O
riginal

dataset

Figure 2: Illustration of the dataset construction. The proposed dataset has two main contributions compared with the original
datasets (FlintStonesSV [23] and PororoSV [19]): first, as shown on the left side, the original text prompts lack description
for supporting characters, making the training/evaluation less tractable while our dataset provides more comprehensive and
consistent annotations. Second, the original data can not well establish the adapting performance of models on new characters
since “the leakage of character information” is shown on the right side. We reorganize the dataset based on our previously
more detailed annotated dataset so that there is no leakage of new characters in the customization set to the pertaining set.

generative ability by performing diffusion operations in the latent
space of a VAE encoder [14].

Visual Story Generation involves creating sequences of im-
ages that form a coherent visual narrative, i.e., a series of images
with consistent contents such as characters, objects, background,
style, etc. StoryGAN [19] first introduced the concept of visual story
generation. [19] synthesizes several images based on the same num-
ber of prompts. The model processes contexts, such as prompts for
all images, to generate more coherent content. Following works
[17, 23, 24] further enhanced the model capability based on other
techniques. With the rise of latent diffusion models [33], [25, 30]
propose to synthesize visual stories based on pretrained diffusion
models [33]. Specifically, Make-A-Story [30] constructs a memory
module to store historical information such as previously generated
images and prompts and utilize such information to condition the
latent diffusion model [33]. Another work [27] proposes a more
complex architecture that leverages multi-modal encoders [18, 29]
to better encode historical information. Recently, [20] proposed the
task of open-ended story generation where the task is to generate
a series of images with 1-2 characters recurring. But it falls short
for story with more complex dynamics, such as dynamics between
characters. In sum, visual story generation models are good at gen-
erating stories for characters it has frequently seen during training,
but struggle to generalize for new characters.

Model Customization enables end users to generate images
that contain unique concepts, e.g., an object, a certain art style.
Previous model customization methods [3, 15, 35] primarily focus
on customizing an off-the-shelf text-to-image model, such as Stable

Diffusion [33] . Specifically, [35] and [15] train the text-to-image
model to associate a unique concept with an uncommon token, and
[3] tries to invert the text embedding vector that could prompt the
model to generate a unique concept. Following works [5, 28] fur-
ther combines customization with efficient adaptation methods [9]
and proposes generating multiple concepts in one image. Still, our
preliminary research finds efficient tuning methods [9] or tuning a
smaller portion of the diffusion model can be less efficient for the
story character customization task. In this paper, we focus on cus-
tomizing visual story-generation models such that the customized
model could generate stories for new characters.

3 DATASET AND BENCHMARK
In this section, we illustrate how the NewEpisode benchmark is con-
structed. For simplicity, without further notice, a story is assumed
to have 5 images and 5 corresponding text prompts. Each image can
feature different characters and images can re-appear in multiple
stories.

3.1 Dataset
NewEpisodeFlintStones. The proposed dataset NewEpisodeFlintStones
is based on FlintStonesSv [23] dataset that originated from a text-to-
video dataset proposed by [6]. The authors of [23] sampled images
from consecutive video clips in the text-to-video dataset and there
are 20132, 2071, and 2309 samples for training, validation, and
testing. Each story contains a fixed length of 5 images and 5 corre-
sponding text captions. The occurrence of seven main characters is
annotated in the text captions, and there is a group of supporting
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Table 1: Differences between NewEpisode and other general model customization datasets. NewEpisode focuses on customizing
a visual story generation model with new characters filtered from the original story visualization datasets. To ensure content-
consistent storytelling, the underlying model of our method is a Visual Story Generation model [27] tuned on the pretraining
datasets of the NewEpisode instead of a general stable diffusion model.

Method Task Backbone New Concept Types Number of New Concepts Scale of Evaluation
DreamBooth [35]

Single Image Generation

SD [33] / Imagen [36] Daily Objects, Pets 30 5
Textual Inversion [3] SD [33] Daily Objects, Pets, Humans, Styles N/A N/A
Custom Diffusion [15] SD [33] Daily Objects, Pets, Cars, etc. 101 10

Mix of Show [5] SD [33] Movie Characters, Cartoon Characters N/A N/A
Orthaganol Adaptation [28] SD [33] Movie Characters, Pets 12 16

Ours (NewEpisode) Visual Story Generation Visual Story Generation Model [27] Cartoon Characters 15 40 / 200

characters only appearing a few times without being carefully anno-
tated as shown in Fig. 2. To create datasets free of these supporting
characters for pretraining and customization, we manually went
through the entire dataset with a supporting LLM tool [21]. In sum,
we identify nine supporting characters in the original training, val-
idation, and testing split. There are 382 different images containing
these characters and 829 stories containing these new characters
(the same image can appear in different stories). We construct the
customization dataset based on these stories that depict interac-
tions between these new characters and existing characters. We
take one story for each new character during customization and
subsequently test the customized model on all other stories about
these new characters.

NewEpisodePororo. Similarly, PororoSV [19] is also sampled from
a dataset originally used for other purposes [12]. In the PororoSV
dataset, each story also contains 5 images and 5 corresponding
text captions illustrating the character actions. There are 10191,
2334, and 2208 stories for training, validation, and testing. Upon
close inspection, we found the captions for PororoSV [19] are more
organized, i.e., supporting characters are also referred to by their
names. Therefore, we performed a rule-based text matching for the
text captions of each story and identified 2976 images related to
these supporting characters and a total of 4976 stories that contain
these images. Excluding them from the training split, we obtain
the pretraining datasets for NewEpisodePororo that do not contain
these supporting characters, i.e., new characters. For customization
and testing the customized model, we follow the same protocol for
NewEpisodeFlintstones.

3.2 Benchmarking
As illustrated in Table 1, we have a larger scale of evaluation sto-
ries available for quantitative and qualitative evaluation of the
customized visual story generation model. We show the average
number of available individual images for each character. During
customization, the model is provided with 1 story for each new char-
acter (such stories are ensured to have images all relevant to the new
character for efficient customization). For NewEpisodeFlintstones, our
evaluation protocol lets the model generate all the relevant stories
for each new character. For NewEpisodePororo, we randomly select
a maximum of 100 stories for each new character using a fixed
random seed as many images are reused multiple times in many
stories. For quantitative evaluation, we focus on the images that
contain the new character and calculate automatic metrics such as
Fréchet inception distance (FID) [7], CLIP-T, and CLIP-I [29] for
them. Specifically, we leverage the FID score as we have a larger

scale of samples compared to general model customization works.
Meanwhile, we also evaluate the CLIP-I and CLIP-T scores as it is
widely used in various model customization works [3, 5, 15, 28, 35].

4 METHODOLOGY
Given𝑀 lines of text prompts 𝑆𝑡𝑥𝑡 = {𝐿1, ..., 𝐿𝑀 }, the visual story
generation task aims to generate𝑀 images 𝑆𝑖𝑚𝑔 = {𝐼1, ..., 𝐼𝑀 } based
on these prompts. Standard text-to-image models could handle this
task by generating each image in 𝑆𝑖𝑚𝑔 based on each text in 𝑆𝑡𝑥𝑡 .
However, this can overlook the contextual information contained
in other prompts as well as previously generated images. Thus, the
visual story generation method [25, 27, 30] instead utilizes all text
prompts and previously generated images to guide the underly-
ing diffusion model. In other words, the 𝑖-th image is conditioned
as 𝑃 (𝐼 𝑖 |𝐿1, ..., 𝐿𝑀 , 𝐼1, ..., 𝐼 𝑖−1). Notably, previous works assume the
model only needs to learn to generate stories that contain a closed
set of characters. This is reflected during the dataset construction
process as only these characters will be referred to by their names
consistently. For supporting characters that appear much less fre-
quently, they are referred to in various different ways. In this paper,
we instead assume the model will first learn to generate visual
stories with a close set of 𝑁 characters, i.e., 𝐶𝑒𝑥𝑡 = {𝑐1, 𝑐2, ..., 𝑐𝑁 }.
We regard this process as pretraining as the model requires a con-
siderable amount of iterations to learn to generate coherent images
by considering contextual information. Subsequently, in order to
generate stories with new characters, we customize the visual story
generation model to learn to generate content related to a group
of new characters 𝐶𝑛𝑒𝑤 = {𝑐𝑁+1, ..., 𝑐𝑁+𝐾 }. We consider the cus-
tomization process a few-shot finetuning process, i.e., the model
learns to generate an image containing the new character by only
taking a single story about the new characters. Notably, we use
finetuning stories that contain only the new characters themselves,
which is closer to real-world cases where the end users cannot pro-
vide versatile images of the new characters, e.g., how they interact
with other characters.

4.1 Visual Story Generation Preliminaries
Diffusion Models approximate a sample distribution 𝑝 (𝑥) by de-
noising from a base distribution in multiple steps. To learn such a
model with parameter 𝜃 , we define the forward diffusion process as
adding noise to an image 𝑥0 ∼ 𝑝 (𝑥) sampled from the sample dis-
tribution 𝑝 (𝑥) following a Markov process for 𝑇 times. In practice,
most recent works operate in the latent space of a VAE encoder [14]
for various benefits [33]. Thus, we denote the VAE-encoded 𝑥 as 𝑧,
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Figure 3: Illustration of EpicEvo. When generating the 𝑖-th image, the model takes all text inputs and previously generated
images, encodes them using CLIP [29] and BLIP [18] text and visual encoders, and conditions the denoising network [34]. To
enable better story character customization, the denoising network has three training objectives: 1) predict the noise 𝜖 added
to noisy latent 𝑧𝑡 at time step t such that the estimated noise 𝜖𝜃 is close to the ground truth noise 𝜖. This is reflected by the
mean square loss (MSE) loss L𝑚𝑠𝑒 ; 2) maximizing the probability that the discriminator network will classify the generated
image as a matching image w.r.t. to the reference image, i.e., minimize the adversarial character alignment loss L𝐺

𝑎𝑑𝑣
; 3) aligning

with the pretrained model by minimizing a distillation loss L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 calculated as the L2 distance between the noises estimated
by the pretrained model and the customized model. We denote the latent denoised by the customized model and pretrained
model as 𝑧𝜃

𝑡−1 and 𝑧
𝜓

𝑡−1. Notably, both the diffusion process and adversarial alignment process operate in the latent space of the
VAE [14] network. Thus, for the adversarial alignment process, we estimate 𝑧0 instead of directly computing 𝑧0 as this is too
computationally expensive. The dotted line here indicates that the estimated 𝑧0 can be decoded as a prediction of the generated
image in the pixel space. We omit the complete process of adding noise to the image to obtain 𝑧𝑡 and the iterative nature of the
reverse diffusion process for simplicity. Best viewed in color.

and the forward and backward diffusion process can be described
as follows:

𝑞(𝑧1:𝑇 |𝑧0) =
𝑇∏
𝑖=1

N(𝑧𝑡 ;
√︁
1 − 𝛽𝑡𝑧𝑡−1, 𝛽𝑡 𝐼 )

𝑝𝜃 (𝑧0:𝑇 ) = 𝑝𝜃 (𝑧𝑇 )
𝑇∏
𝑖=1

𝑝 (𝑧𝑡−1 |𝑧𝑡 ),

(1)

where {𝛽𝑡 ∈ (0, 1)}𝑇
𝑡=1 is a predefined time-dependent variance

schedule. The network is learned to estimate the noise 𝜖 added at
each time step 𝑡 to reconstruct 𝑧0 progressively and this can be
described as minimizing the L2 distance between the ground truth
noise 𝜖 and estimated noise 𝜖𝜃 by the denoising network:

L𝑚𝑠𝑒 = E𝜖,𝑧,𝑡
[
∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑠, 𝑡)∥22

]
, (2)

where 𝜖 ∼ N(0, 1). 𝑠 refers to a conditioning vector that makes the
generation process conditional, i.e., the generation process is depen-
dent on the input conditions, such as text, images, or information
from other modalities.

Diffusion-based Visual Story Generation Models [27, 30]
that achieved state-of-the-art performance recently are based on
the latent diffusion model described above. The main difference

is that instead of only encoding a single line of prompt 𝐿 as the
condition 𝑠 , i.e.,

𝑠 = E𝑡𝑥𝑡 (𝐿), (3)
visual story generation models encode all text prompts in 𝑆𝑡𝑥𝑡 and
all generated images 𝑆𝑖

𝑖𝑚𝑔
= {𝐼1, ..., 𝐼𝑖−1} before the 𝑖-th image as

the condition. Formally, this can be described as:

𝑠𝑖 = 𝐹

(
E𝑡𝑥𝑡 (𝑆𝑡𝑥𝑡 ), E𝑖𝑚𝑔 (𝑆𝑖𝑖𝑚𝑔)

)
, (4)

where E𝑡𝑥𝑡 and E𝑖𝑚𝑔 are text and visual encoders, 𝑠𝑖 is the condi-
tioning vector for the 𝑖-th image to be generated,𝐹 is a function
that fuses the encoded text and visual information.

4.2 Story Character Customization
Pretraining. Existing customization methods [3, 5, 15, 28, 35] aim
to customize a general text-to-image model [33]. For visual story
generation models [27, 30], the model needs to be first trained on a
story dataset, such as the FlintStonesSV [23] dataset. Such a dataset
contains a large number of stories that have a fixed length of 5
images and 5 lines of text captions. In the context of story charac-
ter customization, we regard this process as pretraining. Notably,
previous models are trained using a dataset that contains both𝐶𝑒𝑥𝑡
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and𝐶𝑛𝑒𝑤 , whereas we train the underlying visual story generation
network using the refined pretraining splits of NewEpisode and
these splits are free of 𝐶𝑛𝑒𝑤 .
Customization.Common customizationmethods customize a text-
to-image model by tuning the model to generate unique concepts
whenever prompted by a special word, or more precisely, a special
token [3, 27, 35]. Within the context of story character customiza-
tion, we customize the visual story generation model by having
the model generate a new character whenever such a character is
mentioned by the prompt. Specifically, we refer to new characters
with a short phrase of descriptive words. We found this sufficient
to prompt the model to generate stories containing these new char-
acters in the case of story character customization. We use such
a prompting strategy for our method, i.e., EpicEvo, in the rest of
this paper. Additionally, we also leverage a small group of stories of
existing characters as regularization terms to mitigate overfitting.
The optimization goal can be therefore formulated as minimizing
the following loss:

L𝑚𝑠𝑒 = E𝜖,𝑧′,𝑡
[
∥𝜖 − 𝜖𝜃 (𝑧′𝑡 , 𝑠, 𝑡)∥22

]
+ E𝜖,𝑧,𝑡

[
∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑠, 𝑡)∥22

]
,

(5)
where 𝑧′ corresponds to stories of existing characters and 𝑧 corre-
sponds to stories of new characters.

4.3 Adversarial Character Alignment
A previous study [15] alleviates the challenge of multi-concept cus-
tomization through either naive joint training or merging model
weights trained on individual concepts. Story character customiza-
tion poses more difficulties due to the similarities between new and
existing characters. In this work, we jointly train with multiple new
characters. We noticed that the customized model might be unable
to capture the visual traits of the new characters. For example, in
Fig. 4-g, the model can be confused about the appearance of the
new character, leading to unsatisfactory generation results.

In view of this, inspired by the adversarial learning scheme
featured by [37], we propose the adversarial character alignment
module designed for the diffusion-based visual story generation
model. The key objective of the adversarial finetuning process is
to regulate the model such that it generates each character dis-
tinctively and mitigates the confusion between each existing and
new character. Following the common formulation of adversarial
learning [4], we regard the diffusion model as the generator and
we construct a discriminator 𝐷𝜙 with parameters 𝜙 to discriminate
between the ground truth latent 𝑧0 and the estimated latent 𝑧0.
The key to enforcing better character alignment lies in the way we
construct the positive and negative samples for the discriminator,
that is:

• Wefirst select several visual references for a certain character
and encode them as 𝑧𝑟 .

• We generate the positive samples by fusing the ground truth
latent 𝑧0 with the latent 𝑧𝑟 of the reference character when-
ever a certain frame in the story contains the reference char-
acter.

• We generate the negative samples by fusing the estimated la-
tent 𝑧0 and the latent 𝑧𝑟 of the reference character whenever
a certain frame in the story contains the reference character.

This forces the network to generate images containing the reference
character. In practice, the fusion process is implemented as concate-
nation. The noisy latent 𝑧𝑡 is derived from a group of ground truth
images 𝑧0, i.e., 𝑧𝑡 = 𝛼𝑡𝑧0+𝜎𝑡𝜖 where 𝛼𝑡 = 1−𝛽𝑡 . The generated data
from the model could be denoted as 𝑧0. Therefore, the optimization
objective for the denoising network can be derived as:

L = L𝑚𝑠𝑒 + 𝜆L𝐺
𝑎𝑑𝑣

(𝑧0, 𝑧𝑟 , 𝜙), (6)

where 𝜆1 is the coefficient for the adversarial loss for the diffusion
network. In practice, we set the optimization goal for the generation
as minimizing the following loss:

L𝐺
𝑎𝑑𝑣

= −E𝑧0,𝑧𝑟
[
log(𝐷𝜙 (𝑧0, 𝑧𝑟 ))

]
(7)

whereas the discriminator is trained to maximize:

L𝐷
𝑎𝑑𝑣

= E𝑧0,𝑧𝑟
[
log(𝐷𝜙 (𝑧0, 𝑧𝑟 ))

]
+ E𝑧0,𝑧𝑟

[
log(1 − 𝐷𝜙 (𝑧0, 𝑧𝑟 ))

]
(8)

In practice, the discriminator 𝐷𝜙 contains 4 convolutional layers
and 1 linear layer to process the positive and negative samples and
it operates in the latent space instead of the pixel space. Instead
of stepping the model from the 𝑡-th time step to 0 to obtain 𝑧0, an
alternative way is to substitute 𝑧0 based on [38], i.e.,

𝑧0 =
𝑥𝑡 −

√
1 − 𝛼𝑡 · 𝜖𝑡√
𝛼𝑡

, (9)

where 𝛼𝑡 =
∏𝑇
𝑖=1 𝛼𝑖 , and 𝑧0 is an estimated version of 𝑧0. Intuitively,

the generator network, i.e., the diffusion model, generates images
that contain the reference character such that it maximizes the like-
lihood that these images are deemed a ‘match’ by the discriminator,
while the discriminator tries to distinguish whether the generated
images contain the reference character.

4.4 Story Prior Preservation via Distillation
Finetuning based on a few training samples introduces risks of
overfitting, resulting in a decrease in diversity and many other
undesirable outcomes such as language drift [15, 16, 22, 35]. Within
the context of visual story generation, we also observe that the
model could associate characters with certain types of backgrounds,
further decreasing the output diversity. Meanwhile, the pretrained
network possesses a higher level of output diversity despite it has
little knowledge of the new characters prior, making them sub-
optimal for directly generating these characters. Therefore, we
design a distillation loss where the pretrained story generation
model with parameter𝜓 is regarded as a teacher and the distillation
loss is formulated as:

Ldistill = E𝑧0,𝑠,𝑡
[
∥𝜖𝜓 (𝑧𝑡 , 𝑠, 𝑡) − 𝜖𝜃 (𝑧𝑡 , 𝑠, 𝑡)∥22

]
(10)

To sum up, the overall optimization objective for the story visual-
ization network can be formulated as:

L = L𝑚𝑠𝑒 + 𝜆1L𝐺𝑎𝑑𝑣 + 𝜆2L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 , (11)

where 𝜆1, 𝜆2 are two coefficients for the generator adversarial loss
and distillation loss.
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Table 2: FID, CLIP-I, and CLIP-T scores on the FlintStones
and Pororo split of the NewEpisode benchmark

Methods NewEpisode𝐹𝑙𝑖𝑛𝑡𝑆𝑡𝑜𝑛𝑒𝑠 NewEpisode𝑃𝑜𝑟𝑜𝑟𝑜
FID↓ CLIP-I ↑ CLIP-T ↑ FID↓ CLIP-I ↑ CLIP-T ↑

Pretrain Model 210.45 0.8203 0.2510 143.98 0.7690 0.2358
Textual Inversion 207.36 0.8027 0.2399 150.08 0.7603 0.2335
DreamBooth 192.95 0.8360 0.2510 134.94 0.8010 0.2522

Custom Diffusion 190.97 0.8250 0.2480 131.88 0.7935 0.2487
EpicEvo 188.30 0.8380 0.2573 130.4 0.7954 0.2551

5 EXPERIMENTS
In this section, we describe the details of the NewEpisode bench-
mark, followed by implementation details of baselines and our
method, quantitative analysis, and qualitative results.

Dataset.We collected a dataset that contains thousands of visual
stories for a total of 15 new characters from the FlintStonesSV [23]
and PororoSV [19] dataset. Readers can refer to Sec. 3, Fig. 2, and
Table 1 for a detailed illustration of howwe derived our dataset from
existing datasets and benchmark model customization methods.

Training Details. We use the model proposed by [27] as the
backbone for visual story generation. During the pretraining stage,
we keep most of the settings the same as [27] but train the net-
work at a resolution of 256 × 256 as the training samples from
FlintStonesSV [23] and PororoSV [19] are 128 × 128. During model
customization, we freeze the CLIP [29] and BLIP [18] encoders and
only train the denoising network. The batchsize during customiza-
tion is 2 and the learning rate is 1×10−5. The model is tuned for 100
epochs using the Adam [13] optimizer. For sampling, we step the
model for 50 steps using the DDIM [38] sampler with a guidance
scale of 6.0. 𝜆1, 𝜆2 is set to 0.75, 0.5 and 0.25, 0.25 for the Flintstones
and Pororo customization benchmark in NewEpisode. We consider
multiple model customization works [3, 15, 35] as competitive base-
lines. For DreamBooth [35], we randomly select rare tokens and
finetune the entire model following the original paper. Since we
use a small portion of training samples during customization, we
disable the prior-preservation loss of DreamBooth [35]. For Custom
Diffusion, we employ the same group of tokens as DreamBooth
while following its experiment setup. For Textual Inversion [3], we
initialize new token embedding using the embedding mean and
variance.

Evaluation Metrics. To quantitatively evaluate our method
and various baselines, we employ three widely adapted metrics,
including Fréchet inception distance (FID) [7], CLIP-I, and CLIP-T
[15, 29, 35]. CLIP-I refers to image-to-image similarity score and
CLIP-T refers to text-to-image similarity score. Specifically, we
focus on the images related to new characters (not every image in
one story contains the new characters) the FID score measures the
cluster distance between the generated images and ground truth in
the latent space of the Inception V3 model [39]. We average across
the FID score for each character and report the average character
FID. For CLIP-based [29] metrics, CLIP-I is the average pairwise
cosine similarity between the CLIP features of generated images
and ground truth images. CLIP-T is the average pairwise cosine
similarity between the CLIP features of generated images and the
text captions.When calculating the CLIP-T score, we use descriptive
phrases to refer to each new character because the modifier tokens

Table 3: Ablation studies for the distillation process and ad-
versarial character alignment process

Methods NewEpisode𝐹𝑙𝑖𝑛𝑡𝑆𝑡𝑜𝑛𝑒𝑠 NewEpisode𝑃𝑜𝑟𝑜𝑟𝑜
FID↓ CLIP-I ↑ CLIP-T ↑ FID↓ CLIP-I ↑ CLIP-T ↑

Pretrained Model 210.45 0.8203 0.2510 143.98 0.7690 0.2358
L𝑚𝑠𝑒 192.76 0.8360 0.2542 132.51 0.7940 0.2546

L𝑚𝑠𝑒 + L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 192.04 0.8345 0.2550 130.73 0.7915 0.2537
L𝑚𝑠𝑒 + L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 + L𝐺

𝑎𝑑𝑣
188.30 0.8380 0.2573 130.40 0.7954 0.2551

and inverted tokens are out-of-distribution for the pretrained CLIP
[29] model.

Quantitative Analysis. We show the FID scores in Table. 2. No-
tably, the scale of the FID score highly relies on the sample size, with
a smaller sample size, it is expected to have larger FID scores. Nev-
ertheless, the reduction in FID scores on both NewEpisodeFlintstones
and NewEpisodePororo indicate that our story character customiza-
tion method, i.e., EpicEvo, could on average achieve better cus-
tomization results compared to the baselines. In terms of the CLIP-I
and CLIP-T scores, we found our model achieves a higher CLIP-I
score on the NewEpisodeFlintstones and our method reaches the sec-
ond place on the test set of NewEpisodePororo. Still, for the CLIP-T
score, our model obtains better similarities compared to the base-
lines. This indicates the generated stories of new characters are
more semantically aligned with the text prompts. The results of
Textual Inversion [3] and the pretrained model validate that the
model has never seen these new characters, making it hard for them
to generate stories related to these characters.

Ablation Study. We ablate our method, EpicEvo, by remov-
ing three losses, i.e., the reconstruction loss L𝑚𝑠𝑒 , the adversarial
character alignment loss L𝑎𝑑𝑣 , and the distillation loss L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 .
Starting from a pretrained model trained on the pretraining split
of NewEpisode, we validate the model performance using three of
our testing metrics. By finetuning the model using a few examples
of each new character, we notice a significant drop in terms of the
FID score, meaning the model is learning to generate content more
relevant to the new characters. Next, enabling the distillation loss
decreases the FID score but increases the CLIP-I and CLIP-T scores.
We empirically found the reason might be the pretrained model
has no prior of the new character. Therefore, learning from the
pretrained model has the risk of misguiding the customized model
despite it could better prevent overfitting. We recommend using a
smaller 𝜆2 such that the distillation loss could encourage the model
to generate diverse contents without disturbing learning of the
visual features of new characters. Lastly, we enable the character
alignment loss we designed for the diffusion-based visual story gen-
eration model, i.e., L𝐺

𝑎𝑑𝑣
. We observe a further reduction in the FID

score and an increase in the CLIP-I and CLIP-T scores, validating
that the proposed adversarial character alignment method could
encourage the model to learn to generate new characters more
consistently.

Qualitative Analysis. While our method reached better cus-
tomization performances on both customization testing datasets of
the NewEpisode, it is still an open debate regarding to what extent
FID score [7], CLIP-I and CLIP-T [29], etc. can represent human per-
ceptions. . Thus, to empirically validate the performance of EpicEvo,
we display the generated images of new characters in Fig. 4, and



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 4: Qualitative story character customization results from different baselines. For (a) and (b), we highlight the original
visual story and highlight one of the generated frames containing the new character. For the rest of the image, we present
sampled individual frames from stories to better demonstrate the effectiveness of EpicEvo under various conditions.

we show stories and images relevant to the new characters in Fig. 4.
Overall, Fig. 4 demonstrates that our method can generate the new
characters alone, e.g., Fig. 4-a,b,c,d,e or with other characters, e.g.,
Fig. 4-f,g,h,i,j more consistently. We also find Dreambooth [35]
achieves decent results, specifically on NewEpisodePororo. We hy-
pothesized that the Custom Diffusion [15] is limited because simply
tuning the cross-attention layer might not be sufficient to learn
the novel appearance of new characters, this also aligns with our
preliminary studies that show LoRA [9] offers unsatisfactory re-
sults due to its limited ability to learn representations. For Textual
Inversion [3], users rarely pick images generated by it, and this
is expected as the model will struggle to invert concepts it has
never seen before, especially under the condition that we carefully
removed all these new characters from the pertaining data.

6 CONCLUSION
In this paper, we tackle the challenging problem of story charac-
ter customization. We aim to customize a visual story generation

model so that it can generate stories for new characters it has
never seen before. We first propose the NewEpisode benchmark.
NewEpisode leverages supporting characters in previous story gen-
eration datasets as new characters. It contains carefully refined
pretraining data to train visual story generation models and plenty
of data for training and testing story character customization meth-
ods. We identify the core challenge is that visual story generation
contains complex priors such as character dynamics, making cus-
tomizing more challenging. In view of this, we propose EpicEvo,
our method to tackle story character customization. EpicEvo takes
a few images of the new character and customizes the model to
generate stories for the new character. It contains an interesting
adversarial character alignment module and it utilizes knowledge
distillation to prevent overfitting. Compared to previous methods,
we quantitatively and qualitatively validate that EpicEvo can gener-
ate visual stories that have better new character consistency. This
indicates that EpicEvo can better tackle the problem of story char-
acter customization, making downstream tasks such as the creation
of serialized cartoons, and TV series, possible.
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