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Abstract

While contextual bandit has a mature theory, effectively leveraging different feed-1

back patterns to enhance the pace of learning remains unclear. Bandits with feed-2

back graphs, which interpolates between the full information and bandit regimes,3

provides a promising framework to mitigate the statistical complexity of learning.4

In this paper, we propose and analyze an approach to contextual bandits with5

feedback graphs based upon reduction to regression. The resulting algorithms are6

computationally practical and achieve established minimax rates, thereby reducing7

the statistical complexity in real-world applications.8

1 Introduction9

This paper is primarily concerned with increasing the pace of learning for contextual bandits [Auer10

et al., 2002, Langford and Zhang, 2007]. While contextual bandits have enjoyed broad applicabil-11

ity [Bouneffouf et al., 2020], the statistical complexity of learning with bandit feedback imposes a12

data lower bound for application scenarios [Agarwal et al., 2012]. This has inspired various mitigation13

strategies, including exploiting function class structure for improved experimental design [Zhu and14

Mineiro, 2022], and composing with memory for learning with fewer samples [Rucker et al., 2022].15

In this paper we exploit alternative graph feedback patterns to accelerate learning: intuitively, there is16

no need to explore a potentially suboptimal action if a presumed better action, when exploited, yields17

the necessary information.18

The framework of bandits with feedback graphs is mature and provides a solid theoretical foundation19

for incorporating additional feedback into an exploration strategy [Mannor and Shamir, 2011, Alon20

et al., 2015, 2017]. Succinctly, in this framework, the observation of the learner is decided by a21

directed feedback graph G: when an action is played, the learner observes the loss of every action22

to which the chosen action is connected. When the graph only contains self-loops, this problem23

reduces to the classic bandit case. For non-contextual bandits with feedback graphs, [Alon et al.,24

2015] provides a full characterization on the minimax regret bound with respect to different graph25

theoretic quantities associated with G according to the type of the feedback graph.26

However, contextual bandits with feedback graphs have received less attention [Singh et al., 2020,27

Wang et al., 2021]. Specifically, there is no prior work offering a solution for general feedback graphs28

and function classes. In this work, we take an important step in this direction by adopting recently29

developed minimax algorithm design principles in contextual bandits, which leverage realizability30

and reduction to regression to construct practical algorithms with strong statistical guarantees [Foster31

et al., 2018, Foster and Rakhlin, 2020, Foster et al., 2020, Foster and Krishnamurthy, 2021, Foster32

et al., 2021, Zhu and Mineiro, 2022]. Using this strategy, we construct a practical algorithm for33

contextual bandits with feedback graphs that achieves the optimal regret bound. Moreover, although34

our primary concern is accelerating learning when the available feedback is more informative than35

bandit feedback, our techniques also succeed when the available feedback is less informative than36

bandit feedback, e.g., in spam filtering where some actions generate no feedback. More specifically,37

our contributions are as follows.38
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Contributions. In this paper, we extend the minimax framework proposed in [Foster et al., 2021]39

to contextual bandits with general feedback graphs, aiming to promote the utilization of different40

feedback patterns in practical applications. Following [Foster and Rakhlin, 2020, Foster et al., 2021,41

Zhu and Mineiro, 2022], we assume that there is an online regression oracle for supervised learning42

on the loss. Based on this oracle, we propose SquareCB.G, the first algorithm for contextual bandits43

with feedback graphs that operates via reduction to regression (Algorithm 1). Eliding regression regret44

factors, our algorithm achieves the matching optimal regret bounds for deterministic feedback graphs,45

with Õ(
√
αT ) regret for strongly observable graphs and Õ(d 1

3T
2
3 ) regret for weakly observable46

graphs, where α and d are respectively the independence number and weakly domination number47

of the feedback graph (see Section 3.2 for definitions). Notably, SquareCB.G is computationally48

tractable, requiring the solution to a convex program (Theorem 3.6), which can be readily solved49

with off-the-shelf convex solvers (Appendix A.3). In addition, we provide closed-form solutions for50

specific cases of interest (Section 4), leading to a more efficient implementation of our algorithm.51

Empirical results further showcase the effectiveness of our approach (Section 5).52

2 Problem Setting and Preliminary53

Throughout this paper, we let [n] denote the set {1, 2, . . . , n} for any positive integer n. We consider54

the following contextual bandits problem with informed feedback graphs. The learning process goes55

in T rounds. At each round t ∈ [T ], an environment selects a context xt ∈ X , a (stochastic) directed56

feedback graph Gt ∈ [0, 1]A×A, and a loss distribution Pt : X → ∆([−1, 1]A); where A is the57

action set with finite cardinality K. For convenience, we use A and [K] interchangeably for denoting58

the action set. Both Gt and xt are revealed to the learner at the beginning of each round t. Then the59

learner selects one of the actions at ∈ A, while at the same time, the environment samples a loss60

vector ℓt ∈ [−1, 1]A from Pt(·|xt). The learner then observes some information about ℓt according61

to the feedback graph Gt. Specifically, for each action j, she observes the loss of action j with62

probability Gt(at, j), resulting in a realization At, which is the set of actions whose loss is observed.63

With a slight abuse of notation, denote Gt(·|a) as the distribution of At when action a is picked.64

We allow the context xt, the (stochastic) feedback graphs Gt and the loss distribution Pt(·|xt) to be65

selected by an adaptive adversary. When convenient, we will consider G to be a K-by-K matrix and66

utilize matrix notation.67

Other Notations. Let ∆(K) denote the set of all Radon probability measures over a set [K].68

conv(S) represents the convex hull of a set S. Denote I as the identity matrix with an appropriate69

dimension. For a K-dimensional vector v, diag(v) denotes the K-by-K matrix with the i-th diagonal70

entry vi and other entries 0. We use RK
≥0 to denote the set of K-dimensional vectors with non-negative71

entries. For a positive definite matrix M ∈ RK×K , we define norm ∥z∥M =
√
z⊤Mz for any vector72

z ∈ RK . We use the Õ(·) notation to hide factors that are polylogarithmic in K and T .73

Realizability. We assume that the learner has access to a known function class F ⊂ (X ×A 7→74

[−1, 1]) which characterizes the mean of the loss for a given context-action pair, and we make the75

following standard realizability assumption studied in the contextual bandit literature [Agarwal et al.,76

2012, Foster et al., 2018, Foster and Rakhlin, 2020, Simchi-Levi and Xu, 2021].77

Assumption 1 (Realizability). There exists a regression function f⋆ ∈ F such that E[ℓt,a | xt] =78

f⋆(xt, a) for any a ∈ A and across all t ∈ [T ].79

Two comments are in order. First, we remark that, similar to [Foster et al., 2020], misspecification can80

be incorporated while maintaining computational efficiency, but we do not complicate the exposition81

here. Second, Assumption 1 induces a “semi-adversarial” setting, wherein nature is completely free82

to determine the context and graph sequences; and has considerable latitude in determining the loss83

distribution subject to a mean constraint.84

Regret. For each regression function f ∈ F , let πf (xt) := argmina∈A f(xt, a) denote the85

induced policy, which chooses the action with the least loss with respective to f . Define π⋆ := πf⋆86

as the optimal policy. We measure the performance of the learner via regret to π⋆: RegCB :=87 ∑T
t=1 ℓt,at

−
∑T

t=1 ℓt,π⋆(xt), which is the difference between the loss suffered by the learner and the88

one if the learner applies policy π⋆.89
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Regression Oracle We assume access to an online regression oracle AlgSq for function class F ,90

which is an algorithm for online learning with squared loss. We consider the following protocol.91

At each round t ∈ [T ], the algorithm produces an estimator f̂t ∈ conv(F), then receives a set of92

context-action-loss tuples {(xt, a, ℓt,a)}a∈At
where At ⊆ A. The goal of the oracle is to accurately93

predict the loss as a function of the context and action, and we evaluate its performance via the square94

loss
∑

a∈At
(f̂t(xt, a)− ℓt,a)

2. We measure the oracle’s cumulative performance via the following95

square-loss regret to the best function in F .96

Assumption 2 (Bounded square-loss regret). The regression oracle AlgSq guarantees that for any97

(potentially adaptively chosen) sequence {(xt, a, ℓt,a)}a∈At,t∈[T ] in which At ⊆ A,98

T∑
t=1

∑
a∈At

(
f̂t(xt, a)− ℓt,a

)2
− inf

f∈F

T∑
t=1

∑
a∈At

(f(xt, a)− ℓt,a)
2 ≤ RegSq.

For finite F , Vovk’s aggregation algorithm yields RegSq = O(log|F|) [Vovk, 1995]. This regret is99

dependent upon the scale of the loss function, but this need not be linear with the size of At, e.g., the100

loss scale can be bounded by 2 in classification problems. See Foster and Krishnamurthy [2021] for101

additional examples of online regression algorithms.102

3 Algorithms and Regret Bounds103

In this section, we provide our main algorithms and results.104

3.1 Algorithms via Minimax Reduction Design105

Our approach is to adapt the minimax formulation of [Foster et al., 2021] to contextual bandits with106

feedback graphs. In the standard contextual bandits setting (that is, Gt = I for all t), Foster et al.107

[2021] define the Decision-Estimation Coefficient (DEC) for a parameter γ > 0 as decγ(F) :=108

supf̂∈conv(F),x∈X decγ(F ; f̂ , x), where109

decγ(F ; f̂ , x) := inf
p∈∆(K)

decγ(p,F ; f̂ , x)

:= inf
p∈∆(K)

sup
a⋆∈[K]
f⋆∈F

Ea∼p

[
f⋆(x, a)− f⋆(x, a⋆)− γ

4
·
(
f̂(x, a)− f⋆(x, a)

)2]
.

(1)

Their proposed algorithm is as follows. At each round t, after receiving the context xt, the algorithm110

first computes f̂t by calling the regression oracle. Then, it solves the solution pt of the minimax111

problem defined in Eq. (1) with f̂ and x replaced by f̂t and xt. Finally, the algorithm samples an112

action at from the distribution pt and feeds the observation (xt, at, ℓt,at
) to the oracle. Foster et al.113

[2021] show that for any value γ, the algorithm above guarantees that114

E[RegCB] ≤ T · decγ(F) + γ
4 ·RegSq. (2)

However, the minimax problem Eq. (1) may not be solved efficiently in many cases. Therefore,115

instead of obtaining the distribution pt which has the exact minimax value of Eq. (1), Foster et al.116

[2021] show that any distribution that gives an upper bound Cγ on decγ(p,F ; f̂ , x) also works and117

enjoys a regret bound with decγ(F) replaced by Cγ in Eq. (2).118

To extend this framework to the setting with feedback graph G, we define decγ(F ; f̂ , x,G) as follows119

decγ(F ; f̂ , x,G)

:= inf
p∈∆(K)

decγ(p,F ; f̂ , x,G)

:= inf
p∈∆(K)

sup
a⋆∈[K]
f⋆∈F

Ea∼p

[
f⋆(x, a)− f⋆(x, a⋆)− γ

4
EA∼G(·|a)

[∑
a′∈A

(f̂t(x, a
′)− f⋆(x, a′))2

]]
. (3)
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Algorithm 1 SquareCB.G. Note Theorem 3.6 provides an efficient implementation of Eq. (4).
Input: parameter γ ≥ 4, a regression oracle AlgSq

for t = 1, 2, . . . , T do
Receive context xt and directed feedback graph Gt.
Obtain an estimator f̂t from the oracle AlgSq.
Compute the distribution pt ∈ ∆(K) such that pt = argminp∈∆(K) decγ(p; f̂t, xt, Gt), where

decγ(p; f̂t, xt, Gt)

:= sup
a⋆∈[K]
f⋆∈Φ

Ea∼p

[
f⋆(xt, a)− f⋆(xt, a

⋆)− γ

4
EA∼Gt(·|a)

[∑
a′∈A

(f̂t(xt, a
′)− f⋆(xt, a

′))2
]]

, (4)

and Φ := X × [K] 7→ R.
Sample at from pt and observe {ℓt,j}j∈At

where At ∼ Gt(·|at).
Feed the tuples {(xt, j, ℓt,j)}j∈At

to the oracle AlgSq.
end

Compared with Eq. (1), the difference is that we replace the squared estimation error on action a by120

the expected one on the observed set A ∼ G(·|a), which intuitively utilizes more feedbacks from121

the graph structure. When the feedback graph is the identity matrix, we recover Eq. (1). Based on122

decγ(F ; f̂ , x,G), our algorithm SquareCB.G is shown in Algorithm 1. As what is done in [Foster123

et al., 2021], in order to derive an efficient algorithm, instead of solving the distribution pt with124

respect to the supremum over f⋆ ∈ F , we solve pt that minimize decγ(p; f̂ , xt, Gt) (Eq. (4)), which125

takes supremum over f⋆ ∈ (X × [K] 7→ R), leading to an upper bound on decγ(F ; f̂ , xt, Gt). Then,126

we receive the loss {ℓt,j}j∈At
and feed the tuples {(xt, j, ℓt,j)}j∈At

to the regression oracle AlgSq.127

Following a similar analysis to [Foster et al., 2021], we show that to bound the regret RegCB, we128

only need to bound decγ(pt; f̂t, xt, Gt).129

Theorem 3.1. Suppose decγ(pt; f̂t, xt, Gt) ≤ Cγ−β for all t ∈ [T ] and some β > 0, Algorithm 1130

with γ = max{4, (CT )
1

β+1Reg
− 1

β+1

Sq } guarantees that E [RegCB] ≤ O
(
C

1
β+1T

1
β+1Reg

β
β+1

Sq

)
.131

The proof is deferred to Appendix A. In Section 3.3, we give an efficient implementation for solving132

Eq. (4) via reduction to convex programming.133

3.2 Regret Bounds134

In this section, we derive regret bounds for Algorithm 1 when Gt’s are specialized to deterministic135

graphs, i.e., Gt ∈ {0, 1}A×A. We utilize discrete graph notation G = ([K], E), where E ⊆136

[K]× [K]; and define N in(G, j) ≜ {i ∈ A : (i, j) ∈ E} as the set of nodes that can observe node137

j. In this case, at each round t, the observed node set At is a deterministic set which contains any138

node i satisfying at ∈ N in(Gt, i). In the following, we introduce several graph-theoretic concepts139

for deterministic feedback graphs [Alon et al., 2015].140

Strongly/Weakly Observable Graphs. For a directed graph G = ([K], E), a node i is observable141

if N in(G, i) ̸= ∅. An observable node is strongly observable if either i ∈ N in(G, i) or N in(G, i) =142

[K]\{i}, and weakly observable otherwise. Similarly, a graph is observable if all its nodes are143

observable. An observable graph is strongly observable if all nodes are strongly observable, and144

weakly observable otherwise. Self-aware graphs are a special type of strongly observable graphs145

where i ∈ N in(G, i) for all i ∈ [K].146

Independent Set and Weakly Dominating Set. An independence set of a directed graph is a subset147

of nodes in which no two distinct nodes are connected. The size of the largest independence set of a148

graph is called its independence number. For a weakly observable graph G = ([K], E), a weakly149

dominating set is a subset of nodes D ⊆ [K] such that for any node j in G without a self-loop, there150

exists i ∈ D such that directed edge (i, j) ∈ E. The size of the smallest weakly dominating set of a151
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graph is called its weak domination number. Alon et al. [2015] show that in non-contextual bandits152

with a fixed feedback graph G, the minimax regret bound is Θ̃(
√
αT ) when G is strongly observable153

and Θ̃(d
1
3T

2
3 ) when G is weakly observable, where α and d are the independence number and the154

weak domination number of G, respectively.155

3.2.1 Strongly Observable Graphs156

In the following theorem, we show the regret bound of Algorithm 1 for strongly observable graphs.157

Theorem 3.2 (Strongly observable graphs). Suppose that the feedback graph Gt is deterministic and158

strongly observable with independence number no more than α. Then Algorithm 1 guarantees that159

decγ(pt; f̂t, xt, Gt) ≤ O
(

α log(Kγ)
γ

)
.160

In contrast to existing works that derive a closed-form solution of pt in order to show how large the161

DEC can be [Foster and Rakhlin, 2020, Foster and Krishnamurthy, 2021], in our case we prove the162

upper bound of decγ(pt; f̂t, xt, Gt) by using the Sion’s minimax theorem and the graph-theoretic163

lemma proven in [Alon et al., 2015]. The proof is deferred to Appendix A.1. Combining Theorem 3.2164

and Theorem 3.1, we directly have the following corollary:165

Corollary 3.3. Suppose that Gt is deterministic, strongly observable, and has independence number166

no more than α for all t ∈ [T ]. Algorithm 1 with choice γ = max
{
4,
√

αT/RegSq

}
guarantees167

that E[RegCB] ≤ Õ
(√

αTRegSq

)
.168

3.2.2 Weakly Observable Graphs169

For the weakly observable graph, we have the following theorem.170

Theorem 3.4 (Weakly observable graphs). Suppose that the feedback graph Gt is deterministic and171

weakly observable with weak domination number no more than d. Then Algorithm 1 with γ ≥ 16d172

guarantees that decγ(pt; f̂t, xt, Gt) ≤ O
(√

d
γ + α̃ log(Kγ)

γ

)
, where α̃ is the independence number173

of the subgraph induced by nodes with self-loops in Gt.174

The proof is deferred to Appendix A.2. Similar to Theorem 3.2, we do not derive a closed-form175

solution to the strategy pt but prove this upper bound using the minimax theorem. Combining176

Theorem 3.4 and Theorem 3.1, we are able to obtain the following regret bound for weakly observable177

graphs, whose proof is deferred to Appendix A.2.178

Corollary 3.5. Suppose that Gt is deterministic, weakly observable, and has weak domination179

number no more than d for all t ∈ [T ]. In addition, suppose that the independence number of the180

subgraph induced by nodes with self-loops in Gt is no more than α̃ for all t ∈ [T ]. Then, Algorithm 1181

with γ = max{16d,
√
α̃T/RegSq, d

1
3T

2
3Reg

− 2
3

Sq } guarantees that E[RegCB] ≤ Õ(d
1
3T

2
3Reg

1
3

Sq+182 √
α̃TRegSq).183

3.3 Implementation184

In this section, we show that solving argminp∈∆(K) decγ(p; f̂ , x,G) in Algorithm 1 is equivalent to185

solving a convex program, which can be easily and efficiently implemented in practice.186

Theorem 3.6. Solving argminp∈∆(K) decγ(p; f̂ , x,G) is equivalent to solving the following convex187

optimization problem.188

min
p∈∆(K),z

p⊤f̂ + z (5)

subject to ∀a ∈ [K] :
1

γ
∥p− ea∥2diag(G⊤p)−1 ≤ f̂(x, a) + z,

G⊤p ≻ 0,

where f̂ in the objective is a shorthand for f̂(x, ·) ∈ RK , ea is the a-th standard basis vector, and ≻189

means element-wise greater.190
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The proof is deferred to Appendix A.4. Note that this implementation is not restricted to the deter-191

ministic feedback graphs but applies to the general stochastic feedback graph case. In Appendix A.3,192

we provide the 20 lines of Python code that solves Eq. (5).193

4 Examples with Closed-Form Solutions194

In this section, we present examples and corresponding closed-form solutions of p that make the195

value decγ(p; f̂ , x,G) upper bounded by at most a constant factor of minp decγ(p; f̂ , x,G). This196

offers an alternative to solving the convex program defined in Theorem 3.6 for special (and practically197

relevant) cases, thereby enhancing the efficiency of our algorithm. All the proofs are deferred to198

Appendix B.199

Cops-and-Robbers Graph. The “cops-and-robbers” feedback graph GCR = 11⊤ − I , also known200

as the loopless clique, is the full feedback graph removing self-loops. Therefore, GCR is strongly201

observable with independence number α = 1. Let a1 be the node with the smallest value of f̂ and202

a2 be the node with the second smallest value of f̂ . Our proposed closed-form distribution p is only203

supported on {a1, a2} and defined as follows:204

pa1
= 1− 1

2 + γ(f̂a2 − f̂a1)
, pa2

=
1

2 + γ(f̂a2 − f̂a1)
. (6)

In the following proposition, we show that with the construction of p in Eq. (6), decγ(p; f̂ , x,GCR) is205

upper bounded by O(1/γ), which matches the order of minp decγ(p; f̂ , x,G) based on Theorem 3.2206

since α = 1.207

Proposition 1. When G = GCR, given any f̂ , context x, the closed-form distribution p in Eq. (6)208

guarantees that decγ(p; f̂ , x,GCR) ≤ O
(

1
γ

)
.209

Apple Tasting Graph. The apple tasting feedback graph GAT =

[
1 1
0 0

]
consists of two nodes,210

where the first node reveals all and the second node reveals nothing. This scenario was originally211

proposed by Helmbold et al. [2000] and recently denoted the spam filtering graph [van der Hoeven212

et al., 2021]. The independence number of GAT is 1. Let f̂1 be the oracle prediction for the first node213

and let f̂2 be the prediction for the second node. We present a closed-form solution p for Eq. (4) as214

follows:215

p1 =

{
1 f̂1 ≤ f̂2

2

4+γ(f̂1−f̂2)
f̂1 > f̂2

, p2 = 1− p1. (7)

We show that this distribution p satisfies that decγ(p; f̂ , x,GAT) is upper bounded by O(1/γ) in the216

following proposition. We remark that directly applying results from [Foster et al., 2021] cannot lead217

to a valid upper bound since the second node does not have a self-loop.218

Proposition 2. When G = GAT, given any f̂ , context x, the closed-form distribution p in Eq. (7)219

guarantees that decγ(p; f̂ , x,GAT) ≤ O( 1γ ).220

Inventory Graph. In this application, the algorithm needs to decide the inventory level in order221

to fulfill the realized demand arriving at each round. Specifically, there are K possible chosen222

inventory levels a1 < a2 < . . . < aK and the feedback graph Ginv has entries G(i, j) = 1 for all223

1 ≤ j ≤ i ≤ K and G(i, j) = 0 otherwise, meaning that picking the inventory level ai informs224

about all actions aj≤i. This is because items are consumed until either the demand or the inventory is225

exhausted. The independence number of Ginv is 1. Therefore, (very) large K is statistically tractable,226

but naively solving the convex program Eq. (5) requires superlinear in K computational cost. We227

show in the following proposition that there exists an analytic form of p, which guarantees that228

decγ(p; f̂ , x,Ginv) can be bounded by O(1/γ).229

Proposition 3. When G = Ginv, given any f̂ , context x, there exists a closed-form distribution230

p ∈ ∆(K) guaranteeing that decγ(p; f̂ , x,Ginv) ≤ O( 1γ ), where p is defined as follows: pj =231

max{ 1

1+γ(f̂j−mini f̂i)
−
∑

j′>j pj′ , 0} for all j ∈ [K].232
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Figure 1: Left figure: Performance of SquareCB.G on RCV1 dataset under three different feedback
graphs. Right figure: Performance comparison between SquareCB.G and SquareCB under random
directed self-aware feedback graphs.

Undirected Self-Aware Graph. For the undirected and self-aware feedback graph G, which means233

that G is symmetric and has diagonal entries all 1, we also show that a certain closed-form solution234

of p satisfies that decγ(p; f̂ , x,G) is bounded by O(αγ ).235

Proposition 4. When G is an undirected self-aware graph, given any f̂ , context x, there exists a236

closed-form distribution p ∈ ∆(K) guaranteeing that decγ(p; f̂ , x,G) ≤ O
(

α
γ

)
.237

5 Experiments238

In this section, we use empirical results to demonstrate the significant benefits of SquareCB.G239

in leveraging the graph feedback structure and its superior effectiveness compared to SquareCB.240

Following Foster and Krishnamurthy [2021], we use progressive validation (PV) loss as the evaluation241

metric, defined as Lpv(T ) = 1
T

∑T
t=1 ℓt,at . All the feedback graphs used in the experiments are242

deterministic. We run experiments on CPU Intel Xeon Gold 6240R 2.4G and the convex program243

solver is implemented via Vowpal Wabbit [Langford et al., 2007].244

5.1 SquareCB.G under Different Feedback Graphs245

In this subsection, we show that our SquareCB.G benefits from considering the graph structure246

by evaluating the performance of SquareCB.G under three different feedback graphs. We conduct247

experiments on RCV1 dataset and leave the implementation details in Appendix C.1.248

The performances of SquareCB.G under bandit graph, full information graph and cops-and-robbers249

graph are shown in the left part of Figure 1. We observe that SquareCB.G performs the best under250

full information graph and performs worst under bandit graph. Under the cops-and-robbers graph,251

much of the gap between bandit and full information is eliminated. This improvement demonstrates252

the benefit of utilizing graph feedback for accelerating learning.253

5.2 Comparison between SquareCB.G and SquareCB254

In this subsection, we compare the effectiveness of SquareCB.G with the SquareCB algorithm. To255

ensure a fair comparison, both algorithms update the regressor using the same feedbacks based on256

the graph. The only distinction lies in how they calculate the action probability distribution. We257

summarize the main results here and leave the implementation details in Appendix C.2.258

5.2.1 Results on Random Directed Self-aware Graphs259

We conduct experiments on RCV1 dataset using random directed self-aware feedback graphs. Specif-260

ically, the diagonal elements are all 1, and off-diagonal entries are drawn from a Bernoulli(3/4)261
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Figure 2: Performance comparison between SquareCB.G and SquareCB on synthetic inventory
dataset. Left figure: Results under fixed discretized action set. Right figure: Results under adaptive
discretization of the action set. Both figures show the superiority of SquareCB.G compared with
SquareCB.

distribution. The results are presented in the right part of Figure 1. Our SquareCB.G consistently262

outperforms SquareCB and demonstrates lower variance, particularly when the number of iterations263

was small. This is because when there are fewer samples available to train the regressor, it is more264

crucial to design an effective algorithm that can leverage the graph feedback information.265

5.2.2 Results on Synthetic Inventory Dataset266

In the inventory graph experiments, we create a synthetic inventory dataset and design a loss function267

for each inventory level at ∈ [0, 1] with demand dt ∈ [0, 1]. Since the action set [0, 1] is continuous,268

we discretize the action set in two different ways to apply the algorithms.269

Fixed discretized action set. In this setting, we discretize the action set using fixed grid size270

ε ∈ { 1
100 ,

1
300 ,

1
500}, which leads to a finite action set A of size 1

ε + 1. Note that according271

to Theorem 3.2, our regret does not scale with the size of the action set (to within polylog factors), as272

the independence number is always 1. The results are shown in the left part of Figure 2.273

We remark several observations from the results. First, our algorithm SquareCB.G outperforms274

SquareCB for all choices K ∈ {101, 301, 501}. This indicates that SquareCB.G utilizes a bet-275

ter exploration scheme and effectively leverages the structure of Ginv. Second, we observe that276

SquareCB.G indeed does not scale with the size of the discretized action set A, since under different277

discretization scales, SquareCB.G has similar performances and the slight differences are from the278

improved approximation error with finer discretization. This matches the theoretical guarantee that279

we prove in Theorem 3.2. On the other hand, SquareCB does perform worse when the size of the280

action set increases, matching its theoretical guarantee which scales with the square root of the size281

of the action set.282

Adaptively changing action set. In this setting, we adaptively discretize the action set [0, 1]283

according to the index of the current round. Specifically, for SquareCB.G, we uniformly discretize284

the action set [0, 1] with size ⌈
√
t⌉, whose total discretization error isO(

√
T ) due to the Lipschitzness285

of the loss function. For SquareCB, to optimally balance the dependency on the size of the action286

set and the discretization error, we uniformly discretize the action set [0, 1] into ⌈t 1
3 ⌉ actions. The287

results are illustrated in the right part of Figure 2. We can observe that SquareCB.G consistently288

outperforms SquareCB by a clear margin.289

6 Related Work290

Multi-armed bandits with feedback graphs have been extensively studied. An early example is291

the apple tasting problem of Helmbold et al. [2000]. The general formulation was introduced by292

8



Mannor and Shamir [2011]. Alon et al. [2015] characterized the minimax rates in terms of graph-293

theoretic quantities. Follow-on work includes relaxing the assumption that the graph is observed294

prior to decision [Cohen et al., 2016]; analyzing the distinction between the stochastic and adversarial295

settings [Alon et al., 2017]; considering stochastic feedback graphs [Li et al., 2020, Esposito et al.,296

2022]; instance-adaptivity [Ito et al., 2022]; data-dependent regret bound [Lykouris et al., 2018, Lee297

et al., 2020]; and high-probability regret under adaptive adversary [Neu, 2015, Luo et al., 2023].298

The contextual bandit problem with feedback graphs has received relatively less attention. Wang299

et al. [2021] provide algorithms for adversarial linear bandits with uninformed graphs and stochastic300

contexts. However, this work assumes several unrealistic assumptions on both the policy class301

and the context space and is not comparable to our setting, since we consider the informed graph302

setting with adversarial context. Singh et al. [2020] study a stochastic linear bandits with informed303

feedback graphs and are able to improve over the instance-optimal regret bound for bandits derived304

in [Lattimore and Szepesvari, 2017] by utilizing the additional graph-based feedbacks.305

Our work is also closely related to the recent progress in designing efficient algorithms for classic306

contextual bandits. Starting from [Langford and Zhang, 2007], numerous works have been done to the307

development of practically efficient algorithms, which are based on reduction to either cost-sensitive308

classification oracles [Dudik et al., 2011, Agarwal et al., 2014] or online regression oracles [Foster309

and Rakhlin, 2020, Foster et al., 2020, 2021, Zhu and Mineiro, 2022]. Following the latter trend, our310

work assumes access to an online regression oracle and extends the classic bandit problems to the311

bandits with general feedback graphs.312

7 Discussion313

In this paper, we consider the design of practical contextual bandits algorithm with provable guaran-314

tees. Specifically, we propose the first efficient algorithm that achieves near-optimal regret bound for315

contextual bandits with general directed feedback graphs with an online regression oracle.316

While we study the informed graph feedback setting, where the entire feedback graph is exposed to317

the algorithm prior to each decision, many practical problems of interest are possibly uninformed318

graph feedback problems, where the graph is unknown at the decision time. It is unclear how to319

formulate an analogous minimax problem to Eq. (1) under the uninformed setting. One idea is to320

consume the additional feedback in the online regressor and adjust the prediction loss to reflect this321

additional structure, e.g., using the more general version of the E2D framework which incorporates322

arbitrary side observations [Foster et al., 2021]. Cohen et al. [2016] consider this uninformed setting323

in the non-contextual case and prove a sharp distinction between the adversarial and stochastic324

settings: even if the graphs are all strongly observable with bounded independence number, in the325

adversarial setting the minimax regret is Θ(T ) whereas in the stochastic setting the minimax regret326

is Θ(
√
αT ). Intriguingly, our setting is semi-adversarial due to realizability of the mean loss, and327

therefore it is apriori unclear whether the negative adversarial result applies.328

In addition, bandits with graph feedback problems often present with associated policy constraints,329

e.g., for the apple tasting problem, it is natural to rate limit the informative action. Therefore, another330

interesting direction is to combine our algorithm with the recent progress in contextual bandits with331

knapsack [Slivkins and Foster, 2022], leading to more practical algorithms.332
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Broader Impart423

This work is mostly theoretical, and we do not foresee any negative ethical or societal outcomes. Our424

algorithms can be applied for many applications with context and partial information feedback such425

as recommendation systems.426

A Omitted Details in Section 3427

Theorem 3.1. Suppose decγ(pt; f̂t, xt, Gt) ≤ Cγ−β for all t ∈ [T ] and some β > 0, Algorithm 1428

with γ = max{4, (CT )
1

β+1Reg
− 1

β+1

Sq } guarantees that E [RegCB] ≤ O
(
C

1
β+1T

1
β+1Reg

β
β+1

Sq

)
.429

Proof. Following [Foster et al., 2020], we decompose RegCB as follows:430

E[RegCB]

= E

[
T∑

t=1

f⋆(xt, at)−
T∑

t=1

f⋆(xt, π
⋆(xt))

]

= E

[
T∑

t=1

(
f⋆(xt, at)− f⋆(xt, π

⋆(xt))−
γ

4
EA∼Gt(·|at)

[∑
a∈A

(
f̂t(xt, a)− f⋆(xt, a)

)2])]

+
γ

4
E

[
T∑

t=1

EA∼Gt(·|at)

[∑
a∈A

(
f̂t(xt, a)− f⋆(xt, a)

)2]]

≤ E

 T∑
t=1

max
a⋆∈[K]

f∈(X×[K] 7→R)

Eat∼pt

[
f(xt, at)− f(xt, a

⋆)− γ

4
EA∼Gt(·|at)

[∑
a∈A

(
f̂t(xt, a)− f(xt, a)

)2]]
+

γ

4
E

[
T∑

t=1

EA∼Gt(·|at)

[∑
a∈A

(
f̂t(xt, a)− f⋆(xt, a)

)2]]

= E

[
T∑

t=1

decγ(pt; f̂t, xt, Gt)

]
+

γ

4
E

[
T∑

t=1

EA∼Gt(·|at)

[∑
a∈A

(
f̂t(xt, a)− f⋆(xt, a)

)2]]
(8)

≤ CTγ−β +
γ

4
E

[
T∑

t=1

EA∼Gt(·|at)

[∑
a∈A

(
f̂t(xt, a)− f⋆(xt, a)

)2]]
.

Next, since E[ℓt,a | xt] = f⋆(xt, a) for all t ∈ [T ] and a ∈ A, we know that431

E

[
T∑

t=1

EA∼Gt(·|at)

[∑
a∈A

(
f̂t(xt, a)− f⋆(xt, a)

)2]]

= E

[
T∑

t=1

EA∼Gt(·|at)

[∑
a∈A

(
f̂t(xt, a)− ℓt,a

)2
−
∑
a∈A

(f⋆(xt, a)− ℓt,a)
2

]]
≤ RegSq, (9)

where the final inequality is due to Assumption 2.432

Therefore, we have433

E[RegCB] ≤ CTγ−β +
γ

4
RegSq.

Picking γ = max

{
4,
(

CT
RegSq

) 1
β+1

}
, we obtain that434

E [RegCB] ≤ O
(
C

1
β+1T

1
β+1Reg

β
β+1

Sq

)
.

435
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A.1 Proof of Theorem 3.2436

Before proving Theorem 3.2, we first show the following key lemma, which is useful in proving437

that decγ(p; f̂ , x,G) is convex for both strongly and weakly observable feedback graphs G. We438

highlight that the convexity of decγ(p; f̂ , x,G) is crucial for both proving the upper bound of439

minp∈∆(K) decγ(p; f̂ , x,G) and showing the efficiency of Algorithm 1.440

Lemma A.1. Suppose u, v, x ∈ Rd with ⟨v, x⟩ > 0. Then both g(x) = ⟨u,x⟩2
⟨v,x⟩ and h(x) = (1−⟨u,x⟩)2

⟨v,x⟩441

are convex in x.442

Proof. The function f(x, y) = x2/y is convex for y > 0 due to

∇2f(x, y) =
2

y3

[
y
−x

][
y
−x

]⊤
⪰ 0.

By composition with affine functions, both g(x) = f(⟨u, x⟩ , ⟨v, x⟩) and h(x) = f(1−⟨u, x⟩ , ⟨v, x⟩)443

are convex.444

Theorem 3.2 (Strongly observable graphs). Suppose that the feedback graph Gt is deterministic and445

strongly observable with independence number no more than α. Then Algorithm 1 guarantees that446

decγ(pt; f̂t, xt, Gt) ≤ O
(

α log(Kγ)
γ

)
.447

Proof. For conciseness, we omit the subscript t. Direct calculation shows that for all a⋆ ∈ [K],448

Ea∼p

f⋆(x, a)− f⋆(x, a⋆)− γ

4

∑
a′∈N in(G,a)

(f̂(x, a′)− f⋆(x, a′))2


=

K∑
a=1

paf
⋆(x, a)− f⋆(x, a⋆)− γ

4

K∑
a=1

Wa

(
f̂(x, a)− f⋆(x, a)

)2
,

where Wa =
∑

a′∈N in(G,a) pa′ . Therefore, taking the gradient over f∗(x, ·) and we know that449

sup
f⋆∈(X×[K] 7→ R)

[
K∑

a=1

paf
⋆(x, a)− f⋆(x, a⋆)− γ

4

K∑
a=1

Wa

(
f̂(x, a)− f⋆(x, a)

)2]

=

K∑
a=1

paf̂(x, a)− f̂(x, a⋆) +
1

γ
∥p− ea⋆∥2diag(W )−1 .

Then, denote f̂ ∈ RK to be f̂(x, ·) and consider the following minimax form:450

inf
p∈∆(K)

sup
a⋆∈A

{
K∑

a=1

paf̂(x, a)− f̂(x, a⋆) +
1

γ
∥p− ea⋆∥2diag(W )−1

}

= min
p∈∆(K)

max
a⋆∈A


K∑

a=1

paf̂(x, a)− f̂(x, a⋆) +
1

γ

∑
a̸=a⋆

p2a
Wa

+
1

γ

(1− pa⋆)2

Wa⋆

 (10)

= min
p∈∆K

max
q∈∆K

{
K∑

a=1

(pa − qa)f̂a +
1

γ

K∑
a=1

p2a(1− qa)

Wa
+

K∑
a=1

qa(1− pa)
2

γWa

}
(11)

= max
q∈∆K

min
p∈∆K

{
K∑

a=1

(pa − qa)f̂a +
1

γ

K∑
a=1

p2a(1− qa)

Wa
+

K∑
a=1

qa(1− pa)
2

γWa

}
, (12)

where the last equality is due to Sion’s minimax theorem and the fact that Eq. (10) is convex in451

p ∈ ∆(K) by applying Lemma A.1 with u = ea and v = ga for each a ∈ [K], where ga ∈ {0, 1}K452

is defined as ga,i = 1{(i, a) ∈ E}, G = ([K], E), ∀i ∈ [K].453
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Choose pa = (1− 1
γ )qa +

1
γK for all a ∈ [K]. Let S be the set of nodes in [K] that have a self-loop.454

Then we can upper bound the value above as follows:455

max
q∈∆(K)

min
p∈∆(K)

{
K∑

a=1

(pa − qa)f̂a +
1

γ

K∑
a=1

p2a(1− qa)

Wa
+

K∑
a=1

qa(1− pa)
2

γWa

}

≤ max
q∈∆(K)

 2

γ
+

1

γ

K∑
a=1

(
(1− 1

γ )qa +
1

γK

)2
(1− qa) + qa

(
1− (1− 1

γ )qa −
1

γK

)2
Wa


≤ max

q∈∆(K)

 2

γ
+

1

γ

K∑
a=1

2
(
(1− 1

γ )
2q2a +

1
γ2K2

)
(1− qa) + qa

(
1− (1− 1

γ )qa

)2
Wa


≤ max

q∈∆(K)

 2

γ
+

2

γ2
+

1

γ

K∑
a=1

2q2a(1− qa) + 2qa (1− qa)
2
+

2q3a
γ2

Wa


(Wa =

∑
j∈N in(G,a) pj ≥

1
γK for all a ∈ [K])

≤ max
q∈∆(K)

{
2

γ
+

2

γ2
+

2

γ

K∑
a=1

qa(1− qa)

Wa
+

2

γ3

K∑
a=1

q3a
Wa

}

= max
q∈∆(K)

{
2

γ
+

2

γ2
+

2

γ

K∑
a=1

qa(1− qa)

Wa
+

2

γ3

∑
a∈S

q3a
Wa

+
2

γ3

∑
a/∈S

q3a
Wa

}
(13)

≤ max
q∈∆(K)

{
2

γ
+

2

γ2
+

2

γ

K∑
a=1

qa(1− qa)

Wa
+

2

γ3

∑
a∈S

q2a +
2

γ3

∑
a/∈S

q3a
K−1
γK

}
(if a /∈ S, Wa = 1− pa ≥ K−1

γK )

≤ max
q∈∆(K)

{
8

γ
+

2

γ

K∑
a=1

qa(1− qa)

Wa

}
. (K ≥ 2)

Next we bound 2qa(1−qa)
Wa

for each a ∈ [K]. If a ∈ [K]\S, we have Wa = 1− pa and456

2qa(1− qa)

Wa
≤ 2qa(1− qa)

1− (1− 1
γ )qa −

1
γK

≤ 2qa(1− qa)

(1− 1
γ )(1− qa) +

K−1
γK

≤ 2

1− 1
γ

qa ≤ 4qa. (14)

If a ∈ S, we know that457 ∑
a∈S

2qa(1− qa)

Wa
≤
∑
a∈S

2qa(1− qa)∑
j∈N in(G,a)((1−

1
γ )qj +

1
γK )

≤ γ

γ − 1

∑
a∈S

2((1− 1
γ )qa +

1
γK )(1− qa)∑

j∈N in(G,a)((1−
1
γ )qj +

1
γK )

≤ 4
∑
a∈S

((1− 1
γ )qa +

1
γK )∑

j∈N in(G,a)((1−
1
γ )qj +

1
γK )

≤ O(α log(Kγ)), (15)

where the last inequality is due to Lemma 5 in Alon et al. [2015]. We include this lemma (Lemma D.1)458

for completeness. Combining all the above inequalities, we obtain that459

inf
p∈∆(K)

sup
a⋆∈A

{
K∑

a=1

paf̂(x, a)− f̂(x, a⋆) +
1

γ
∥p− ea⋆∥2diag(W )−1

}

= max
q∈∆(K)

min
p∈∆(K)

{
K∑

a=1

(pa − qa)f̂a +
1

γ

K∑
a=1

p2a(1− qa)

Wa
+

K∑
a=1

qa(1− pa)
2

γWa

}
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≤ max
q∈∆(K)

{
8

γ
+

2

γ

K∑
a=1

qa(1− qa)

Wa

}
≤ O

(
α log(Kγ)

γ

)
.

460

A.2 Proof of Theorem 3.4461

Theorem 3.4 (Weakly observable graphs). Suppose that the feedback graph Gt is deterministic and462

weakly observable with weak domination number no more than d. Then Algorithm 1 with γ ≥ 16d463

guarantees that decγ(pt; f̂t, xt, Gt) ≤ O
(√

d
γ + α̃ log(Kγ)

γ

)
, where α̃ is the independence number464

of the subgraph induced by nodes with self-loops in Gt.465

Proof. Similar to the strongly observable graphs setting, for weakly observable graphs, we know that466

decγ(p; f̂ , x,G)

= max
q∈∆K

min
p∈∆K

{
K∑

a=1

(pa − qa)f̂a +
1

γ

K∑
a=1

p2a(1− qa)

Wa
+

K∑
a=1

qa(1− pa)
2

γWa

}
. (16)

Choose pa = (1 − 1
γ − ηd)qa + 1

γK + η1{a ∈ D} where D with |D| = d is the minimum weak467

dominating set of G and 0 < η ≤ 1
4d is some parameter to be chosen later. Substituting the form of p468

to Eq. (16) and using the fact that |f̂a| ≤ 1 for all a ∈ [K], we can obtain that469

decγ(p; f̂ , x,G)

≤ max
q∈∆K

{
2

γ
+ ηd+

1

γ

K∑
a=1

p2a(1− qa)

Wa
+

K∑
a=1

qa(1− pa)
2

γWa

}
.

Then we can upper bound the value above as follows:470

decγ(p; f̂ , x,G)

≤ max
q∈∆K

 2

γ
+ ηd+

1

γ

K∑
a=1

(
(1− 1

γ − ηd)qa +
1

γK + η1{a ∈ D}
)2

(1− qa)

Wa

+

K∑
a=1

qa

(
1− (1− 1

γ − ηd)qa

)2
Wa


≤ max

q∈∆K

 2

γ
+ ηd+

1

γ

∑
a/∈D

(
qa +

1
γK

)2
(1− qa) + qa

(
(1− qa) +

1
γ qa + ηdqa

)2
Wa

+
1

γ

∑
a∈D

(
qa +

1
γK + η

)2
(1− qa) + qa

(
(1− qa) +

1
γ qa + ηdqa

)2
Wa


≤ max

q∈∆K

 2

γ
+ ηd+

1

γ

∑
a/∈D

2
(
q2a +

1
γ2K2

)
(1− qa) + 3qa

(
(1− qa)

2 +
q2a
γ2 + η2d2q2a

)
Wa

+
1

γ

∑
a∈D

3
(
q2a +

1
γ2K2 + η2

)
(1− qa) + 3qa

(
(1− qa)

2 +
q2a
γ2 + η2d2q2a

)
Wa

 . (17)

Now consider a ∈ D. If a ∈ S, then we know that Wa ≥ η; Otherwise, we know that this node can471

be observed by at least one node in D, meaning that Wa ≥ η. Combining the two cases above, we472
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know that473

1

γ

∑
a∈D

3
(
q2a +

1
γ2K2 + η2

)
(1− qa) + 3qa

(
(1− qa)

2 + 1
γ2 q

2
a + η2d2q2a

)
Wa

≤ 3

ηγ

∑
a∈D

[(
q2a +

1

γ2K2
+ η2

)
(1− qa) + qa

(
(1− qa)

2 +
1

γ2
q2a + η2d2q2a

)]
≤ 3

ηγ

∑
a∈D

[
qa − q2a +

1

γ2
q3a + η2d2q3a +

1

γ2K2
+ η2

]
≤ O

(
1

ηγ
+

dη

γ
+

1

ηγ3K

)
(η ≤ 1

4d and γ ≥ 16d)

≤ O
(

1

ηγ

)
, (18)

where the last inequality is because η ≤ 1
4d and γ ≥ 16d. Consider a /∈ D. Let S0 be the set of474

nodes which either have a self loop or can be observed by all the other node. Recall that S represents475

the set of nodes with a self-loop. Then similar to the derivation of Eq. (13), we know that for a ∈ S0,476

1

γ

∑
a/∈D,a∈S0

2
(
q2a +

1
γ2K2

)
(1− qa) + 3qa

(
(1− qa)

2 +
q2a
γ2 + η2d2q2a

)
Wa

≤ 1

γ

∑
a/∈D,a∈S0

2q2a(1− qa) + 3qa

(
(1− qa)

2 +
q2a
γ2 + η2d2q2a

)
Wa

+O
(

1

γ2
+

1

ηγ3K

)
(Wa ≥ 1

γK if a ∈ S and Wa ≥ η if a ∈ [K]\S)

≤ O

 1

γ

∑
a∈S0,a/∈D

qa(1− qa)

Wa
+

1

γ3

∑
a∈S,a/∈D

q2a +
1

γ3

∑
a∈S0,a/∈D∪S

q3a
K−1
γK

+
1

γ2
+

1

ηγ3K


+O

 1

γ

∑
a∈S,a/∈D

η2d2q2a +
1

γ

∑
a∈S0,a/∈D∪S

η2d2q3a
η


(for a ∈ S0, a /∈ S, Wa ≥ max{K−1

γK , η})

≤ O

 1

γ

∑
a∈S0,a/∈D

qa(1− qa)

Wa
+

1

ηγ

 . (19)

For a /∈ S0, we know that Wa ≥ η. Therefore,477

1

γ

∑
a/∈D∪S0

2
(
q2a +

1
γ2K2

)
(1− qa) + 3qa

(
(1− qa)

2 +
q2a
γ2 + η2d2q2a

)
Wa

≤ 1

γη

∑
a/∈D∪S0

(
2

(
q2a +

1

γ2K2

)
(1− qa) + 3qa

(
(1− qa)

2 +
q2a
γ2

+
1

16
q2a

))

≤ 1

γη

∑
a/∈D∪S0

(
2qa(1− qa) +

1

γ2K2
+

2q3a
γ2

+
3

16
q3a

)

≤ O
(

1

γη

)
. (20)

Plugging Eq. (18), Eq. (19), and Eq. (20) to Eq. (17), we obtain that478

decγ(p; f̂ , x,G) ≤ O

 1

γ
+ ηd+

1

γη
+

1

γ

∑
a∈S0,a/∈D

qa(1− qa)

Wa

 (21)
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Consider the last term. If a ∈ S0\S, similar to Eq. (14), we know that479

qa(1− qa)

Wa
≤ qa(1− qa)

1− (1− 1
γ − dη)qa − 1

γK

≤ qa(1− qa)

(1− 1
γ − ηd)(1− qa)

≤ 1

1− 1
γ − ηd

qa ≤ O(qa),

where the last inequality is due to γ ≥ 16d and η ≤ 1
4d . If a ∈ S, similar to Eq. (15), we know that480 ∑

a∈S

qa(1− qa)

Wa
≤
∑
a∈S

qa(1− qa)∑
j∈N in(G,a)((1−

1
γ − ηd)qj +

1
γK )

≤ γ

γ − 1− γηd

∑
a∈S

((1− 1
γ − ηd)qa +

1
γK )(1− qa)∑

j∈N in(G,a)((1−
1
γ − ηd)qj +

1
γK )

≤ 2
∑
a∈S

(
(1− 1

γ − ηd)qa +
1

γK

)
∑

j∈N in(G,a)

(
(1− 1

γ − ηd)qj +
1

γK

) (γ ≥ 4, η ≤ 1
4d )

≤ O(α̃ log(Kγ)), (22)

where the last inequality is again due to Lemma 5 in [Alon et al., 2015] and α̃ is the independence481

number of the subgraph induced by nodes with self-loops in G. Plugging Eq. (22) to Eq. (21) gives482

decγ(p; f̂ , x,G) ≤ O
(
ηd+

1

γη
+

α̃ log(Kγ)

γ

)
.

Picking η =
√

1
γd ≤

1
4d proves the result.483

Next, we prove Corollary 3.5 by combining Theorem 3.4 and Theorem 3.1.484

Corollary 3.5. Suppose that Gt is deterministic, weakly observable, and has weak domination485

number no more than d for all t ∈ [T ]. In addition, suppose that the independence number of the486

subgraph induced by nodes with self-loops in Gt is no more than α̃ for all t ∈ [T ]. Then, Algorithm 1487

with γ = max{16d,
√
α̃T/RegSq, d

1
3T

2
3Reg

− 2
3

Sq } guarantees that E[RegCB] ≤ Õ(d
1
3T

2
3Reg

1
3

Sq+488 √
α̃TRegSq).489

Proof. Combining Eq. (8), Eq. (9) and Theorem 3.4, we can bound RegCB as follows:490

E[RegCB] ≤ O

(√
d

γ
T +

α̃T log(Kγ)

γ
+ γRegCB

)
.

Picking γ = max
{
16d,

√
α̃T/RegSq, d

1
3T

2
3Reg

− 2
3

Sq

}
finishes the proof.491

A.3 Python Solution to Eq. (5)492

493
def makeProblem(nactions):494

import cvxpy as cp495

496

sqrtgammaG = cp.Parameter((nactions, nactions), nonneg=True)497

sqrtgammafhat = cp.Parameter(nactions)498

p = cp.Variable(nactions, nonneg=True)499

sqrtgammaz = cp.Variable()500

objective = cp.Minimize(sqrtgammafhat @ p + sqrtgammaz)501

constraints = [502

cp.sum(p) == 1503

] + [504

cp.sum([ cp.quad_over_lin(eai - pi, vi)505

for i, (pi, vi) in enumerate(zip(p, v))506

for eai in (1 if i == a else 0,)507

]) <= sqrtgammafhata + sqrtgammaz508

for v in (sqrtgammaG @ p,)509
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for a, sqrtgammafhata in enumerate(sqrtgammafhat)510

]511

problem = cp.Problem(objective, constraints)512

assert problem.is_dcp(dpp=True) # proof of convexity513

return problem, sqrtgammaG, sqrtgammafhat, p, sqrtgammaz514515

This particular formulation multiplies both sides of the constraint in Eq. (5) by
√
γ while scaling the516

objective by
√
γ. While mathematically equivalent to Eq. (5), empirically it has superior numerical517

stability for large γ. For additional stability, when using this routine we recommend subtracting off the518

minimum value from f̂ , which is equivalent to making the substitutions
√
γf̂ ← √γf̂ −√γmina f̂a519

and z ← z +
√
γmina f̂a and then exploiting the 1⊤p = 1 constraint.520

A.4 Proof of Theorem 3.6521

Theorem 3.6. Solving argminp∈∆(K) decγ(p; f̂ , x,G) is equivalent to solving the following convex522

optimization problem.523

min
p∈∆(K),z

p⊤f̂ + z (5)

subject to ∀a ∈ [K] :
1

γ
∥p− ea∥2diag(G⊤p)−1 ≤ f̂(x, a) + z,

G⊤p ≻ 0,

where f̂ in the objective is a shorthand for f̂(x, ·) ∈ RK , ea is the a-th standard basis vector, and ≻524

means element-wise greater.525

Proof. Denote f⋆ = f⋆(x, ·) ∈ RK . Note that according to the definition of G, we know that526

(G⊤p)i denotes the probability that action i’s loss is revealed when the selected action a is sampled527

from distribution p. Then, we know that528

decγ(p; f̂ , x,G)

= sup
a⋆∈[K]

f⋆∈RK

Eat∼p

[
f⋆
at
− f⋆

a⋆ −
γ

4
EA∼G(·|at)

[∑
a∈A

(
f̂a − f⋆

a

)2]]

= sup
a⋆∈[K]

f⋆∈RK

(p− ea⋆)⊤f⋆ − γ

4

∑
a∈[K]

∥f̂ − f⋆∥2diag(G⊤p)

= sup
a⋆∈[K]

(p− ea⋆)⊤f̂ +
1

γ
∥p− ea⋆∥2diag(G⊤p)−1

(
G⊤p ≻ 0

)
= p⊤f̂ + max

a⋆∈[K]

{
1

γ
∥p− ea⋆∥2diag(G⊤p)−1 − e⊤a⋆ f̂

}
,

where the third equality is by picking f⋆ to be the maximizer and introduces a constraint. Therefore,529

the minimization problem minp∈∆(K) decγ(p; f̂ , x,G) can be written as the following constrained530

optimization by variable substitution:531

min
p∈∆(K),z

p⊤f̂ + z

subject to ∀a ∈ [K] :
1

γ
∥p− ea∥2diag(G⊤p)−1 ≤ e⊤a f̂ + z,

G⊤p ≻ 0.

The convexity of the constraints follows from Lemma A.1.532

B Omitted Details in Section 4533

In this section, we provide proofs for Section 4. We define Wa :=
∑

a′∈N in(G,a) pa′ to be the534

probability that the loss of action a is revealed when selecting an action from distribution p. Let535
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f̂ = f̂(x, ·) ∈ RK and f = f(x, ·) ∈ RK . Direct calculation shows that for any a⋆ ∈ [K],536

f⋆ = argmax
f∈RK

Ea∼p

f(x, a)− f(x, a⋆)− γ

4
·

∑
a′∈N in(G,a)

(f̂t(x, a
′)− f(x, a′))2


=

2

γ
diag(W )−1(p− ea⋆) + f̂ .

Therefore, substituting f⋆ into Eq. (4), we obtain that537

decγ(p; f̂ , x,G) = max
a⋆∈[K]

{
1

γ

(
K∑

a=1

p2a
Wa

+
1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉}
. (23)

Without loss of generality, we assume the mini∈[K] f̂i = 0. This is because shifting f̂ by mini∈[K] f̂i538

does not change the value of
〈
p− ea⋆ , f̂

〉
. In the following sections, we provide proofs showing that539

a certain closed-form of p leads to optimal decγ(p; f̂ , x,G) up to constant factors for several specific540

types of feedback graphs, respectively.541

B.1 Cops-and-Robbers Graph542

Proposition 1. When G = GCR, given any f̂ , context x, the closed-form distribution p in Eq. (6)543

guarantees that decγ(p; f̂ , x,GCR) ≤ O
(

1
γ

)
.544

Proof. We use the following notation for convenience: p1 := pa1
, p2 := pa2

, f̂1 := f̂a1
= 0,545

f̂2 := f̂a2
. For the cops-and-robbers graph and closed-form solution p in Eq. (6), Eq. (23) becomes:546

decγ(p; f̂ , x,GCR) = max
a⋆∈[K]

{
1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉}
.

If a⋆ ̸= a1 and a⋆ ̸= a2, we know that547

1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉
=

1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+ 1

)
+ p1f̂1 + p2f̂2 − f̂a⋆

≤ 1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+ 1

)
− p1f̂2 (f̂a⋆ ≥ f̂2 ≥ f̂1 = 0)

≤ 1

γ

(
1

1− p1
+ 1 + 1

)
− p1f̂2 (p1 ∈ [ 12 , 1], p1 ≥ p2 ∈ [0, 1

2 ])

=
1

γ

(
4 + γf̂2

)
−
(
1− 1

2 + γf̂2

)
f̂2

≤ 5

γ
.

If a⋆ = a2, we can obtain that548

1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉
=

1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+

1− 2p2
p1

)
+ p1f̂1 + p2f̂2 − f̂2

≤ 1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+

1− 2(1− p1)

p1

)
− p1f̂2 (f̂1 = 0)

≤ 1

γ

(
1

1− p1
+ 1 + 2− 1

p1

)
− p1f̂2 (p1 ∈ [ 12 , 1], p2 ∈ [0, 1

2 ])
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≤ 1

γ

(
5 + γf̂2

)
−
(
1− 1

2 + γf̂2

)
f̂2 (p1 = 1

2+γf̂2
)

≤ 6

γ
.

If a⋆ = a1, we have549

1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉
≤ 1

γ

(
p21

1− p1
+

(1− p1)
2

p1
+

1− 2p1
1− p1

)
+ (1− p1)f̂2

≤ 1

γ

(
1− p1 +

(1− p1)
2

p1

)
+ (1− p1)f̂2

≤ 1

γ

(
1 +

1

2

)
+

f̂2

2 + γf̂2
(p1 ∈ [ 12 , 1])

≤ 3

γ
.

Putting everything together, we prove that decγ(p; f̂ , x,GCR) ≤ 6
γ ≤ O

(
1
γ

)
.550

B.2 Apple Tasting Graph551

Proposition 2. When G = GAT, given any f̂ , context x, the closed-form distribution p in Eq. (7)552

guarantees that decγ(p; f̂ , x,GAT) ≤ O( 1γ ).553

Proof. For the apple tasting graph and closed-form solution p in Eq. (7), Eq. (23) becomes:554

decγ(p; f̂ , x,G) = max
a⋆∈[K]

{
1

γ

(
p1 +

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉}
.

Suppose f̂1 = 0, we know that p1 = 1, p2 = 0 and555

1. If a⋆ = 1, we have556

1

γ

(
p1 +

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉
= 0.

2. If a⋆ = 2, direct calculation shows that557

1

γ

(
p1 +

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉
≤ 2

γ
.

Suppose f̂2 = 0, we know that p1 = 2

4+γf̂1
, p2 = 1− p1 and558

1. If a⋆ = 1, we have559

1

γ

(
p1 +

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉
=

1

γ

(
p1 +

(1− p1)
2

p1
+

1− 2p1
p1

)
− (1− p1)f̂1

=
2(1− p1)

2

γp1
− (1− p1)f̂1

=
(2 + γf̂1)

2

γ(4 + γf̂1)
− (1− p1)f̂1

≤ 4 + γf̂1
γ

+
2f̂1

4 + γf̂1
− f̂1 ≤

6

γ
.

20



2. If a⋆ = 2, direct calculation shows that560

1

γ

(
p1 +

(1− p1)
2

p1
+

1− 2pa⋆

Wa⋆

)
+
〈
p− ea⋆ , f̂

〉
=

2p1
γ

+ p1f̂1 ≤
1

γ
+

2f̂1

4 + γf̂1
≤ 3

γ
.

Putting everything together, we prove that decγ(p; f̂ , x,GAT) ≤ 6
γ ≤ O

(
1
γ

)
.561

B.3 Inventory Graph562

Proposition 3. When G = Ginv, given any f̂ , context x, there exists a closed-form distribution563

p ∈ ∆(K) guaranteeing that decγ(p; f̂ , x,Ginv) ≤ O( 1γ ), where p is defined as follows: pj =564

max{ 1

1+γ(f̂j−mini f̂i)
−
∑

j′>j pj′ , 0} for all j ∈ [K].565

Proof. Based on the distribution defined above, define A ⊆ [K] to be the set such that for all i ∈ A,566

pi > 0 and denote N = |A|. We index each action in A by k1 < k2 < · · · < kN = K. According567

to the definition of pi, we know that pi is strictly positive only when f̂i < f̂j for all j > i and568

specifically, when pi > 0, we know that Wi =
∑

j≥i pj =
1

1+γf̂i
(recall that mini f̂i = 0 since we569

shift f̂ ). Therefore, define WkN+1
= 0 and we know that570

decγ(p; f̂ , x,Ginv)

=

N∑
i=1

pki f̂ki +
1

γ

K∑
a=1

p2a
Wa

+ max
a⋆∈[K]

{
1− 2pa⋆

γWa⋆

− f̂a⋆

}

≤
N∑
i=1

(
Wki −Wki+1

)
f̂ki +

1

γ
+ max

a⋆∈[K]

{
1− 2pa⋆

γWa⋆

− f̂a⋆

}

≤ 2

γ
+

N−1∑
i=1

(
1

1 + γf̂ki

− 1

1 + γf̂ki+1

)
f̂ki + max

a⋆∈[K]

{
1− 2pa⋆

γWa⋆

− f̂a⋆

}

≤ 3

γ
+

N∑
i=2

f̂ki
− f̂ki−1

1 + γf̂ki

+ max
a⋆∈[K]

{
1− 2pa⋆

γWa⋆

− f̂a⋆

}
.

According to Lemma 9 of [Alon et al., 2013] (included as Lemma D.2 for completeness), we know571

that572

N∑
i=2

f̂ki − f̂ki−1

1 + γf̂ki

=
1

γ

N∑
i=2

f̂ki
− f̂ki−1

1
γ + f̂ki

≤ mas(GA)

γ
=

1

γ
, (24)

where GA is the subgraph of G restricted to node set A and mas(G) is the size of the maximum573

acyclic subgraphs of G. It is direct to see that any subgraph G of Ginv has mas(G) = 1.574

Next, consider the value of a⋆ ∈ [K] that maximizes 1−2pa⋆

γWa⋆
− f̂a⋆ . If a⋆ ≤ k1, then we know that575

Wa⋆ = 1 and 1−2pa⋆

γWa⋆
− f̂a⋆ ≤ 1

γ . Otherwise, suppose that ki < a⋆ ≤ ki+1 for some i ∈ [N − 1].576

According to the definition of p, if a⋆ ̸= ki+1 we know that pa⋆ = 0 and577

1

1 + γf̂a⋆

≤
∑
j′>a⋆

pj′ = Wki+1
= Wa⋆ .

Therefore,578

1− 2pa⋆

γWa⋆

− f̂a⋆ =
1

γWa⋆

− f̂a⋆ ≤ 1

γ
.

Otherwise, Wa⋆ = Wki+1
and 1−2pa⋆

γWa⋆
− f̂a⋆ ≤ 1

γWki+1
− f̂ki+1

= 1
γ . Combining the two cases579

above and Eq. (24), we obtain that580

decγ(p; f̂ , x,Ginv) ≤
3

γ
+

1

γ
+

1

γ
= O

(
1

γ

)
.

581

21



B.4 Undirected and Self-Aware Graphs582

Proposition 4. When G is an undirected self-aware graph, given any f̂ , context x, there exists a583

closed-form distribution p ∈ ∆(K) guaranteeing that decγ(p; f̂ , x,G) ≤ O
(

α
γ

)
.584

Proof. We first introduce the closed-form of p and then show that decγ(p; f̂ , x,G) ≤ O(αγ ). Specif-585

ically, we first sort f̂a in an increasing order and choose a maximal independent set by choosing586

the nodes in a greedy way. Specifically, we pick k1 = argmini∈[K] f̂i. Then, we ignore all the587

nodes that are connected to k1 and select the node a with the smallest f̂a in the remaining node588

set. This forms a maximal independent set I ⊆ [K], which has size no more than α and is also589

a dominating set. Set pa = 1

α+γf̂a
for a ∈ I\{k1} and pk1

= 1 −
∑

a̸=k1,a∈I pa. This is a valid590

distribution as we only choose at most α nodes and pa ≤ 1/α for all a ∈ I\{k1}. Now we show591

that decγ(p; f̂ , x,G) ≤ O(αγ ). Specifically, we only need to show that with this choice of p, for any592

a⋆ ∈ [K],593

K∑
a=1

paf̂a − f̂a⋆ +
1

γ

K∑
a=1

p2a
Wa

+
1− 2pa⋆

γWa⋆

≤ O
(
α

γ

)
.

Plugging in the form of p, we know that594

K∑
a=1

paf̂a − f̂a⋆ +
1

γ

K∑
a=1

p2a
Wa

+
1− 2pa⋆

γWa⋆

≤
∑

a∈I\{k1}

f̂a

α+ γf̂a
− f̂a⋆ +

1− 2pa⋆

γWa⋆

+
1

γ
(pa ≤Wa for all a ∈ [K])

≤ α

γ
− f̂a⋆ +

1− 2pa⋆

γWa⋆

. (|I| ≤ α)

If a⋆ = k1, then we can obtain that 1−2pa⋆

γWa⋆
≤ 1

γWk1
≤ α

γ as pk1 ≥ 1
α according to the definition of595

p. Otherwise, note that according to the choice of the maximal independent set I , Wa⋆ ≥ 1

α+γf̂a′
for596

some a′ ∈ I such that f̂a′ ≤ f̂a⋆ . Therefore,597

−f̂a⋆ +
1− 2pa⋆

γWa⋆

≤ −f̂a⋆ +
1

γWa⋆

≤ −f̂a⋆ +
α+ γf̂a′

γ
≤ α

γ
.

Combining the two inequalities above together proves the bound.598

C Implementation Details in Experiments599

C.1 Implementation Details in Section 5.1600

We conduct experiments on RCV1 [Lewis et al., 2004], which is a multilabel text-categorization601

dataset. We use a subset of RCV1 containing 50000 samples and K = 50 sub-classes. Therefore,602

the feedback graph in our experiment has K = 50 nodes. We use the bag-of-words vector of each603

sample as the context with dimension d = 47236 and treat the text categories as the arms. In each604

round t, the learner receives the bag-of-words vector xt and makes a prediction at ∈ [K] as the605

text category. The loss is set to be ℓt,at = 0 if the sample belongs to the predicted category at and606

ℓt,at
= 1 otherwise.607

The function class we consider is the following linear function class:608

F = {f : f(x, a) = Sigmoid((Mx)a),M ∈ RK×d},

where Sigmoid(u) = 1
1+e−u for any u ∈ R. The oracle is implemented by applying online gradient609

descent with learning rate η searched over {0.1, 0.2, 0.5, 1, 2, 4}. As suggested by [Foster and610
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Krishnamurthy, 2021], we use a time-varying exploration parameter γt = c ·
√
αt, where t is the611

index of the iteration, c is searched over {8, 16, 32, 64, 128}, and α is the independence number of612

the corresponding feedback graph. Our code is built on PyTorch framework [Paszke et al., 2019]. We613

run 5 independent experiments with different random seeds and plot the mean and standard deviation614

value of PV loss.615

C.2 Implementation Details in Section 5.2616

C.2.1 Details for Results on Random Directed Self-aware Graphs617

We conduct experiments on a subset of RCV1 containing 10000 samples with K = 10 sub-classes.618

Our code is built on Vowpal Wabbit [Langford and Zhang, 2007]. For SqaureCB, the exploration619

parameter γt at round t is set to be γt = c ·
√
Kt, where t is the index of the round and c is the hyper-620

parameter searched over set {8, 16, 32, 64, 128}. The remaining details are the same as described in621

Appendix C.1.622

C.2.2 Details for Results on Synthetic Inventory Dataset623

In this subsection, we introduce more details in the synthetic inventory data construction, loss function624

constructions, oracle implementation, and computation of the strategy at each round.625

Dataset. In this experiment, we create a synthetic inventory dataset constructed as follows. The626

dataset includes T data points, the t-th of which is represented as (xt, dt) where xt ∈ Rm is the627

context and dt is the realized demand given context xt. Specifically, in the experiment, we choose628

m = 100 and xt’s are drawn i.i.d from Gaussian distribution with mean 0 and standard deviation 0.1.629

The demand dt is defined as630

dt =
1√
m
x⊤
t θ + εt,

where θ ∈ Rm is an arbitrary vector and εt is a one-dimensional Gaussian random variable with mean631

0.3 and standard deviation 0.1. After all the data points {(xt, dt)}Tt=1 are constructed, we normalize632

dt to [0, 1] by setting dt ←
dt−mint′∈[T ] dt′

maxt′∈[T ] dt′−mint′∈[T ] dt′
. In all our experiments, we set T = 10000.633

Loss construction. Next, we define the loss at round t when picking the inventory level at with634

demand dt, which is defined as follows:635

ℓt,at = h ·max{at − dt, 0}+ b ·max{dt − at, 0}, (25)

where h > 0 is the holding cost per remaining items and b > 0 is the backorder cost per remaining636

items. In the experiment, we set h = 0.25 and b = 1.637

Regression oracle. The function class we use in this experiment is as follows:638

F = {f : f(x, a) = h ·max{a− (x⊤θ + β), 0}+ b ·max{x⊤θ + β − a, 0}, θ ∈ Rm, β ∈ R}.

This ensures the realizability assumption according to the definition of our loss function shown639

in Eq. (25). The oracle uses online gradient descent with learning rate η searched over640

{0.01, 0.05, 0.1, 0.5, 1}.641

Calculation of pt. To make SquareCB.G more efficient, instead of solving the convex program642

defined in Eq. (5), we use the closed-form of pt derived in Proposition 3, which only requires O(K)643

computational cost and has the same theoretical guarantee (up to a constant factor) as the one enjoyed644

by the solution solved by Eq. (5). Similar to the case in Appendix C.1, at each round t, we pick645

γt = c ·
√
t with c searched over the set {0.25, 0.5, 1, 2, 3, 4}. Note again that the independence646

number for inventory graph is 1.647

We run 8 independent experiments with different random seeds and plot the mean and standard648

deviation value of PV loss.649
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D Auxiliary Lemmas650

Lemma D.1 (Lemma 5 in [Alon et al., 2015]). Let G = (V,E) be a directed graph with |V | = K,651

in which i ∈ N in(G, i) for all vertices i ∈ [K]. Assign each i ∈ V with a positive weight wi such652

that
∑n

i=1 wi ≤ 1 and wi ≥ ε for all i ∈ V for some constant 0 < ε < 1
2 . Then653

K∑
i=1

wi∑
j∈N in(G,i) wj

≤ 4α(G) log
4K

α(G)ε
,

where α(G) is the independence number of G.654

Lemma D.2 (Lemma 9 in [Alon et al., 2013]). Let G = (V,E) be a directed graph with vertex set655

|V | = K, in which i ∈ N in(G, i) for all i ∈ [K]. Let p be an arbitrary distribution over [K]. Then,656

we have657

K∑
i=1

pi∑
j∈N in(G,i) pj

≤ mas(G),

where mas(G) is the size of the maximum acyclic subgraphs of G.658
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