Appendix A Comparing POWER with information-theoretic empowerment

Salge et al. [2014] define information-theoretic empowerment as the maximum possible mutual
information between the agent’s actions and the state observations n steps in the future, written
¢, (s). This notion requires an arbitrary choice of horizon, failing to account for the agent’s discount
rate . “In a discrete deterministic world empowerment reduces to the logarithm of the number of
sensor states reachable with the available actions” [Salge et al., 2014]. Figure 9 demonstrates how
empowerment can return counterintuitive verdicts with respect to the agent’s control over the future.
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Figure 9: Proposed empowerment measures fail to adequately capture how future choice is affected
by present actions. In a: &, (s;) varies depending on whether n is even; thus, lim,,_, ., &,(s1)
does not exist. In b and c: Vn : &,(s3) = &,(s4), even though s, allows greater control over
future state trajectories than s; does. For example, suppose that in both b and c, the leftmost black
state and the rightmost red state have 1 reward while all other states have 0 reward. In c, the agent
can independently maximize the intermediate black-state reward and the delayed red-state reward.
Independent maximization is not possible in b.

POWER returns intuitive answers in these situations. lim._,; POWERp,, (s1,7) converges by
lemma 5.3. Consider the obvious involution ¢ which takes each state in fig. 9b to its counterpart
in fig. 9c. Since ¢ - Fra(ss3) € Fna(ss) = F(sa), proposition 6.6 proves that Vy € [0,1] :
POWERD, .. (5357) Ziost: Dyomy POWERDy (51,7), With the proof of proposition 6.6 showing
strict inequality under all Dx_;, when v € (0, 1).

Empowerment can be adjusted to account for these cases, perhaps by considering the channel capacity
between the agent’s actions and the state trajectories induced by stationary policies. However, since
POWER is formulated in terms of optimal value, we believe that POWER is better suited for MDPs
than information-theoretic empowerment is.

Appendix B Seeking POWER can be a detour

Remark. The results of appendix E do not depend on this section’s results.

One might suspect that optimal policies tautologically tend to seek POWER. This intuition is wrong.

Proposition B.1 (Greater POWERp, , does not imply greater Pp, . ,)-
Action a seeking more POWERp,,,, than o' at state s and y does not

imply that ]P)Dlmuml (S’ a, FY) Z PDImund (S’ a/’ FY)' m

Proof. Consider the environment of fig. 10. Let X, := unif(0, 1),
and consider Dx_ p, which has bounded support. Direct
computation® of the POWER expectation (definition 5.2) yields
POWERp, , (s2,1) = 2 > 2 = POWERp, , (s3,1). Therefore,

N seeks more POWERp _, than NE at state s; and v = 1. Figure 10

However, P, (s1,N,1) = 3<%= Ppy, . (s1,NE 1). O

5In small deterministic MDPs, the POWER and optimality probability of the maximum-entropy reward function
distribution can be computed using https://github.com/loganriggs/Optimal-Policies-Tend-To-Seek-Power.
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Lemma B.2 (Fraction of orbits which agree on weak optimality). Let ® C A(R!S)), and sup-
pose fi,fa : AR — R are such that f1(D) >,.wo [2(D). Then for all D € D,
[{PresisPln@)znm0) 1

515/ -2

Proof. AllD' € S|s - D suchthat f1(D') = fo(D’') satisfy f1(D') > fo(D').

Otherwise, consider the D' € S|s| - D such that f1(D’) # fo(D’). By the definition of > ¢

(definition 6.5), at least £ of these D’ satisfy f1(D’) > f2(D’), in which case f1(D’) > fa (D%

Then the desired inequality follows.

—MoSs

all reward function distributions D € © with one-element orbits, f1(D) > f2(D). In particular, D
has a one-element orbit when it distributes reward identically and independently (1ID) across states.

Lemma B.3 (>0« and trivial orbits). Let ® C A(RIS!) and suppose fi(D) >, . o f2(D). For

Proof. By lemma B.2, at least half of the elements D' € S|s| - D satisty f1(D’) > fo(D’). But
’S|$| 'D’ = 1,and so f1(D) > f2(D) must hold.

If D is 1ID, it has a one-element orbit due to the assumed identical distribution of reward. O

Proposition B.4 (Actions which tend to seek POWER do not necessarily tend to be optimal). Action
) ; X
a tending to seek more POWER than o at state s and vy does not imply that Pp, (5,0,7) > os Doy

]P)Dl,m. (Sa (I/, FY)

Proof. Consider the environment of fig. 10. Since RSDyq (s3) € RSD (s2), proposition 6.12
shows that POWERp, ., (S2, 1) > »,.., POWERD, , (s3,1) via s’ := 53,5 := s2, ¢ the identity
permutation (which is an involution). Therefore, N tends to seek more POWER than NE at state s; and

v=1.

If P, (s1,N,1) Z most: Dy T Dy (s1,NE, 1), then lemma B.3 shows that P (s,N,1) >
Ppy., (s1,NE, 1) for all Dx_yp. But the proof of proposition B.1 showed that P, (s1,N,1) <
Ppy, . (51, NE, 1) for X, := unif(0, 1). Therefore, it cannot be true that P (s1,N, 1) >, Doy
]P)Dmy (s1,NE, 1). O

Appendix C Sub-optimal POWER

In certain situations, POWER returns intuitively surprising verdicts. There exists a policy under which
the reader chooses a winning lottery ticket, but it seems wrong to say that the reader has the power
to win the lottery with high probability. For various reasons, humans and other bounded agents are
generally incapable of computing optimal policies for arbitrary objectives. More formally, consider
the rewardless MDP of fig. 11.

Figure 11: sy is the starting state, and |A| = 101010. At sq, half of the actions lead to s,, while the
other half lead to s,-. Similarly, half of the actions at s, lead to s;, while the other half lead to so. At

. . .. 10 .
Sy, one action leads to s3, one action leads to s4, and the remaining 1010 — 2 actions lead to ss.

Consider a model-based RL agent with black-box simulator access to this environment. The agent has
no prior information about the model, and so it acts randomly. Before long, the agent has probably
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learned how to navigate from s, to states sy, s,, S1, S2, and s5. However, over any reasonable
timescale, it is extremely improbable that the agent discovers the two actions respectively leading to
s3 and sy.

Even provided with a reward function R and the discount rate -y, the agent has yet to learn the relevant
environmental dynamics, and so many of its policies are far from optimal. Although proposition 6.6
ShQWS that. VFY 6. [Oa 1] : POWERDbuund (55, FY) Smosl: D bound POWERDbuund (Sh FY)’ there is a sense in
which s, gives this agent more power.

We formalize a bounded agent’s goal-achievement capabilities with a function pol, which takes as
input a reward function and a discount rate, and returns a policy. Informally, this is the best policy
which the agent knows about. We can then calculate POWERp, , with respect to pol.

Definition C.1 (Suboptimal POWER). Let IIx be the set of stationary stochastic policies, and let
pol : RS x [0,1] — Ha. For v € [0, 1],

P WERPO1 — E li 1 — ~* pol(R,y) /% )
O Dbuund (S’ FY) RN,Dbuund, fy*lglry( FY )VR (S 5’-)/ ) (5)
a~pol(R,v)(s),
s'~T(s,a)

By lemma E.38, POWERp,,, is the special case where VR € RS,y € [0, 1] : pol (R, ) € II* (R, ).
We define POWERP,E’imd-seeking similarly as in definition 5.6.

POWER%’iuund (s0,1) increases as the policies returned by pol are improved. We illustrate this by
considering the Dy, case.

pol; The model is initially unknown, and so VR, : pol; (R, ) is a uniformly random policy.

Since pol; is constant on its inputs, POWER%E”D (s0,1) = E[X] by the linearity of ex-
pectation and the fact that Dy, distributes reward independently and identically across
states.

pol, The agent knows the dynamics, except that it does not know how to reach s3 or s4. At this
point, pol, (R, 1) navigates from s, to the average-optimal choice among three terminal

1
states: s1, so, and s5. Therefore, POWER%)bfund (s0,1) = E [max of 3 draws from X].

pol; The agent knows the dynamics, the environment is small enough to solve explicitly,
and so VR,v : pols(R,~) is an optimal policy. pols;(R, 1) navigates from s to the

average-optimal choice among all five terminal states. Therefore, POWER%)EUHd (so,1) =
E [max of 5 draws from X].

As the agent learns more about the environment and improves pol, the agent’s POWER%)iuund increases.

The agent seeks POWER%)SSM by navigating to s, instead of s,., but seeks more POWERp,, ., by
navigating to s,. instead of s,. Intuitively, bounded agents gain power by improving pol and by

formally seeking POWER%)SOM within the environment.
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D.1 Contributions of independent interest

We developed new basic MDP theory by exploring the structural properties of visit distribution
functions. Echoing Wang et al. [2007, 2008], we believe that this area is interesting and underexplored.

D.1.1 Optimal value theory

Lemma E.40 shows that f(v*) = lim«_,,(1 — v*)V} (s,~*) is Lipschitz continuous on v € [0, 1],
with Lipschitz constant depending only on || R||,. For all states s and policies 7w € II, corollary E.5
shows that V7 (s, ) is rational on 7.

Optimal value has a well-known dual formulation: V}; (s,7) = maxge r(s) £(7) ' .

Lemma E.34 (Vy € [0,1) : V}; (s5,7) = maxge £, ,(5) £(7) "0).

In a fixed rewardless MDP, lemma E.34 may enable more efficient computation of optimal value
functions for multiple reward functions.

D.1.2 Optimal policy theory

Proposition E.30 demonstrates how to preserve optimal incentives while changing the discount rate.

Proposition E.30 (How to transfer optimal policy sets across discount rates). Suppose reward
function R has optimal policy set II* (R,~y) at discount rate y € (0,1). For any v* € (0,1), we
can construct a reward function R' such that 11* (R',~*) = II* (R, ~). Furthermore, V}, (-,7*) =

Vi (59)-
D.1.3 Visit distribution theory

While Regan and Boutilier [2010] consider a visit distribution function f € F(s) to be non-dominated
if it is optimal for some reward function in a set R C RIS |, our stricter definition 3.6 considers f to
be non-dominated when 3r € RISy € (0,1) : f(y)Tr > maxg e 7(s)\ (£} £ (7) 1.

Appendix E Theoretical results

Lemma E.1 (A policy is optimal iff it induces an optimal visit distribution at every state). Let
~v € (0,1) and let R be a reward function. = € II* (R, ) iff 7 induces an optimal visit distribution
at every state.

Proof. By definition, a policy 7 is optimal iff 7 induces the maximal on-policy value at each state,
which is true iff 7 induces an optimal visit distribution at every state (by the dual formulation of
optimal value functions). O

Definition E.2 (Transition matrix induced by a policy). T™ is the transition matrix induced by policy
7 € II, where T™e, := T'(s,7(s)). (T™)'e, gives the probability distribution over the states visited
at time step t, after following 7 for ¢ steps from s.

Proposition E.3 (Properties of visit distribution functions). Let s, s’ € S,f™° € F(s).

1. £7™%(~) is element-wise non-negative and element-wise monotonically increasing on y €

[0,1).
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2. ¥y €[0,1): [[f™*(9)]], = -

-

Proof. Item 1: by examination of definition 3.3, f™* = >~° (vT™)" e,. Since each (T7)" is left
stochastic and e; is the standard unit vector, each entry in each summand is non-negative. Therefore,
Yy € 10,1) : f™*(y) "ey > 0, and this function monotonically increases on 7.

Item 2:

(YT™)" e, (6)

1

lE™* 0l

Il Il
U0 T

(T™)" e, ) (7

t=0
=7 ®)

t=0

1
=1 ©)

Equation (7) follows because all entries in each (T’T)t e, are non-negative by item 1. Equation (8)

follows because each (T7)" is left stochastic and e, is a stochastic vector, and so H (T™) e,
1.

Lemma E4 (f € F(s) is multivariate rational on v). ™ € F(s) is a multivariate rational function
onvy € [0,1).

Proof. Letr € RIS and consider f™ € F(s). Let v, be the V}} (s,) function in column vector
form, with one entry per state value.

By the Bellman equations, v, = (I — AT™) "' r. Let A, =1I- ~T™) ™", and for state s, form
A, - by replacing A.,’s column for state s with r. As noted by Lippman [1968], by Cramer’s rule,

det Ay, - . . . . .
VE(s,v) = S22 is a rational function with numerator and denominator having degree at most
R\% det A,

|S].

In particular, for each state indicator reward function e,,, V."(s,v) = f™*(y) e, is a rational
function of v whose numerator and denominator each have degree at most |S|. This implies that
£7 () is multivariate rational on y € [0, 1). O

Corollary E.5 (On-policy value is rational on y). Let w € Il and R be any reward function. VF (s, )
is rational on 7y € [0, 1).

Proof. VE(s,7) = £™*(7) "r, and f is a multivariate rational function of v by lemma E.4. Therefore,
for fixed r, f™*(~y) " r is a rational function of ~. O

E.1 Non-dominated visit distribution functions
Definition E.6 (Continuous reward function distribution). Results with Do hold for any absolutely

continuous reward function distribution.

Remark. We assume RI°| is endowed with the standard topology.

Lemma E.7 (Distinct linear functionals disagree almost everywhere on their domains). Let x,x’ €
RISI be distinct. P, p, (XTI‘ = X’Tr) =0.

“ont

Proof. {r RS (x—x)Tr= O} is a hyperplane since x — x’ # 0. Therefore, it has no interior

in the standard topology on RIS!. Since this empty-interior set is also convex, it has zero Lebesgue
measure. By the Radon-Nikodym theorem, it has zero measure under any continuous distribution
DCOH[' D
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Corollary E.8 (Unique maximization of almost all vectors). Let X C RISl be finite.
Prni (’arg maX,, e x X"Tr’ > 1) =0.

Proof. Letx,x’ € X be distinct. For any r € RIS| x x" € argmax,c y x"Triffx'r =x"Tr >
maxy/e x\ {x,x/} X r. By lemmaE.7, x"r = x'"r holds with probability 0 under any Deop. [

E.1.1 Generalized non-domination results

Our formalism includes both F,q(s) and RSD,q (s); we therefore prove results that are applicable to
both.

Definition E.9 (Non-dominated linear functionals). Let X ¢ RIS| be finite. ND(X) :=
{x ceX|IreRS:xTr> maX, e x\ {x} X’Tr}.

Lemma E.10 (All vectors are maximized by a non-dominated linear functional). Letr € RIS! and
let X C RIS! be finite and non-empty. Ix* € ND (X) : x* 'r = maxyex X ' T.

Proof. Let A(r | X) == argmax,c x X't = {X1,...,X,}. Then

Xjr=---=x/r> max x'r. (10)
x'€eX\A(r|X)

In eq. (10), each x"r expression is linear on r. The max is piecewise linear on r since it is
the maximum of a finite set of linear functionals. In particular, all expressions in eq. (10) are
continuous on r, and so we can find some ¢ > 0 neighborhood B(r, ) such that Vr’ € B(r,d) :

T,/ 1T
MaXx,cA(r|X) X; ' > MaXyx/ e X\ A(r|X) X T

But almost all ' € B(r, §) are maximized by a unique functional x* by corollary E.8; in particular,

at least one such r” exists. Formally, 3r” € B(r,6) : x* v/ > MaXys e x\ {x*} x'Tr”. Therefore,

x* € ND (X) by definition E.9.

x*Tr! > maXy, c A(r|X) x, v > MaXys e X\ A(r|X) x'Tr/, with the strict inequality following because

r” € B(r,d). These inequalities imply that x* € A(r | X). O

Corollary E.11 (Maximal value is invariant to restriction to non-dominated functionals). Letr € RIS
and let X C RISI be finite. maxyex x ' r = maXycNp(X) x'r.

Proof. If X is empty, holds trivially. Otherwise, apply lemma E.10. O

Lemma E.12 (How non-domination containment affects optimal value). Let r € RIS and let
X, X" C RIS pe finite.

1. IfND (X) C X/, then maxyex X ' r < maxyex: X' 'T.

2. IfND(X) C X' C X, then maxyex X ' T = Maxy ey X' 'T.

Proof. Ttem 1:

maxx'r= max X'r (11)
xeX xEND(X)
< max x''r. (12)
x'€X/

Equation (11) follows by corollary E.11. Equation (12) follows because ND (X) C X’.

Item 2: by item 1, maxy,ecx X' r < max, ¢y X' ' r. Since X’ C X, we also have max,cxy x ' r >
maXy/c X x'Tr, and so equality must hold. O
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Definition E.13 (Non-dominated vector functions). Let I - R and let
I
F C (R'S |) be a finite set of vector-valued functions on I. ND(F) =

{f €F|3yelreRE:f(7)Tr > maxpep (g} f’(”y)Tr}.
Remark. F,q(s) = ND (F(s)) by definition 3.6.

Definition E.14 (Affine transformation of visit distribution sets). For notational convenience, we de-
fine set-scalar multiplication and set-vector addition on X C RISl forc e R, ¢ X = {cx |xe X }

Fora € RIS, X +a = {x +alxe X}. Similar operations hold when X is a set of vector
functions R + RIS,

Lemma E.15 (Invariance of non-domination under positive affine transform).
1. Let X C RIS| be finite. If x € ND (X), then Ve > 0,a € RIS| : (ex +a) € ND (¢X + a).

I
2. Let I C R and let FF C (R|S|) be a finite set of vector-valued functions on I. If
f € ND (F), then Ve > 0,a € RIS| : (cf +a) € ND (cF + a).

Proof. Item 1: Suppose x € ND (X) is strictly optimal for r € RIS, Then let ¢ > 0,a € RISl be

arbitrary, and define b :== a'r.

x'r> max x'r (13)
x'eX\{x}

ex'r4+b> max x''r+b (14)
x'eX\{x}

(ex+a)'r> x/g&)ix}(cx’ +a)'r (15)

(ex+a)'r> x"Tr. (16)

max
x""€(cX+a)\{cx+a}

Equation (14) follows because ¢ > 0. Equation (15) follows by the definition of b.

Item 2: If f € ND (F), then by definition E.13, there exist v € I,r € RISI such that

f(y)" £'(y) "r. 17
™) > max () 'r (17)

Apply item 1 to conclude

(cf(y) +a)'r > (cf'(y)+a) r. (18)

max
(cf’+a)e(cF+a)\{cf+a}
Therefore, (cf + a) € ND (¢F + a). O

E.1.2 Inequalities which hold under most reward function distributions

Definition 6.5 (Inequalities which hold for most probability distributions). Let f1, f> : A(RIS!) — R
be functions from reward function distributions to real numbers and let ® C A(RIS). We write
f1(D) 2,0 © f2(D) when, for all D € D, the following cardinality inequality holds:

(D' € Sis) DI A(D) > LD 2 [{D € S5 - DI AD) < D)} @
Lemma E.16 (Helper lemma for demonstrating > . @any). Let ® C ARIS)). If3¢ ¢ S|s| such

;fwétpf)or all D € D, f (D) < fo(D) implies that f, (6 D) > f5(¢-D), then fi(D) Zpose o
2 .

Proof. Since ¢ does not belong to the stabilizer of S|s|, ¢ acts injectively on Ss| - D. By as-
sumption on ¢, the image of {D' € S5/ - D | fi(D') < f2(D')} under ¢ is a subset of

{D' € Sis5-D | f1(D') > f2(D’)}. Since ¢ is injective, |[{D’' € S5 - D | f1(D’) < f2(D')}| <
{D' € Sis|-D| f1(D') > f2(D)}. [1(D) > o5 » f2(D) by definition 6.5. O
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Lemma E.17 (A helper result for expectations of functions). Let By, ..., B, C RIS| be finite and
let © C A(RIS). Suppose f is a function of the form

_ T T
f(Bi.....By|D)= E [g (J?eaél bir,..., max bnr)] (19)

for some function g, and that f is well-defined for all D € ®. Let ¢ be a state permutation. Then
f(Bl,...,Bn|D):f(¢~Bl,...,¢~Bn|¢~D). (20)

Proof. Let distribution D have probability measure F, and let ¢ - D have probability measure Fi.
f(Bi,...,B, | D) (21

T lg (br?eaéi bir i b r) (22)
- /R\sx g (b?ggl bir,..., bocB, bzr) dF (r) (23)
- ~/]R\S\ g (bl?e%%(l bir,..., ek bzr) dFy(Pyr) (24)
= [ o (s o7 (Py) o ] () ) et ol ams) 9
- ~/]R\S\ 9 (g?ggl (P¢b1)T v nax. (P<;5bn)T r’) dF,(r") (26)
- /Rw g <be§‘}.’§91 by, 00K biff’) dFy(r') 7)
=f(¢-Bi,...,¢ By |¢-D). 8)

Equation (24) follows by the definition of Iy (definition 6.3). Equation (25) follows by substituting
r’ := P4r. Equation (26) follows from the fact that all permutation matrices have unitary determinant

and are orthogonal (and so (P;l)T =Py). O

Definition E.18 (Support of D,py). Let D,y be any reward function distribution. supp(Dany) is the
smallest closed subset of RIS whose complement has measure zero under Dyyy.

Definition E.19 (Linear functional optimality probability). For finite A, B C R!S|, the probability

under Dqyy that A is optimal over B is pp,, (A>B) = ]P)rNDmy (maxaeA a'r > maxpesn bTr).

Proposition E.20 (Non-dominated linear functionals and their optimality probability). Let A C RIS!
be finite. If 3b < c : [b, c]!S| C supp(Duny), then a € ND (A) implies that a is strictly optimal for a
set of reward functions with positive measure under D,,,.

Proof. Suppose 3b < ¢ : [b,c]!S! C supp(Dauy). If a € ND (A), then let r be such thata'r >
maXyse A\ {a} a’"r. Fora; > 0,ay € R, positively affinely transform r’ := air + as1 (where
1 € RISl s the all-ones vector) so that ' € (b, ¢)!Sl.

Note that a is still strictly optimal for r’:

a'lr> max a''r < a'r'> max a''r. (29)

a’c A\{a} a’cA\{a}
Furthermore, by the continuity of both terms on the right-hand side of eq. (29), a is strictly optimal
for reward functions in some open neighborhood N of . Let N’ := N N (b, ¢)!®l. N” is still open in
RISI since it is the intersection of two open sets N and (b, ¢)!S!.

D.ny must assign positive probability measure to all open sets in its support; otherwise, its support
would exclude these zero-measure sets by definition E.18. Therefore, D,y assigns positive probability
to N’ C supp(Dany)- O
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Lemma E.21 (Expected value of similar linear functional sets). Let A, B C RIS! be finite, let A’ be
such that ND (A) C A’ C A, and let g : R — R be an increasing function. If B contains a copy B’

of A’ via ¢, then
E T T
g | maxa'r < E g | maxb 'r||. 30)
~Dipound acA r~®-Diound beB

IfND (B) \ B’ is empty, then eq. (30) is an equality. If ND (B) \ B’ is non-empty, g is strictly
increasing, and b < ¢ : (b, ¢)!S! C supp(Dpouna), then eq. (30) is strict.

Proof. Because g : R — R is increasing, it is measurable (as is max). Therefore, the relevant
expectations exist for all Dygyng-

£ T - E T 3
r~Doound [g (?eafa r)] ol [g (géagga r)] G1)

= E ax a'r 32
r’\’(15',Dboum| g (agl¢)‘§/ )‘| ( )
= E b’ 33

r~@-Dhound g (I:I)Iéag r)‘| ( )
< E b'r)|. 34
- r’\’(15',Dboum| g (Itl)leag r)‘| ( )

Equation (31) holds because Vr € RISI maXacA a'r = maXaec A’ a'r by lemma E.12’s item 2
with X := A, X’ .= A’. Equation (32) holds by lemma E.17. Equation (33) holds by the definition
of B’. Furthermore, our assumption on ¢ guarantees that B’ C B. Therefore, maxpe g/ b'r <
maxpep b ', and so eq. (34) holds by the fact that g is an increasing function. Then eq. (30) holds.

If ND (B) \ B’ is empty, then ND (B) C B’. By assumption, B’ C B. Then apply lemma E.12
item 2 with X := B, X’ := B’ in order to conclude that eq. (34) is an equality. Then eq. (30) is also
an equality.

Suppose that g is strictly increasing, ND (B) \ B’ is non-empty, and 3b < ¢ : (b,¢)lSl C
supp(Dhbound)- Let x € ND (B) \ B'.

E g (max bTr)] < E g < max bTr> (35)
r~@-Dhound beB’ r~@®-Dhound a€B'U{x}
< E b'r)|. 36
" r~¢Dyound lg (Igleag r)] (36)
x is strictly optimal for a positive-probability subset of supp(Dpound) by proposition E.20. Since ¢ is
strictly increasing, eq. (35) is strict. Therefore, we conclude that eq. (30) is strict. (]

Lemma E.22 (For continuous 11D distributions Dx._yp, 3b < ¢ : (b, )1l C supp(Dxp))-

Proof. Dx.p =X ISI. Since the state reward distribution X is continuous, X must have support on
some open interval (b, ¢). Since Dx_p is 1ID across states, (b, ¢)!S! C supp(Dx.p). O

Definition E.23 (Bounded, continuous 11D reward). ®c/s/1p i the set of Dx p which equal X |51
for some continuous, bounded-support distribution X over R.

Lemma E.24 (Expectation superiority lemma). Let A, B C RIS! be finite and let g : R — R be an
increasing function. If B contains a copy B’ of ND (A) via ¢, then

rng i lg (I;leaj( aTr) Zmost: D pound B lg (max bTr)] : (37

r~Dhound beB
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Furthermore, if g is strictly increasing and ND (B) \ ¢ - ND (A) is non-empty, then eq. (37)

is strict for all Dx.yp € Dcpmp. In particular, Ey.p,,,, g(maxaeA aTr) Zmosl:@’mm

ErnDiuna [g (maxb cB bTr)]

Proof. Because g : R — R is increasing, it is measurable (as is max). Therefore, the relevant
expectations exist for all Dygyng-

Suppose that Dygyng is such that E,p, ., [g (maxbe B bTr)] < ErnDyyng [g (maxae A aTr)} .

E [g (max aTr)] < E [g (max bTr)] (38)
r~¢-Dhound acA r~¢$2-Dyound beB
. T
" e [9 (o )] <
E T 40
< r~Dhpound [g (gleaA‘X a r)‘| ( )

(41)

< E [g (max b’ r)
rN¢'Dbuund beB

Equation (38) follows by applying lemma E.21 with permutation ¢» and A’ := ND (A). Equation (39)
follows because involutions satisfy ¢~> = ¢, and ¢ is therefore the identity. Equation (40)

follows because we assumed that E,.p, ., [g (maxbe B bTr)] < ErnDyouna [g (maxae A aTr)}.

Equation (41) follows by applying lemma E.21 with permutation ¢ and and A’ := ND (A). By
lemma E.16, eq. (37) holds.

Suppose g is strictly increasing and ND (B) \ B’ is non-empty. Let ¢" € S|g).

E T = E T 42
i )] - g (o) w

T
< r~¢%x,,,u [g (It?eagb r)] (43)
= E [g (max bTr)] . 44)
FN¢/'DX—IID beB

Equation (42) and eq. (44) hold because Dx .y, distributes reward identically across states: V¢, €
Sis| * ¢z - Dxaip = Dx.yp- By lemma E.22, 3b < ¢ : (b, ¢)!S! C supp(Dx.up). Therefore, apply
lemma E.21 with A’ := ND (A) to conclude that eq. (43) holds.

Therefore, Vo' € S|s| : Erng’ Dy [g (maxaeA aTr)} < Erng’ Do [g (maxbeB bTr)] , and so

E o Doguna [g (maxaeA aTr)} Z most: Dvonnt BT~ Douna [g (maxbeB bTr)] by definition 6.5. O

Definition E.25 (Indicator function). Let L be a predicate which takes input x. 1) is the function
which returns 1 when L(x) is true, and 0 otherwise.

Lemma E.26 (Optimality probability inclusion relations). Let X,Y C RIS! be finite and suppose
Y' CY.

Pp., (X 2Y) <p,, (X V') <pp,, (XU \Y)2Y). (45)

If3b < c: (b,¢)!S! C supp(Duny), X €Y, and ND (V) N (Y '\ 'Y’) is non-empty, then the second
inequality is strict.

24



Proof.

Pou (X 2Y)i= B [V xTrzmanyer v7s] (46)
S L P—— “7)
S PR —— (48)
= M%ny _lmaxxexuww/) xTr>maxyeyruy\v/) -VT”} (49)
= B [Lusexirirn xTrzmmsyer 7] (50)
= oy, (X U\Y) > Y) . (51)

Equation (47) follows because Vr € RISI : Laxxex xTromaxyey yTr < Lmaxeex xTr>max, ey yTr
since Y/ C Y, note that eq. (47) equals DDy (X > Y’), and so the first inequality of
eq. (45) is shown. Equation (48) holds because Vr € RISI Lnaxece x xTr>max,cysyTr <
1

T Tp.
max, cxu(y\vy’) X r>maxycys b'r

Suppose 3b < ¢ : (b, ¢)!S! C supp(Dany), X C Y, and ND (Y) N (Y \ Y”) is non-empty. Let
y* € ND(Y) N (Y \ Y’). By proposition E.20, y* is strictly optimal on a subset of supp(Dany)

with positive measure under D,y . In particular, for a set of r* with positive measure under Dyyy, We

have y*Tr* > maXycy’ yr*

Then eq. (48) is strict, and therefore the second inequality of eq. (45) is strict as well. O

Lemma E.27 (Optimality probability of similar linear functional sets). Let A, B,C' C RIS! be finite,
and let Z C RIS| be such that ND (C) C Z C C. If ND (A) is similar to B' C B via ¢ such that

6+ (Z\(B\B)) =2\ (B\ B), then
PDay (A= C) <pyp,, (B=C). (52)

If B = B, then eq. (52) is an equality. If 3 < ¢ : (b,¢)lSl C supp(D,,,), B’ C C, and
ND (C) N (B \ B') is non-empty, then eq. (52) is strict.

Proof.
pp,, (A= C) =pp,, (A2 2) (53)

— o, (ND (4) > 2) (54

< pp., (ND(4) 2 2\ (B\ B)) (55)

= psn,, (0-ND(4) =62\ (B\B)) (56)

=pona, (B > 2\ (B\B)) 57

<pym, (B'U(B\B)>2) (58)

=Py (B> C). (59)

Equation (53) and eq. (59) follow by lemma E.12’s item 2 with X := C, X’ := Z. Similarly, eq. (54)
follows by lemma E.12’s item 2 with X := A, X’ := ND (A). Equation (55) follows by applying
the first inequality of lemma E.26 with X :=ND (A),Y = Z, Y’ .= Z \ (B \ B’). Equation (56)
follows by applying lemma E.17 to eq. (53) with permutation ¢.

Equation (57) follows by our assumptions on ¢. Equation (58) follows because by applying the
second inequality of lemma E.26 with X :== B’ Y := ND (C),Y’' :=ND(C) \ (B\ B’).
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Suppose B’ = B. Then B\ B’ = (), and s0 eq. (55) and eq. (58) are trivially equalities. Then eq. (52)
is an equality.

Suppose 3b < ¢ : (b, ¢)!S! C supp(Dany); note that (b, ¢)lSI C supp(¢ - Dany), since such support
must be invariant to permutation. Further suppose that B’ C C and that ND (C) N (B '\ B) is non-
empty. Then letting X := B’,Y = Z,Y’ := Z\ (B B’) and noting that ND (ND (Z)) = ND (2),
apply lemma E.26 to eq. (58) to conclude that eq. (52) is strict. (]

Lemma E.28 (Optimality probability superiority lemma). Let A, B,C' C RIS! be finite, and let Z
satisfy ND (C) C Z C C. If B contains a copy B’ of ND (A) via ¢ such that ¢ - (Z\ (B\ B’)) =
Z\ (B\B'), thenpp,, (A > C) <, Dy Py (B> C).

any —mos

IfB' C Cand ND (C)N (B \ B’) is non-empty, then the inequality is strict for all Dx 1p € D¢/s/up
and PDuny (A > C) Zmosl: Dany PD,,y (B > C)

Proof. Suppose Dy is such that pp,, (B > C) < pp,, (A > C).

DDy (A>C) =pg-1.p,, (A>C) (60)
<pp,, (B=>C) (61)
< DD,y (A > C) (62)
<pg.p,, (B>C). (63)

Equation (60) holds because ¢ is an involution. Equation (61) and eq. (63) hold by ap-
plying lemma E.27 with permutation ¢. Equation (62) holds by assumption. Therefore,
PDuy (A2 C) Spogt: 94y Py (B = C) by lemma E.16.

—mos

Suppose B’ C C'and ND (C)N (B \ B’) is non-empty, and let D x_;p be any continuous distribution
which distributes reward independently and identically across states. Let ¢’ € S|s|.

p¢/'DX—||D (A Z C) = pDqu (A Z C) (64)
< p¢'DX—uD (B Z C) (65)
= p¢/'DX—||D (A Z C) ° (66)

Equation (64) and eq. (66) hold because Dx _;p distributes reward identically across states, V¢, €
Sis| t ¢z * Dxaip = Dxyp- By lemma E.22, 3b < ¢ : (b, ¢)I81 C supp(Dx.up). Therefore, apply
lemma E.27 to conclude that eq. (65) holds.

Therefore, V¢' € Sis| @ DPg Dy (A>C) < py.pxy (B>C). In particular,
PDuy (A > C) Zose Duny PDuny (B > C) by definition 6.5. O

Lemma E.29 (Limit probability inequalities which hold for most distributions). Let I C R, let
D C A(RIS)) be closed under permutation, and let F 4, F, F¢ be finite sets of vector functions I
RIS Let v be a limit point of I such that f,(D) = limy«_ pp (Fg(v*) > Fo(7%)), f2(D) =
limy« . pp (Fa(y*) = Fo(v*)) are well-defined for all D € D.

Let Fy satisfy ND (F¢) C Fz C Fg. Suppose Fp contains a copy of Fa via ¢ such that ¢ -

(F2\ (F5\ 6 Fa)) = Fz\ (Fp\ 6+ Fa). Then /(D) <y 0 J1(D).

Proof. Suppose D € D is such that fo(D) > f1(D).

£2(6-D) = fo ((fl .p) (67)
= lim pyip (Fa(y") = Fe(v") (68)
< I pp (Fp(v) 2 Fo(v") (69)
< I pp (Fa(r’) > Fo(y")) (70)
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< lim pop (Fp(v") 2 Fo(r")) 70
= fi(¢-D). 72)

By the assumption that @ is closed under permutation and f5 is well-defined for all D € D, f2(¢ - D)
is well-defined. Equation (67) follows since ¢ = ¢~ because ¢ is an involution. For all v* € I, let
A= Fa(y*),B = Fp(vy*),C = Fo(~*),Z = Fz(v*) (by definition E.13, ND (C') C Z C O).
Since ¢ - A C B by assumption, and since ND (4) C A, B also contains a copy of ND (A)
via ¢. Furthermore, ¢ - (Z\ (B\ ¢- A)) = Z\ (B\¢-A) (by assumption), and so apply
lemma E.27 to conclude that py-1.p (FA (v*) > Fe (”y*)) < pp (FB (v*) > Fe (”y*)) Therefore,
the limit inequality eq. (69) holds. Equation (70) follows because we assumed that f1 (D) < fo(D).
Equation (71) holds by reasoning similar to that given for eq. (69).

Therefore, fo(D) > f1(D) implies that f2 (¢ - D) < f1(¢ D), and so apply lemma E.16 to
conclude that f>(D) < . o f1(D). O

—most:

E.1.3 F,q4results

Proposition E.30 (How to transfer optimal policy sets across discount rates). Suppose reward
function R has optimal policy set II* (R,~y) at discount rate y € (0,1). For any v* € (0,1), we
can construct a reward function R’ such that 11* (R',~*) = II* (R, ~). Furthermore, V}, (-,7*) =

Vi (57)-
Proof. Let R be any reward function. Suppose v* € (0,1) and construct R'(s) = V} (s,7) —
Fy* maXgeA ES/NT(s,a) |:V]$ (S/a FY)} .

Let m € II be any policy. By the definition of optimal policies, 7 € IT* (R’, ”y*) iff for all s:

/ * * N _ p/ * %
R/'(s) +~ s/NT(E;:,ﬂ(s)) [VR/ (s',y ) =R'(s) +~* max S/NES v [VR/ (s',y )} (73)

’ * [y e (1 1 x (1
R'(s) + S/NTEJ(S)) Va(s'7)| = R(s)+7" max E [VR (s ,”y)} (74)
* [ s (0 1« * [
Y s/NT(IE,,,(S» Vi (s ,"y)_ =7 Ifea}fswf]?‘(s,@ [VR (s ,v)} (75)
[ * / | _ * /
S/NT(]EﬂS)) Vi (7)) =max | E [VR (s ,”y)] : (76)

By the Bellman equations, R'(s) = Vg, (5,7*) — v* maxaes Egror(s,a) [Vﬁ/ (s, ”y*)] By the

definition of R’, Vi3, (-,7v*) = V3 (-,y) must be the unique solution to the Bellman equations for
R' at v*. Therefore, eq. (74) holds. Equation (75) follows by plugging in R' := V}; (s,7) —

v maxgea Eo or(s,a) [Vﬁ (s’, ”y)} to eq. (74) and doing algebraic manipulation. Equation (76)
follows because v* > 0.

Equation (76) shows that 7= € II* (R’,”y*) iff Vs Egorsn(s) [Vg; (s’, ”y)} =
maxaea By o 7(s.0) [VI;: (s/,y)]. Thatis, 7 € IT* (R, 7*) iff = € IT* (R, 7). 0

Deﬁnition E.31 (Evaluating sets of visit distribution functions at ). For v € (0,1), define
{£(v) | f € F(s)} and Fna(s,7) = {f(7)|f € Fna(s)}. If F C F(s), then
= {f )| feF}

Lemma E.32 (Non-domination across -y values for expectations of visit distributions). Let A4 €
A (R|S|) be any state distribution and let F := {E,,.a, [f™*!] | 7 € II}. f € ND (F) iff Vy* €
(0,1) : £(y*) € ND (F(v")).
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Proof. Let f™ € ND (F') be strictly optimal for reward function R at discount rate y € (0, 1):

f7(y)Tr>  max f“/(ﬂy)Tr. a7
£ cF\{f~}

Let v* € (0, 1). By proposition E.30, we can produce R’ such that IT* (R/, v*) = II* (R, 7). Since
the optimal policy sets are equal, lemma E.1 implies that

(v > max 7 (y9) 71 (78)
£ cF\{f~}

Therefore, £™(v*) € ND (F(v*)).
The reverse direction follows by the definition of ND (F). O

Lemma E.33 (Vy € (0,1) : d € Fua(s, ) iffd € ND (F(s,7))).

Proof. By definition E.31, Fy(s,7) = {f(”y) | £ € ND (F(s)) } By applying lemma E.32 with
Ay :=e, f € ND (F(s))iff Vy € (0,1) : £(y) € ND (F(s,7)). O
Lemma E.34 (Vy € [0,1) : V}; (s,7) = maxge ,,(s) £(7) "0).

Proof. ND (F(s,7)) = Fual(s,~) by lemma E.33, so apply corollary E.11 with X := F(s,7). O

E.2 Some actions have greater probability of being optimal

Lemma E.35 (Optimal policy shift bound). For fixed R, 1I* (R, ) can take on at most (2|S| +
>, (|.7:;s)|) distinct values over v € (0, 1).

Proof. By lemmaE.1, IT* (R, ) changes value iff there is a change in optimality status for some visit
distribution function at some state. Lippman [1968] showed that two visit distribution functions can

trade off optimality status at most 2 |S| + 1 times. At each state s, there are (|}—;S)|) such pairs. [

Proposition E.36 (Optimality probability’s limits exist). Let F' C F(s). Pp
(F,7v) and Py (F,1) = lim, 1 Py, (F, 7).

any

(F,0) =
1imfyi>0 ]P)D

any

Proof. First consider the limit as v — 1. Let D,,y have probability measure Fj,,, and define
8(y) = Funy ({R ERS | Iy € [y,1): I* (R,~*) # 10" (R, 1)}) Since Fyny is a probability
measure, §(7) is bounded [0, 1], and §(-y) is monotone decreasing. Therefore, lim~_,1 d(y) exists.

If lim~ 1 6(7y) > 0, then there exist reward functions whose optimal policy sets IT* (R, ) never
converge (in the discrete topology on sets) to IT* (R, 1), contradicting lemma E.35. So lim.,_,1 6(7y) =
0.

By the definition of optimality probability (definition 4.3) and of §(7), | Pp, (F,7)—Pp, (F,1)] <
6(7)- Since limy1 6(7) = 0, limy 1 P (F,7) =Pp, (F,1).

A similar proof shows that lim, 0 P (F,7) = Pp, (F,0). O
Lemma E.37 (Optimality probability identity). Lety € (0, 1) and let F C F(s).

Pp,, (F,7) =po (F(7) 2 F(s,7)) = ppr (F(7) = Faa(s,7)) - (79)
Proof. Lety € (0,1).

Pp,, (Fiy):= B (3" € F:mell’(R,7)) (80)
2 any
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= E |:ILmaXf€F f(y) Tr=maxe ¢ £ (y) f/('y)Tr:| (81)

rNDany
= FNI%any |:ILmB,Xf€F f(v) Tr=maxe ¢z (s f/('y)Tr:| (82)
= pp (F(7) = Faa(s.7)) - (83)

Equation (81) follows because lemma E.1 shows that 7 is optimal iff it induces an optimal visit
distribution f at every state. Equation (82) follows because Vr € RIS : maxg/ ¢ 7 ()T =
maxg e 7, (s) £'(7) " r by lemma E.34. O

E.3 Basic properties of POWER

Lemma E.38 (POWER identities). Let v € (0,1).

1- T
PONEDns (00) = B Lgi’§5> - (Em—e) r] (84)
11—~
= B R 85
f-)/ rNDI7!7L[n1] [ R (Sa FY) (S)] ( )
1—7 .
- ol (Vpbmmd (S’ FY) - RNIED:,,M,M, [R(S)]) (86)
= _ T (]
= R | X s/NT(IE,, ®) [(1 NVE (s ,”y)} : (87)
Proof.
1- T
PONERD(5:7) =, K. L‘é}’?‘é T (E0) —e) “] (88)
1—+ .
e, — ) —es 89
r~Dhound lfelgiis) v ( (FY) € ) I‘] (89)
1—+ .
= n, £(y) —es 9
r~Dyound lf?;’é) ")/ ( (FY) € ) I.‘| ( )
1—~
N k. Ve -k 91
Y r~Dhouns [Vi (5,7) = R(s)] 91)
1—7 .
- r-)/ (VDbuund (S’ FY) - RN,IDEbuund [R(S)]> (92)
= E max E [(1 — ) fﬂ,s/(ﬁy)Tr} 93)

r~Dpound | mEII S/NT(S,TF(S))

_ _ T ()
_RN%M I;lgﬁ{s/NT(IEﬂ(s)) [(1 Y VE (s ,”Y)} : (94)

Equation (89) follows from lemma E.34. Equation (91) follows from the dual formulation of optimal
value functions. Equation (92) holds by the definition of VD"buund (s,7) (definition 5.1). Equation (93)

holds because f™*(y) = es + ”YES/NT(S x(s)) [f“vs/(y)] by the definition of a visit distribution
function (definition 3.3). O

Definition E.39 (Discount-normalized value function). Let 7 be a policy, R a reward function, and s
a state. For v € [0, 1], Vo (8,7) = lim o (1 = y*)VE (s, 7%).
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Lemma E.40 (Normalized value functions have uniformly bounded derivative). There exists K > 0

such that for all reward functionsr € RIS|, sup, s cpy YE[0,1] d%Vg worm (57| < K ||r]|;.

Proof. Let m be any policy, s a state, and R a reward function. Since V§ o, (8,7) = limqs - (1 —
YT (y) T, d'yVR norm (S5 7Y) is controlled by the behavior of lim.«_,. (1 — +*)f™%(7*). We
show that this function’s gradient is bounded in infinity norm.

By lemma E.4, f™°(y) is a multivariate rational function on ~. Therefore, for any state s,
f75(y)Tey = % in reduced form. By proposition E.3, 0 < f™%(y)Tey, < ﬁ Thus,
@ may only have a root of multiplicity 1 at v = 1, and Q(v) # 0 for v € [0,1). Let
fo(y) = (1 =f™s(y) Tes.

If Q(1) # 0, then the derivative f/,(-y) is bounded on « € [0, 1) because the polynomial (1 — )P (7)
cannot diverge on a bounded domain.

If Q(1) = 0, then factor out the root as Q(y) = (1 — v)Q* (7).

d ((1-=7)P(v)
et =7, ( () ) ©5)
_d (P>
Cdy (Q*(”y)) 96)
PR () = (@Q")'(v)P(v)
- (@ (7)? ' ©7)

Since Q* () is a polynomial with no roots on v € [0, 1], f%, () is bounded on y € [0, 1).

Therefore, whether or not () has aroot at v = 1, f,(+) is bounded on y € [0,1). Furthermore,
SUDP~ (0,1 HV (1 —y)f™s( H = SUpP,¢[o,1) MaXs/eS ’f )’ is finite since there are only finitely
many states.

There are finitely many 7 € II, and finitely many states s, and so there exists some K’ such that

sup  ses, ||V(L=nE"(9)]| . < K’ Then ||[V(1 —)f™*(y)|, < S| K" = K.
well,v€[0,1)
: ’d‘” ( >’ s L i (1 -4V (5,97) (98)
up N norm \S» = u —_ im - > (S,
sES, dy R 7 563 dy v =~ TR ST
mell,y€[0,1) mell,y€[0,1)
d
= s |-G 99)
s€ES, Y
mell,y€[0,1)
= sup V(l—”y)f“’s(”y)Tr’ (100)
seS,
7ell,y€[0,1)
< sw [V (1 =NE ()|, el (101)
7'r€H,'y€7[0,1)
<K ||, - (102)

Equation (99) holds because V7 (s,7) is continuous on € [0, 1) by corollary E.5. Equation (101)
holds by the Cauchy-Schwarz inequality.

Since %Vﬁnorm (s,7)| is bounded for all v € [0, 1), eq. (102) also holds for v — 1. O

Lemma 5.3 (Continuity of POWER). POWERp,,,, (s,7) is Lipschitz continuous on -y € [0, 1].

Proof. Let b, c be such that supp(Dpouna) C [b,¢c]!S!. For any r € supp(Dpound) and © € TI,
V& norm (8,7) has Lipschitz constant K |[r[|, < K |S]||r]|, < K [S|max(|c|,[b]) ony € (0,1) by
lemma E.40.
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For v € (Oa 1)’ POWERDbuund (5’ FY) = ERNDbuund [maXWGHEs/NT(S,ﬂ(S)) [(1 - FY)V;?T (5/,7)]] by

eq. (94). The expectation of the maximum of a set of functions which share a Lipschitz constant,
also shares the Lipschitz constant. This shows that POWERp, , (s, ) is Lipschitz continuous on
~ € (0,1). Thus, its limits are well-defined as v — 0 and v — 1. So it is Lipschitz continuous on
the closed unit interval. (]

Proposition 5.4 (Maximal POWER). POWERp,,,., (5,7) < Egop,,.. [maxscs R(s)], with equality
if s can deterministically reach all states in one step and all states are I-cycles.

Proof. Lety € (0,1).

POWER = E E [ 1— Vi (s, } 103
Dion (5:7) =, B B8 r e (L=mVz (s',7) (103)
[ maXg/res R(SN)
< E E l—y)——= 104
" R~Dhoumd I;lélﬁ( s'~T(s,m(s)) [( FY) 1—7v ( )
— i
= RNIED‘,MUnd g}g R(s )] . (105)

Equation (103) follows from lemma E.38. Equation (104) follows because V3 (s’,’y) <
max s/ ¢ s R(s")
1—~
limits, the inequality holds for all v € [0, 1].

, as no policy can do better than achieving maximal reward at each time step. Taking

Suppose that s can deterministically reach all states in one step and all states are 1-cycles. Then
eq. (104) is an equality for all v € (0, 1), since for each R, the agent can select an action which
deterministically transitions to a state with maximal reward. Thus the equality holds for all v €
[0, 1]. O

Lemma E.41 (Lower bound on current POWER based on future POWER).

POWERp,,,, (5,7) > (1 =y)min =~ E [R(s')] +ymax E : [POWERD,,,,W (s/,”y)} .

~T(s,a)

R~Dpouna
(106)

Proof. Lety € (0,1) and let a* € argmax, E,/7(s ) |POWERD s, v) .
Y g a (s,a) bound Y
POWERp, ., (S,7) (107)
—(1-4) E E (Vi (7)) 108
(1-7) . lmgx JE VA (s,7) (108)
>(1— E E [v* ' H 109
2 -yjmax B oo | R~Diouns L B (s'.7) (109
=(-ymax  E [V (s'.7)] (110)
—(1— E E  [R(s')] + ——POWER ' 11
( FY) mlilxs/wT(s,a) | R~Dhound [ (S )] + — Dhound (S 57):| ( )
>(1— E E [R(s J POWER ' 112
_( FY) o' m T (5,a%) |:RNDbuund (5 )] + 1_ ~ Dbound (5 57):| ( )
2(-)min B[R] 47, E )[POWERDM (s'.7)] - (113)
a §'~T(s,a), s'~T(s,a*
RNDbuund

Equation (108) holds by lemma E.38. Equation (109) follows because E, . x [maxa f(a, x)] >
max, Eqox [f(a, x)] by Jensen’s inequality, and eq. (111) follows by lemma E.38.

The inequality also holds when we take the limits v — 0 or v — 1. (]
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Proposition 5.5 (POWER is smooth across reversible dynamics). Let Dpouna be bounded [b, c]. Sup-
pose s and s' can both reach each other in one step with probability 1.

|POWERp,,,, (5,7) — POWERp,, , (s',7) | < (¢ —b)(1 —7). A3)

Proof. Suppose v € [0, 1]. First consider the case where POWERp,,, (5,7) > POWERp,,, (s',7).

POWERp,,,, (',7) > (1 —7) min ~ E [R(sy)] +7max E  [POWERp,,, (52,7)]

sa~T(s',a), a  s,~T(s",a)
R~Dround
(114)
> (1 =7)b+ yPOWERp,,,, (s,7) - (115)

Equation (114) follows by lemma E.41. Equation (115) follows because reward is lower-bounded by
b and because s’ can reach s in one step with probability 1.

POWERp,,,, (,7) — POWERpD,,,., (5, 7)’ = POWERp,,,, (5,7) — POWERD,., (5, 7) (116)
< POWERp,,,, (5,7) = ((1 —7)b +yPOWERp,,,, (5,7))

(117)

= (1—1) (POWERp,,, (5,7) — b) (118)

<@ =)(c—b). (120)

Equation (116) follows because POWERp, ., (s,7) = POWERp, ., (s, 7). Equation (117) follows
by eq. (115). Equation (119) follows by proposition 5.4. Equation (120) follows because reward
under Dyoung 1S upper-bounded by c.

The case where POWERp,,,,, (8,7) < POWERp,,, (8',7) is similar, leveraging the fact that s can
also reach s’ in one step with probability 1. (]

E.4 Seeking POWER is often more probable under optimality
E.4.1 Keeping options open tends to be POWER-seeking and tends to be optimal

Definition E.42 (Normalized visit distribution function). Let f : [0,1) — RIS| be a vector function.
For v € [0,1], NORM (f, ) := limy«_,~ (1 — v*)f(7*) (this limit need not exist for arbitrary f). If
F is a set of such f, then NORM (F, 7) := {NorM (f,v) | f € F}.

Remark. RSD (s) = NORM (F(s),1).

Lemma E.43 (Normalized visit distribution functions are continuous). Let A; € A(S) be a state
probability distribution, let m € 11, and let £* = E,ua, [f™°]. NORM (f*,7) is continuous on
v €[0,1].

Proof.
NORM (£%,7) = lim (1-9") E [f7°(y")] (121)
= E | lim (19707 (122)
= B [NORM (7, 7)] . (123)

s

Equation (122) follows because the expectation is over a finite set. Each £™° € F(s) is continuous
on~y € [0,1) by lemma E.4, and lim«_, (1 — 7*)f™*(v*) exists because RSDs are well-defined
[Puterman, 2014]. Therefore, each NORM (f™*, v) is continuous on v € [0, 1]. Lastly, eq. (123)’s
expectation over finitely many continuous functions is itself continuous. O
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Lemma E.44 (Non-domination of normalized visit distribution functions). Ler A, € A(S)
be a state probability distribution and let F = {E, A [f™*] |7 €Il}. Forall v € [0,1],
ND (NORM (F, 7)) € NORM (ND (F), ), with equality when y € (0,1).

Proof. Suppose v € (0,1).

ND (NORM (F, 7)) = ND ((1 = 7)F(7)) (124)
=(1-7)N (F(”y) (125)
=(1—7) (ND(F) (7)) (126)
= NorM (ND (F) 7). (127)

Equation (124) and eq. (127) follow by the continuity of NORM (f, v) (lemma E.43). Equation (125)
follows by lemma E.15 item 1. Equation (126) follows by lemma E 32.

Lety = 1. Letd € ND (NORM (F, 1)) be strictly optimal for r* € RIS Then let Fg C F be the
subset of f € F' such that NORM (f,1) = d.

maxNORM (f,1)" r* > max Norw (f',1) " r*. (128)
feF, fIEF\Fq

Since NORM (f, 1) is continuous at v = 1 (lemma E.43), x " r* is continuous on x € R!S! and F
is finite, eq. (128) holds for some v* € (0, 1) sufficiently close to v = 1. By lemma E. 10, at least
one f € Fy is an element of ND (F(v*)). Then by lemma E.32, f € ND (F)). We conclude that

ND (NORM (F,1)) € NorM (ND (F),1).
The case for v = 0 proceeds similarly. O

Lemma E.45 (POWER limit identity). Ler vy € [0, 1].

. 1- Fy* * T
POWERD,, (5,7) = E l?’b Jm (607 —e) [ (29
Proof. Lety € [0,1].
POWERp,,, ($,7) = th{y POWERp,,,,, (5,7") (130)
11—~ T
= 1i E a. f(v*)—es) r 131
’Y*lgl’y r~Dhpound Le@nﬁs) "y* ( (FY ) ) ( )
— E |lim max =2 (£(v*) —eS)Tr_ (132)
r~Dyouna | V*—7Y fe]'—nd(s) FY*
- E max  lim =7 (£(v*) —eS)Tr_ . (133)
r~Dhound fe]'—nd(s) Y=y F)/*

Equation (130) follows because POWERp,,, (s,7) is continuous on v € [0,1] by lemma 5.3.
Equation (131) follows by lemma E.38.

For v* € (0,1), let fy«(r) = maxecr, d(s) (f(”y*) — es)T r. For any sequence v, — 7,
( f,yn) | 1s a sequence of functions which are p1ecew1se linear on r € RI!S|, which means they are
contmuous and therefore measurable. Since lemma E.4 shows that each f € F,,4(s) is multivariate
rational on v* (and therefore continuous on v*), { s } _, converges pointwise to limit function f.,.

£ (5.70) — B(s)| < o andso | £, ()] = [ 5522 (Vi (s5,73) — R(s))| <
g(r) <|r|l,. = g(r), which is measurable. Therefore apply Lebesgue s dominated convergence

theorem to conclude that eq. (132) holds. Equation (133) holds because max is a continuous
function. (Il

Furthermore,
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Lemma E.46 (Lemma for POWER superiority). Let A1, Ay € A(S) be state probability dis-
tributions. For i = 1,2, let Fp, = {”y‘l Es,on, 7% —eg,] | T € H}. Suppose Fa, con-
tains a copy of ND (Fa,) via ¢. Then ¥y € [0,1] : Eg, on, [POWERDWM (s1, ”y)] < most: Dy
Esy~a, [POWERD,,, (52,7)].

IfND (Fa,) \ ¢ - ND (Fn,) is non-empty, then for all v € (0, 1), the inequality is strict for all
Dxip € Despmo and B, on, [POWERD, ., (51,7)] Zmost: ©,,., Bso~r, [POWERD, . (s2,7)].

T eI} fori=1,2.

These results also hold when replacing Fa, with F = {Eq,~a, [f™%]

Proof.
¢ - ND (NORM (Fa,,7)) € ¢ - NORM (ND (Fa,),7) (134)
= Py lim (1-7")f(y") | f € ND (FAI)} (135)
- {Wléglv(l —9")PE(y") | £ € ND <FA1>} (136)
—{ im0 =307 £ | (137)
V=Y
c {0807 1 £e B, ) (138)
=: NORM (Fa,,7). (139)

Equation (134) follows by lemma E.44. Equation (136) follows because P is a continuous linear
operator. Equation (138) follows by assumption.

17" T
E,, [POWER = E li 751 (%) — e 140
s1~vA1 [ Dround (51,7)] s1~A7, [Ifgﬁ(v*lgl’)’ "y* ( (FY ) e 1) I‘:| ( )
r~Dround
) T
= E |max lim E [f7%(v") —es| r| (141
r~Dpona | TEIL Y =y Y% s1~vAy [ () 1] ] (141)

- E max d'r (142)
r~Dhound dGNORM(FAly’Y)

_ e d7r (143)
r~Dhomd | eND (NORM(FA1 ,’Y))

Smosl'@b d [ max dTr (144)
TP~ Dhound dGNORM(FAzy’Y)

= E [max lim 1=7 E [f“’”(”y*)—eSz]Tr] (145)

r~Dyoma | TEIL v* =y ¥ sa~Ag
1—~* T
- E 1' fﬂ',Sg *) 14
sa~vAg, [I;leaﬁ( 7»«1517 A+ ( (") 952) r] (146)
r~Dhound
= E [POWERp,,, (s2,7)]- (147)
Sso~Ag

Equation (140) and eq. (147) follow by lemma E.45. Equation (141) and eq. (146) follow because
each R has a stationary deterministic optimal policy = € II* (R,~) C II which simultaneously
achieves optimal value at all states. Equation (143) follows by corollary E.11.

Apply lemma E.24 with A := NORM (Fa,,7), B := NORM (Fa,,7), ¢ the identity function, and
involution ¢ (satisfying ¢ - ND (A) C B by eq. (139)) in order to conclude that eq. (144) holds.
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Suppose that ND (Fa,) \ ¢ - ND (Fa,) is non-empty; let F, := ¢ - ND (Fa,). Lemma E.32

ul

shows that for all v € (0,1), ND (Fa, (7)) \ Fl(7) is non-empty. Lemma E.15 item 1 then im-
plies that ND (B) \ ¢ - A = 1777 (ND (Fa,(7)) — es) \ (PT'YFS’ub(Fy)) is non-empty. Then
lemma E.24 implies that for all v € (0,1), eq. (144) is strict for all Dx.;p € De/pmp and
Esyna, [POWERD, (51,7)] Zimost: Dpus Bszirs [POWERD,,, (52,7)]-

We show that this result’s preconditions holding for F{ implies the Fa, preconditions. Suppose
Fi = {Eqon, [f™] | 7 € T1} for i = 1,2 are such that F%, == ¢ - ND (Fgl) C F%,. Inthe

following, the A; are represented as vectors in RIS!, and ~ is a variable.

¢-{+f|£END (Fa,)} = ¢ (ND (FZ, —Al)) (148)
- (ND (Fx.) —Al) (149)
= {Pst—P,A [T ND(F5,)} (150)
C{f—Ay|feFz,} (151)
= {yf |f€Fa,}. (152)

Equation (149) follows from lemma E.15 item 2. Since we assumed that ¢ - ND (FZI) C FR,,

6 (A1} = ¢ (ND (Fgl) (0)) C F%,(0) = {A,}. This implies that P4A; = A, and so
eq. (151) follows.

Equation (152) shows that ¢ - {yf|f € ND (Fa,)} C {~+f|f€ Fa,}. But we then
have ¢ - {vf |f € ND(Fa,)} = {yP4f |[fEND(Fa,)} = {#f|f€¢ ND(Fa,)} C
{vf|f € Fa,}. Thus, ¢ - ND (Fa,) C Fa,.

Suppose ND (FL) \ ¢-ND (FZI) is non-empty, which implies that

6+ {7f | £ €ND (Fa,)} = {Psf —PyA | £ €ND (FS,)} (153)
—{f-P,a1|feo-ND(F;,)} (154)
c{r-a|renp(rz,)} (155)
— {yf | f € ND(Fa,)}. (156)

Then ND (Fa,) \ ¢ - ND (Fp, ) must be non-empty. Therefore, if the preconditions of this result are
met for ng , they are met for Fa,. O

Proposition 6.6 (States with “more options” have more POWER). If F(s) contains a copy of Fna(s’)
via ¢, then Vvy € [Oa 1] : POWER,DImumI(S’FY) 2 most POWER,D’N)MYM](S/’FY). If]:nd(s) \ ¢ - ]:nd(s/) is
non-empty, then for all v € (0, 1), the converse <, statement does not hold.

Proof. Let Fyp = ¢ - Fna(s') € F(s). Let Ay = ey,Ay = e, and define X, =
{IEISiNAi [f™%] |7 € H} for i = 1,2. Then Fnq(s’) = ND (FZI) is similar to Fyp =
Fy, € FA, = F(s) via involution ¢. Apply lemma E.46 to conclude that ¥y € [0,1] :

sub =
POWERp,,,, (s’, ~y) POWERpD,,,,, ($,7)-

Srmost: Dbound
Furthermore, F,4(s) = ND (FZQ)’ and Fyy, = F,, and so if Fq(s) \ ¢ - Fpa(s’) == Fna(s) \
Fy, = ND (FL) \ F¥, is non-empty, then lemma E.46 shows that for all v € (0, 1), the inequality

is strict for all Dx_up € Despmp and POWERp,,.,, (8/,7) # POWERp,,,,, (S,7)- O

most: D pound

35



Lemma E.47 (Non-dominated visit distribution functions never agree with other visit distribution
functions at that state). Let f € Fna(s),f’ € F(s)\ {f}. Vy € (0,1) : £(y) # £’ (7).

Proof. Lety € (0,1). Since f € Fq(s), there exists a v* € (0,1) at which f is strictly optimal for
some reward function. Then by proposition E.30, we can produce another reward function for which
f is strictly optimal at discount rate ~; in particular, proposition E.30 guarantees that the policies
which induce f’ are not optimal at y. So f(v) # /(7). O

Corollary E.48 (Cardinality of non-dominated visit distributions). Let ' C F(s). Yy € (0,1) :

Proof. Lety € (0,1). By applying lemma E.32 with Ay = e,, f € Fq(s) = ND (F(s)) iff
f(v) € ND (F(s,7)). By lemma E.33, ND (F(s,7)) = Fna(s, 7). Soall f € F N Fpa(s) induce
£(7) € F(7) N Fada(s, 7). and |F N Fpa(s)| > |F(y) N Faals,7)|-

Lemma E.47 implies that for all f, £ € Foq(s), f = £ iff f(+) = £’ (). Therefore, |F N Fra(s)| <
’F(”y) ﬁfnd(s,”y)’. So ’F N ]-'nd(s)’ = ’F(”y) N ]-'nd(s,”y)’. O

Lemma E.49 (Optimality probability and state bottlenecks). Suppose that s can reach
REACH (s',a’) U REACH (s',a), but only by taking actions equivalent to o’ or a at state s'.
Fua = Fna(s | 7(s) = d),F, = F(s | n(s') = a). Suppose F, contains a copy
of Foyar via ¢ which fixes all states not belonging to REACH (s',a’) U REACH (s',a). Then
VFY € [O’ 1] : ]P)Dam- (F"dva/’ FY) Smosl: D any ]P)Dm (Fa’ FY)'

If Foa(s) N (Fu \ ¢ - Fraar) is non-empty, then for all v € (0,1), the inequality is strict for all
Dx.ip € D, and ]P)Dam- (Fnd,a/; "Y) Zmost: Doy ]P)DM (Fa, "Y)~

Proof. Let Fyp = ¢ - Fypaor. Let F* = o' €A: F(s|m(s") =a") U Fra,ar U Fop.
(a”:}és/a)/\(a”:}és/a/)

6 -F*=¢- U F(s|m(s) =a") U Fgar U Fyp (157)
a’€A:
(a”:}és/a)/\(a”:}és/a/)
= U ¢ : ]:(S | 77(5/) = a//) U (¢ ! Fnd,a/) U (¢ ! F‘sub) (158)
a’ EA:
(a”:}és/a)/\(a”:}és/a/)
= U ¢ Fls|m(s") =a") U Fup U Fogar (159)
1 a//e-A:// ’
(a }és/a)/\(a ) )
= U F(s|m(s') =a")U Fop U Fog,or (160)
a’eA:
(a”:}és/a)/\(a”:}és/a/)
— F*, (161)

Equation (159) follows because the involution ¢ ensures that ¢ - Fyy, = Foq /. By assumption, ¢
fixes all s’ ¢ REACH (s',a’) UREACH (s',a). Suppose £ € F(s)\ (Fng,ar U F,). By the bottleneck
assumption, f does not visit states in REACH (s’, a’) U REACH (s’, a). Therefore, P4f = £, and so
eq. (160) follows.

Let Fiy := (F(s) \ (F(s | m(s) = a’) U F,)) UF,q UF,. By definition, F; C F(s). Furthermore,
Fua(s) = Ua”eA Fua(s | w(s’) = a”) C (f(s) \(F(s|n(s)=d)U Fa)) U Fuals | w(s) =
a')UF, = Fz,and so Frq(s) C Fz. Note that F* = F; \ (F, \ Fup)-

36



Case: v € (0,1).

]P)Dany (Fnd,a/a "Y) = PD.yy ( nd,a’ ( ) ( "Y)) (162)
inost: Day Py (Fal() = F(s,7)) (163)
=Pp,, (Frdas7) - (164)

Equation (162) and eq. (164) follow from lemma E.37. Equation (163) follows by applying
lemma E.28 with A = Fy 4 (v),B" = Fw(y),B = F,(v),C = F(s,7),Z = Fz(v)
which satisfies ND (C') = Fna(s,v) C Fz(y) € F(s,7) = C, and involution ¢ which satis-

fieso- F*(v) =6~ (Z\ (B\ B')) = 2\ (B\ B) = F*(3).
Suppose  Fna(s) N (Fa \ Fsub) is non-empty. 0 < ’]—'nd(s) N (Fa \ F;ub)’ =

’fnd(s,”y)ﬁ(Fa(”y)\Rub(”y)) - ’ND (C)ﬁ(B\B’)’ (with the first equality hold-

ing by corollary E.48), and so ND(C) N (B\B’) is non-empty. We also have
B = F,(y) € F(s,v) = C. Then reapplying lemma E.28, eq. (163) is strict for all
Dx.ip € Despimp, and ]P)Dmy (Fnd,a/ ) "Y) Z most: Dany ]P)Dmy (Fa, ).

Case: v =1,7=0.

Pp,, (Fraa 1) = lim Pp, (Fraa,7") (165)
= lim pp,, (Fuar(v%) 2 F(s:77)) (166)
Smost: 0y 1M, P, (Fa(r) = F(5,77)) (167)
= lim Pp_ (Fu,7") (168)
=Pp,, (Fa,1). (169)

Equation (165) and eq. (169) hold by proposition E.36. Equation (166) and eq. (168) follow by
lemma E.37. Applying lemma E.29 with v := 1,1 := (0,1), Fg := Fuq,o, F := Fy, Fo == F(s),

F as defined above, and involution ¢ (for which ¢ - (FZ \ (FB \¢- FA)) =Fz\ (FB \¢- FA)),
we conclude that eq. (167) follows.
The v = 0 case proceeds similarly to vy = 1. O

Lemma E.50 (Action optimality probability is a special case of visit distribution optimality probabil-
ity). Pp,, (s,a,7) =Pp,, (F(s|7(s) =a),).

Proof. Let F,, .= F(s | w(s) = a). Fory € (0, 1),

D]}:ny (s,a,7) = RN]P;W (3" €I (R.9) : 7" (s) = a) (170)
= P (" ecF, "2y r= ()T 171

r~Dany ( () r = max £(7) r) (171)

=Pp,, (Fa,?). (172)

By lemmaE.1, if 37* € IT* (R, ) : 7*(s) = a, then it induces some optimal f™* € F,,. Conversely,
if f7" ¢ € F, is optimal at v € (0, 1), then 7* chooses optimal actions on the support of £75(~). Let

7' agree with 7 on that support and let 7' take optimal actions at all other states. Then 7’ € IT* (R, )
and 7' (s) = a. So eq. (171) follows.

Suppose v = 0 or v = 1. Consider any sequence (”yn)flo:l converging to v, and let D,,, induce
probability measure F'.

Pp,, (Fa,7) = lim Pp (Fa,7") (173)
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= lim P (Gr" eIl (R :7%(s) =q) (174)

e’ RNDany

=lim P (3r* €Il*(R,7,): 7*(s) =a) (175)

n—oo RNDmy

=Jim | Lameen (o, (9=a AP (R) (176)

= /Rs Jim T reerns (R ) (s)=a AF (R) (177)

= /S L35 et (Ry)em* (s)=a AF (R) (178)
R

= Dﬁiy (s,a,7). (179)

Equation (174) follows by eq. (172). for v* € [0, 1], let fy«(R) := L3qcri+(R,y*):w=(s)=a- FOT
each R € RS, lemma E.35 exists 7, ~ + such that for all intermediate 7/, between 7, and 7,
II* (R,~,) = II* (R,v). Since 7, — <, this means that (f,yn)zozl converges pointwise to f.
Furthermore, ¥n € N,R € R¥ : ’ Fom (R)’ < 1 by definition. Therefore, eq. (177) follows by
Lebesgue’s dominated convergence theorem. (]

Proposition 6.9 (Keeping options open tends to be POWER-seeking and tends to be optimal).

Suppose F, == F(s | w(s) = a) contains a copy of Fyr .= F(s | n(s) = a’) via ¢.

1. If s ¢ REACH (s,d’), then ¥y € [0,1] : Ey_ o 7(sa) [POWERD,,,, (5a,7)]
ESG/NT(S,a/) [POWERDmmd (Sa/a ”Y)] .

Zmost: D pound

2. If s can only reach the states of REACH (s, a’) UREACH (s, a) by taking actions equivalent
to a’ or a at state s, then ¥y € [0,1] : Pp  (8,0,7) 2105 0, PDo (s,a',7).

If Foa(s) N (Fy \ ¢ - Fur) is non-empty, then ¥~y € (0,1), the converse <

< most Statements do not hold.

Proof. Note that by definition 3.3, F,,/(0) = {es} = F,(0). Since ¢ - F,» C F,, in particular we
have ¢ - F (0) = {Pge, } C {e,} = F,(0), and so ¢(s) = s.
Item 1. For state probability distribution A; € A(S), let FX = {ES/NAS [f’“s/} | mell

Unless otherwise stated, we treat -y as a variable in this item; we apply element-wise vector addition,
constant multiplication, and variable multiplication via the conventions outlined in definition E.14.

For = {eS tv, B ElImellin(s) = a/} (180)
= {es +7 W:@FE(S » [f™%] | 7 € H} (181)
= €5 +FYF'I*1(S,G/)' (182)

Equation (180) follows by definition 3.3, since each f € F(s) has an initial term of e,. Equation (181)
follows because s ¢ REACH (s,a’), and so for all s,» € supp(T'(s,a’)), f™*« is unaffected by the
choice of action 7(s). Note that similar reasoning implies that I, C e, +~vF;. ) (because eq. (181)
is a containment relation in general).

(s,a
Since F,y = e; + ”yF;(S a’) if F, contains a copy of F,/ via ¢, then F;(S a) contains a copy of
F}(S ) via ¢. Then ¢ - ND (F;(S a/)) Co- F}(S ay € F;(S a)’ and so F;(S a) contains a copy of
ND (F;(S a,)). Then apply lemma E.46 with A; := T'(s,a’) and Ay := T'(s, a) to conclude that

VFY € [Oa 1] : ESG/NT(S,G/) [POWERDbuund (Sa/aﬁ)/)] Smosl: Dbound ESaNT(Sva) [POWERDbuund (Saa FY)] .
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Suppose Fna(s) N (F, \ ¢ - Fy) is non-empty. To apply the second condition of lemma E.46, we
want to demonstrate that ND (F;(S a)) \ ¢-ND (F;(S a/)) is also non-empty.

First consider f € F,4(s) N F,. Because F, C e, + ”yF;(S a)> We have that y~1(f — e;) € F;(S a)-
Because f € F,q(s), by definition 3.6, 3r € RIS! ~, € (0,1) such that

£(v,) " £/ (v,) "r. 183
() T max (7e) T (183)

Then since v, € (0,1),

“Lf(v,) —es)'r> max AT (f(y) —es) T (184)
Ve (E(vz) ) I P (£ () )

= max £'(v,) 'r (185)
ey ((F(s)\{f) —e.)

> max £'(v,) 1 (186)
frevz t((Fa\{f})—e:)

= max f'(7,) "r. (187)

f/qui(sya)\{'Y;l(f_es)}

Equation (186) holds because F;, C F(s). By assumption, action a is optimal for r at state s and
at discount rate v,.. Equation (181) shows that F;(S a) potentially allows the agent a non-stationary

policy choice at s, but non-stationary policies cannot increase optimal value [Puterman, 2014].
Therefore, eq. (187) holds.

We assumed that v~ (f — e,) € 7 !(F,a(s) — es). Furthermore, since we just showed that
v HEf —ey) € F;(S a) is strictly optimal over the other elements of F;(S a) for reward function r

at discount rate v, € (0, 1), we conclude that it is an element of ND (F;(S a)) by definition E.13.

Then we conclude that 7~ (Fua(s) — es) N Fy ) € ND (F;(S a)).

We now show that ND (F;(S a)) \ ¢-ND (F;(S a/)) is non-empty.

0 < |Faa(s) N (Fu\ & Fu) (188)
=P (fnd(s)ﬁ (Fa\ ¢ Fu) —es) (189)
< |y (Faals) —es) N (F;(M) \ - F;(Sya/)) ’ (190)
= (7 (Fas) ) (1 i) V6 B i
< [ND (Fio)) \ @ Fioan (192)
< [ND (Fj(,q) \ & ND (Féﬁ(s,aq)’ - (193)

Equation (188) follows by the assumption that Fq(s) N (F, \ ¢ - Fv) is non-empty. Let f, f' €
Fud(s) N (Fy \ ¢ - Fur) be distinct. Then we must have that for some 7, € (0,1), £(7) # £/ (72).

This holds iff v, * (f (1) — es) # 75 (f'(72) — es), and so eq. (189) holds.
Equation (190) holds because F, C e; + ”yF;(S a) and F, = e, + vE; " by eq. (182). Equa-

€ ND (Fp(,..):

(s,a
tion (192) holds because we showed above that v~ (Fna(s) — es) N Flis.a)

Equation (193) holds because ND (Fy, ) ) € Fi, . by definition E.13.

Therefore, ND (F;(S a)) \ ¢ - ND (F;(S a,)) is non-empty, and so apply the second con-
dition of lemma E.46 to conclude that for all Dx,p € Depuw, Vv € (0,1)
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]ESG/NT(S,G/) [POWERDX—HD (Sa/a FY)] < ]ESaNT(S,a) [POWERDX,”D (Sa,”Y)]’ and that VFY 6 (05 1) :
IE:sa/wT(s,a/) [POWERDboun(I (Sa/a FY)] Zmosl: Dbound ESaNT(Sya) [POWERDbound (Sa’ FY)] :

Item 2. Let ¢/(s,) := ¢(s,) when s, € REACH (s,a’) UREACH (s, a), and equal s, otherwise.
Since ¢ is an involution, so is ¢'.

(b/ -Fyo= qu <es + ;E( N [fﬂ’sa/]> | e H,?T(S) =d (194)
= {eS + %E( 5 [Pyf™% | | mell,n(s)= a/} (195)
= {P¢eS + %E( /) [Pyf™5a' ] | m eIl m(s) = a/} (196)
— ¢ Fy (197)
C F,. (198)

Equation (195) follows because if s € REACH (s, a’) U REACH (s, a), then we already showed that
¢ fixes s. Otherwise, ¢'(s) = s by definition. Equation (196) follows by the definition of ¢’ on
REACH (s, a’) U REACH (s, ) and because e; = Pge,. Next, we assumed that ¢ - F,,y C F,, and
so eq. (198) holds.

Therefore, F, contains a copy of F,. via ¢’ fixing all s, ¢ REACH (s, a’) UREACH (s, a). Therefore,
F, contains a copy of Fya,q/ := Fna(s) N Fy via the same ¢’. Then apply lemma E.49 with s’ := s to
conclude that VFY € [Oa 1] : ]P)Dﬂny (Fll/a FY) Smosl: @any ]P)Dmy (Faa FY) By lemma ESO’ PDany (S’ a/’ FY) =
Pp,, (Far,7) and Py, (s,a,7) = Pp, (Fa,7). Therefore, ¥y € [0,1] : Py, (s5,0,7) <poq D
]P)Dmy (Sa a, FY)

If Foa(s) N (F, \ ¢ - Fy) is non-empty, then apply the second condition of lemma E.49 to conclude
that for all v € (0, 1), the inequality is strict for all Dx.;;p € D¢/p/mup, and ]IDDHny (s, a, ”y) P nost: Doy

]P)Dmy (Saaap)/)' 0

E.4.2 When v = 1, optimal policies tend to navigate towards “larger” sets of cycles

Lemma E.51 (POWER identity when v = 1).

POWERp, . (s,1)= E max d'r|= E max d'r|. (199)
o r~Dyouna | dERSD(s) r~Dpona | dERSDya(s)
Proof.
[ : 1—7 T, 8 T
Poveko. ()= E | S —— (700 —e) e a0

= E max dTr] (201)
r~Dhound dERSD(S)

= E max dTr] . (202)
r~Dhpound dERSDnd(S)
Equation (200) follows by lemma E.45. Equation (201) follows by the definition of RSD (s)

(definition 6.10). Equation (202) follows because for all r € RISI, corollary E.11 shows that
maXqersp(s) d'r= MAXgeND (RSD(s) d'r = MaXqeRSD,q(s) d'r. O

Proposition 6.12 (When v = 1, RSDs control POWER). IfRSD (s) contains a copy of RSDyq (')

via ¢, then POWERp,,, (5,1) >0 POWERp, ., (', 1). IfRSDyq () \ ¢ - RSDya(s') is non-empty,
then the converse <, statement does not hold.
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Proof. Suppose RSDyq (s') is similar to D C RSD (s) via involution ¢.

POWERp,,, (s',1) = E l max dTr] (203)
r~Dhound dERSDnd(S/)

< E d’ 204

=most: Dpound r~Dround lde%%ﬁ(s) I‘] ( )

=POWERp,,, (5, 1) (205)

Equation (203) and eq. (205) follow from lemma E.51. By applying lemma E.24 with A =
RSD (') ,B’ := D, B := RSD (s) and g the identity function, eq. (204) follows.

Suppose RSDyq (s) \ D is non-empty. By the same result, eq. (204) is a strict inequality for all
Dx-up € Despn, and we conclude that POWERp,,,,, (s',1) # POWERp,,,, (s,1). O

most: D pound

Theorem 6.13 (Average-optimal policies tend to end up in “larger” sets of RSDs). Let D, D’ C
RSD (s). Suppose that D contains a copy of D' via ¢, and that the sets D U D" and RSDygq (s) \
(D’ U D) have pairwise orthogonal vector elements (i.e. pairwise disjoint vector support). Then
Pp,, (D,average) >, Pp (D', average). IfRSDyq (s)N(D \ ¢ - D) is non-empty, the converse

<pmost Statement does not hold.

Proof. Let Dgyp = ¢ - D', where Dy, C D by assumption. Let X =
{Si ) | maXdeD/'uUD dTesi > 0} Define
i ifs; € X
¢(s;) = {¢(5) e (206)
S; else.

Since ¢ is an involution, ¢’ is also an involution. Furthermore, by the definition of X, ¢’ - D’ = Dgy
and ¢’ - Dy, = D’ (because we assumed that both equalities hold for ¢).

Let D* := D' U Dy U (RSDyq () \ (D' U D).

¢ D* =4 - (D’ U Dy U (RSDyq (s) \ (D' U D))) (207)
= (¢'-D') U (¢ - Dyp) U@ - (RSDpa (s) \ (D' U D)) (208)
= Dgw UD' U (RSDya (s) \ (D' U D)) (209)
=: D*. (210)

In eq. (209), we know that ¢/ - D’ = Dy, and ¢' - Dy, = D’. We just need to show that
¢' - (RSDpa (s) \ (D' U D)) =RSDy (s) \ (D' UD).

Suppose 3s; € X,d’ € RSDyq (s) \ (D' UD) : d'Te,, > 0. By the definition of X, 3d € D' U D :
d"e;, > 0. Then

El

d'd = ZdT(d’QeS].) 11)
j=1

>d'(d oe,) (212)

—d7 ((d’TeSi)esi) (213)

= (d'Te,,) - (d"ey,) (214)

> 0. (215)

Equation (211) follows from the definitions of the dot and Hadamard products. Equation (212)
follows because d and d’ have non-negative entries. Equation (215) follows because d "e,, and
d'"e,, are both positive. But eq. (215) shows that d"d’ > 0, contradicting our assumption that d
and d’ are orthogonal.
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Therefore, such an s; cannot exist, and X’ = {s; € S | MaxqserSD(s)\(D'UD) dTe, > 0} C

(S\ X). By eq. (206), Vs; € X' : ¢/(s}) = s}. Thus, ¢’ - (RSDpa (s) \ (D’ U D)) = RSDyq (s) \
(D" U D), and eq. (209) follows. We conclude that ¢’ - D* = D*.
Consider Z := (RSDyq(s) \ (D’ UD)) UD U D'. First, Z C RSD (s) by definition. Second,

RSDyq (s) = RSDyq(s) \ (D' U D) U (RSDypq (s) N D) U (RSDyq (s) N D) C Z. Note that
D* = Z\ (D\ Dgw).

Pp,, (D' average) = pp,, (D" > RSD (s)) (216)
Zmost: Dy PDuy (D > RSD (5)) (217)
=Pp,, (D,average). (218)

Since ¢ - D' C D and ND (D') C D', ¢ - ND (D’) C D. Then eq. (217) holds by applying
lemma E.28 with A := D', B’ := Dy, B = D,C = RSD (s), and the previously defined Z
which we showed satisfies ND (C) C Z C C. Furthermore, involution ¢ satisfies ¢’ - B* =
¢ - (Z\ (B\ B)) = Z\ (B\ B') = B* by eq. (210).

When RSDyq (s) N (D \ Dsub) is non-empty, since B’ C C by assumption, lemma E.28 also
shows that eq. (217) is strict for all Dx . p € De/pmup, and that ]P)Dany (D’, average) Zmosl: Dy
Pp,, (D, average). O

Proposition E.52 (RsD properties). Let d € RSD (s). d is element-wise non-negative and ||d||; =
1.

Proof. d has non-negative elements because it equals the limit of lim.,_,1 (1—-)f(~y), whose elements
are non-negative by proposition E.3 item 1.

Idfl; = || lim (1 = )E(3) (219)
1

= lim(1 =) £, (220)

=1. (221)

Equation (219) follows because the definition of RSDs (definition 6.10) ensures that 3f € F(s) :
lim, 1 (1 — v)f(y) = d. Equation (220) follows because |||, is a continuous function. Equa-

tion (221) follows because Hf(”y) H = ﬁ by proposition E.3 item 2. O

Lemma E.53 (When reachable with probability 1, 1-cycles induce non-dominated RSDs). If ey €
RSD (s), then es € RSDyq ().

Proof. If d € RSD (s) is distinct from e, then ||d|; = 1 and d has non-negative entries by
proposition E.52. Since d is distinct from e/, then its entry for index s’ must be strictly less than 1:
d'ey < 1=-e/ey. Therefore, e, € RSD (s) is strictly optimal for the reward functionr == ey,
and so e € RSDyyq (). O

Corollary 6.14 (Average-optimal policies tend not to end up in any given 1-cycle). Sup-
pose es ey € RSD(s) are distinct.  Then Pp, (RSD(s) \ {es, },average) >,
Py, ({es, }. average). If there is a third e;n € RSD (s), the converse <, statement does not

hold.

Proof. Suppose e, ,es € RSD (s) are distinct. Let ¢ := (s, §'), D" :={es, },D = RSD (s) \
{es,}. ¢ D' ={es} CRSD (s)\{es, } = Dsinces, # s'. D'UD = RSD (s) and RSD,4 (s) \
(D'UD) = RSDyq (s) \RSD (s) = 0 trivially have pairwise orthogonal vector elements. Then apply
theorem 6.13 to conclude that Py, ({es, }.average) <, .. Dy LDy (RSD (s) \ {es, },average).

Suppose there exists another e;» € RSD (s). By lemma E.53, e, € RSDyq(s). Further-
more, since s ¢ {s',s,} , e;» € (RSD(s)\{es,}) \ {es} = D\ ¢ - D'. Therefore,
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ey € RSDyq (s) N (D \ ¢+ D'). Then apply the second condition of theorem 6.13 to conclude that
]P)Dmy ({esz 1 average) Z most: Dot ]P)Dmy (RSD (s)\ {es, }, average). O
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