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1 INTRODUCTION
This supplementary material presents more detail about our paper
Evolving Storytelling: Benchmarks and Methods for New Charac-
ter Customization with Diffusion Models. We organized this sup-
plementary as follows: 1) we present more details regarding the
datasets contained in NewEpisode; 2) we present detailed exper-
iment results and a user study regarding the generated images
of EpicEvo on NewEpisodeFlintstones and NewEpisodePororo; 3) we
present more visual examples generated by EpicEvo; 4) we discuss
the limitations of our method; and finally 6) we discuss potential
societal impacts.

2 DATASET DETAILS
In this section, we introduce the details about our benchmark
NewEpisode. Specifically, it contains two customization bench-
marks, namely NewEpisodeFlintstones and NewEpisodePororo, derived
from the original FlintstonesSV [8] and PororoSV [6] datasets. The
main characters in NewEpisodeFlintstones are shown in Fig. 1.

Figure 1: Main characters of the NewEpisodeFlintstones

The new characters available for the story character customiza-
tion task are shown in Fig. 2.

Figure 2: New characters of the NewEpisodeFlintstones

For NewEpisodePororo, the main characters are shown in Fig. 3,
and the new characters are shown in Fig. 4.

For each new character, its sample size is shown in Table. 2.
We list both the available images and available stories for each

Figure 3: Main characters of the NewEpisodePororo

Figure 4: New characters of the NewEpisodePororo

character. Notably, some images can reoccur in other stories due to
the original construction process of FlintstonesSV [8], i.e., 5 logically
consecutive images are considered one story. During the evaluation,
we evaluate all the corresponding stories and calculate the FID [2]
scores for each character for NewEpisodeFlintstones. We randomly
select a maximum number of 100 stories (with a fixed random seed)
for NewEpisodePororo and evaluate all images related to the new
characters. We report the average FID scores and CLIP-based scores
[10] to avoid the case that characters who have many more stories,
e.g., Gazoo, can overshadow the model performance on characters
that have lesser evaluation samples. For model customization, we
use one story of each character to finetune the model. Notably,
we use stories that contain images that are all related to the new
character because this leads to more efficient customization, and
is closer to real-world scenarios (it is easier for the end user to
provide images that only contain the new character). Therefore,
during evaluation, these 5 images used for customization will not
be included. The samples used for customization are fixed across
all our baselines. Code and dataset will be released.

3 EXTENDED MODEL EVALUATION
In this section, we provide the extended evaluation results of our
story character customization model, EpicEvo, and our baselines,
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Table 1: Detailed FID scores for each new character in NewEpisode

Characters
NewEpisode

FID
Textual Inversion [1] DreamBooth [12] Custom Diffusion [5] EpicEvo(Ours)

Slaghoople 150.21 139.68 136.47 130.08
Tex Hardrock v1 250.05 222.26 233.73 228.12

Gazoo 127.94 114.82 120.97 118.91
Police in Helmet 234.41 223.91 206.30 189.46

Pianist 261.59 285.26 227.67 229.93
Rockzilla 230.22 205.57 220.82 206.39

Tex Hardrock v2 179.51 160.79 173.40 166.38
Theft 195.93 164.03 175.35 182.11
Seal 236.39 220.26 224.04 243.30
Popo 144.19 138.41 135.33 140.15
Pipi 139.80 138.26 133.66 137.06

Whale 202.52 154.02 162.69 146.75
Shark 148.21 128.52 114.04 116.81
Harry 112.80 116.07 118.13 115.01
Tutu 152.92 134.33 127.39 126.60

Table 2: Dataset details of NewEpisode

Available Images Available Stories
Slaghoople 73 139

Tex Hardrock v1 19 22
Gazoo 138 268

Police in Helmet 19 29
Pianist 23 33
Rockzilla 26 37

Tex Hardrock v2 41 72
Theft 21 34
Seal 23 44
Tutu 184 331
Popo 129 186
Pipi 120 187
Shark 150 245
Whale 17 36
Harry 1980 3714

i.e., DreamBooth [12], Custom Diffusion [5], and Textual Inversion
[1]. We first show the detailed FID score for each new character
in NewEpisode. We present the results for all 15 new characters
in Table 1. To further study the model performance, we also con-
ducted a user preference study as some works like [9] suggested
that automatic metrics such as FID [2] might not fully align with
human perception. Specifically, we present a comparison-based
user study where each user is prompted to pick the image that
best matches the ground truth image and the input text prompt,
visual samples in Fig. 5,6,7 are some of the samples we used during
the user study. Each user is allowed to select at most 2 matching
images if there is no obvious winner, the users are also allowed to
skip the current comparison if they think there are no matching
results. We collected 20 user studies from users with various back-
grounds and summarized the user preference rate in Table. 3. Note
that we mark the case where users skip the comparison as ’Tie’,
meaning all generated images are somewhat uncorrelated with
the ground truth and/or the text prompt. In conclusion, we found
that the FID score alone might be insufficient to reflect the actual
synthesis quality as we found that a smaller FID score difference
does not deterministically lead to worse or better visual quality.
For instance, in the case of Tex Hardrock v1, we found our model
is more frequently preferred despite it does not reach the lowest
FID. Similarly, for the Shark and the Whale, we found [12] is more

Table 3: User preference rate for each character across
all available characters in NewEpisodeFlintstones and
NewEpisodePororo

Tie TI [1] DB [12] CustomDiff [5] EpicEvo
Slaghoople 7.09% 3.94% 30.71% 23.62% 34.65%

Tex Hardrock v1 12.22% 1.11% 21.11% 7.78% 57.78%
Gazoo 9.50% 1.81% 37.10% 8.14% 43.44%

Police in Helmet 7.69% 9.89% 25.27% 9.89% 47.25%
Pianist 1.10% 1.10% 14.29% 20.88% 62.64%
Rockzilla 4.47% 0.00% 39.11% 2.23% 54.19%

Tex Hardrock v2 12.08% 0.00% 14.77% 4.70% 68.46%
Theft 10.47% 0.00% 24.42% 36.05% 29.07%
Seal 27.08% 4.17% 36.46% 16.67% 15.62%
Tutu 24.64% 16.30% 14.13% 10.51% 34.42%
Popo 15.70% 3.31% 42.98% 10.33% 27.69%
Pipi 15.73% 2.25% 29.29% 13.86% 39.58%
Shark 18.81% 16.83% 40.59% 8.91% 14.85%
Whale 15.38% 0.00% 51.28% 24.36% 8.97%
Harry 20.77% 10.38% 19.67% 22.95% 26.23%

frequently preferred despite having a higher FID score. Still, there
are also cases in which FID could lead to conclusions about model
performances, e.g., Slaghoople, Police in Helmet, Pianist, Tutu, and
Harry.

We hypothesized that the FID score could ignore aspects includ-
ing the level of artifacts, texture quality, and subtle semantic details
while attending to aspects deemed less important by users such as
background and style. Additionally, our preliminary studies also
show that the current vision-language model also shows an unsatis-
factory level of accuracy as their visual encoder could ignore subtle
details [7]. In conclusion, based on the user study, we found EpicEvo
winning in 66.67% of cases, [12] winning in 26.67% of cases, and [5]
winning in 6.67% of cases. We found [12], despite being simple, is
more effective than [5]. This is contrary to the conclusions made
by [5], i.e., tuning only the cross-attention layer could result in
better multi-concept generation performance. We hypothesize that
such a conclusion might be limited to the case of tuning a general
text-to-image model such as Stable Diffusion [11]. In the case of
the model specialized for storytelling, tuning the cross-attention
layers might lead to the underfitting of customization samples. We
also found using LoRA [3] also leads to unsatisfactory results, and
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Figure 5: Visual examples of model-generated stories for new and existing characters.

this might also be attributed to the fact that an insufficient number
of parameters could underfit the customization samples.

In sum, in this section, we discuss the customized model per-
formance more thoroughly using automatic metrics and human
evaluation results. We found that our model could generate less
satisfactory results for certain new characters despite achieving
better automatic metric scores. This suggests that it is necessary to

consider evaluation results from various aspects to correctly assess
model performance.

4 QUALITATIVE MODEL EVALUATION
In this section, we presentmore visual illustrations ofmodel-generated
results from our method and the baselines.
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Figure 6: Visual examples of model-generated stories for new and existing characters.

In Fig. 5, stories related to Slaghoople, Tex Hardrock v1, Gazoo,
Pianist, Police in Helmet, and Rockzilla are displayed. We found that
our method is more capable of generating images that contains
multiple characters. For instance, in (11), (15), and (16) EpicEvo
could correctly generate the mentioned characters in the text input,
demonstrating a stronger ability to synthesize stories with more
complex dynamics. In the case of (1) and (8), we also found that our

method could generate stories that have better character consis-
tency, i.e., the generated character is closer to the new character we
customized. Admittedly, there are failure cases such as (4) where
our model seems to be overwhelmingly affected by the presence of
Slaghoople in the input text, leading to the result of generating two
characters that have her appearance.
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Figure 7: Visual examples of model-generated stories for new and existing characters.

In this figure, we show examples related to Rockzilla, TexHardrock
v2, Seal, and Theft. We found that our model is more performing
on generating characters such as Rockzilla as we observe the gen-
erated characters could better illustrate actions between Rockzilla
and existing characters such as Barney. Additionally, EpicEvo also
synthesizes stories for Tex Hardrock v2 better than other competitive
methods by depicting the character more precisely, albeit with some

level of misalignment remaining. Nevertheless, we validate the case
in our user study that EpicEvo is less capable of generating stories
for the Theft and the Seal. Overall, our method empirically per-
forms better than the baselines on NewEpisodeFlintstoens. We also
display results from NewEpisodePororo in this figure. We found a
noticeable improvement in stories containing the character Tutu
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as the existing characters appear more accurately. For images re-
lated to Popo and Pipi, we found that although our method could
distinguish more between these two very similar characters, the
adversarial training procedure could lead to more artifacts, leading
to unsatisfactory results. This is also reflected by our user study, as
we have a similar preference rate as DreamBooth [12].

In Fig. 7, we continue to display samples for the Shark, theWhale,
and Harry. As indicated by the user study, we found that Dream-
Booth [12] captures the characteristics of the Shark and the Whale
more accurately, leading to a higher user preference rate. Still, we
empirically found this might be a result of overfitting. For instance,
in Fig. 7-(9), DreamBooth [12] seems to be overfitted to the cus-
tomization samples as the generated image is less aligned with the
caption despite correctly depicting the new character. Lastly, we
discuss the case of Harry. Harry is a rather frequent character in
the original dataset and it proves to be very challenging to generate
for all customized models. We hypothesize the reason could be that
Harry is significantly smaller than most other existing characters.
With compression processes like VAE [4], it could be challenging for
the model to correctly learn the representation for such characters
and this leads to unsatisfactory results. Nonetheless, our adversar-
ial character alignment method seems to be able to encourage the
generating of such novel characters, despite having plenty of room
for improvement.

5 LIMITATIONS
In conclusion, we introduced EpicEvo, a suite of methods tailored
for story character customization. This specific application presents
unique challenges not typically encountered in standard customiza-
tion tasks. For instance, the model inherently carries strong priors
about existing characters, which can complicate the introduction of
new characters. Our approach incorporates an adversarial character
alignment module aimed at fostering the generation of narratives
for these new characters. Despite our efforts, our detailed evalu-
ations reveal that EpicEvo has not fully succeeded in generating
coherent stories for new characters. Additionally, we observed a ten-
dency for the story generation model to overfit the customization
examples. Moreover, the adversarial nature of the character align-
ment process sometimes introduces visual artifacts in the generated
outputs, a consequence of the inherent instability in adversarial
training methods. Addressing this instability remains a task for
future research. Furthermore, our visual assessments highlighted
the persistent challenges in generating complex compositions, such
as images featuring multiple characters. These difficulties are not
exclusive to our method but are also prevalent in diffusion models
and other diffusion-based story generation approaches. Exploring
new techniques to better control and regulate character representa-
tion in narrative synthesis could be a valuable direction for future
research, potentially enhancing fidelity to textual descriptions in
generated visual content.

6 SOCIETAL IMPACT
The development of story character customization methods like
EpicEvo offers significant creative potential and economic oppor-
tunities by enabling more diverse and personalized storytelling.

However, these technologies also pose risks, such as the poten-
tial for misuse in creating harmful or misleading content. This
raises important ethical and legal challenges, particularly concern-
ing copyright issues and the propagation of stereotypes. Balancing
these benefits and risks will require careful management, including
the development of ethical guidelines and robust legal frameworks
to govern the use of such.
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