
A More Discussions for Permutation-Invariant Property of Embedding
Layers

In Section 2.1, we mentioned that the embedding layer in the backbone network can be equivalently
seen as a combination of embedding lookup and a sum aggregation which is permutation-invariant
w.r.t. the order of input features. We provide an illustration for this in Fig. 2.

Equivalence between Concatenation and Sum Aggregation. To support the remark argument in
Section 2.1, we next illustrate the equivalence between concatenation of features’ embeddings and
sum aggregation/pooling over features’ embeddings. Assume we have feature embeddings {zm

i
}
d

m=1
for instance xi. We concat all the embeddings as a vector zi = [z1

i
, z2

i
, · · · , zm

i
] and feed it into a

neural layer to obtain ci = W
0
zi. Notice that the weight matrix W

0
2 RdH⇥H can be decomposed

into d sub-matrices {W0
m
}
d

m=1 where W
0
m

= W
0[(m � 1)H : mH, :] 2 RH⇥H . If we consider

sum aggregation/pooling over {zm
i
}
d

m=1, i.e. zi =
P

d

m=1 z
m

i
, the subsequent neural layer would be

a weight matrix W
00 with dimension H ⇥H . We can set it as W00 =

P
d

m=1 W
0
m

and will easily
obtain ziW

00 = ziW
0. Hence, the concatenation plus a fully-connected layer is equivalent to sum

pooling plus a fully-connected layer. This observation indicates that our reasoning in the maintext can
be applied to general neural network-based models for attribute features and enable them to handle
input vectors with variable-length features.

B Training Algorithms

We present the training algorithms for our model in Alg. 1 where the model is trained end-to-end via
self-supervised learning or inductive learning approaches.

C Analysis of Generalization Error

We provide a complete discussion and proof for analysis on generalization error of our approach.
Some notations are repeatedly defined in order for a self-contained presentation in this section. Recall
that we focus our analysis on the case of inductive learning with k-shot sampling approach. Also, we
simplify the model as :1) the backbone network is a two-layer FFN (an embedding layer W plus a
fully-connected layer �) with sigmoid output; 2) the GNN network is a L-layer GCN which takes
mean pooling aggregation over neighbored nodes without linear transformation and non-linearity in
each layer; 3) the training algorithm is SGD.

Derivation for model function. With our settings in Section 3, we write the model as

ŷi = h(xi;�,Ŵ) = h(xi;�, g(W,X;!)) = �

0

@
X

i02NL̃(i)[{i}

cL
ii0xi0W�

1

A , (8)

where N
L̃
(i) is a set which contains xi0 ’s that appear in the L̃-hop neighbors of xi in the feature-data

graph, L̃ = 2 · b
L

2 c, and cL
ii0 is a weight that quantifies influence of xi on xi0 through L-layer

mean-pooling graph convolution. Here we provide the detailed derivation. In fact, the embedding
layer in the backbone can be seen as a one-layer GCN convolution using sum pooling without
linear transformation and non-linearity, which can be denoted by Ŷ = �(Z�) = �(XŴ�) where
Z = {zi} (recall that X is treated as an adjacency matrix of the feature-data graph in our model).
The GNN model, which is a L-layer GCN with mean pooling without linear transformation and
non-linearity in each layer, can be denoted by Ŵ = (D�1

out
X

>
D

�1
in

X)bL/2c
W, where Din =

diag({din,i}Ni=1) with din,i =
P

j2F
xij and Dout = diag({dout,j}Fj=1) with dout,j =

P
i2I

xij .
Hence, we have Z = X(D�1

out
X

>
D

�1
in

X)bL/2c
W = (D�1

out
D

�1
in

)bL/2c
X(X>

X)bL/2c
W =

(D�1
out

D
�1
in

)bL/2c(XX
>)bL/2c

XW. Let (D�1
out

D
�1
in

)bL/2c(XX
>)bL/2c = CL 2 RN⇥N and

CL = {cL
ii0} where cL

ii0 denotes the a weight that quantifies influence between instance i and i0

through L-layer GCN. Converting the global view of graph convolution into a local view for each
node’s ego-network, we can obtain ŷi = �(zi�) = �

⇣P
i02NL̃(i)[{i} c

L

ii0xi0W�
⌘

.

14

Algorithm 1: Training algorithm for feature extrapolation networks (FATE).

1 INPUT: Xtr = {xi}i2Itr , training data matrix, Ftr = {fj}, training feature set, !(0), initial
parameter for GNN, ✓(0) = [�(0),W(0)], initial parameter for backbone network (where �(0)

denotes parameter for classifer and W
(0) denotes initial feature embeddings), n split ratio, k

sample size, ⇢ dropedge ratio, ↵s,↵f , learning rates.
2 for t = 1, 2, · · · , Tmax do
3 Sample a mini-batch X

b = {xi}i2Ib from Xtr = {xi}i2Itr // If handling large dataset,
otherwise use Xtr directly ;

4 if using self-supervised learning then
5 Shuffle Ftr = {fj} and split into n subsets {F s}

n

s=1 ;
6 for s = 1, · · · , n do
7 W

(t)[fj] 0, for fj 2 F s;
8 X̃

b = DROPEDGE(Xb, ⇢);
9 Feed W

(t) and X̃
b into GNN and obtain Ŵ

(t) = g(W(t), X̃b;!(t));
10 Ŵ(t)[fj] = W

(t)[fj], for fj 2 Ftr \ F s;
11 Feed {xi}i2Ib into backbone network and obtain {ŷi}i2Ib by ŷi = h(xi;�(t),Ŵ(t));
12 Compute the loss Ls(Y b, Ŷ b) = 1

|Itr|
P

i2Itr
l(ŷi, yi);

13 Update ✓(t+1)
 ✓t � ↵fr✓Ls(Y b, Ŷ b);

14 Update !(t+1)
 !t

� ↵s

P
n

s=1r!Ls(Y b, Ŷ b);
15 if using inductive learning then
16 for s = 1, · · · , n do
17 Sample k raw features, extract a subset Fs from Ftr = {fj} and extract Xb

s
from X

b

;
18 X̃

b

s
= DROPEDGE(Xb

s
, ⇢);

19 Feed W
(t) and X̃

b

s
into GNN and obtain Ŵ

(t) = g(W(t), X̃b

s
;!(t)) ;

20 Feed {xi}i2Ib into backbone network and obtain {ŷi}i2Ib by ŷi = h(xi;�(t),Ŵ(t));
21 Compute the loss Ls(Y b, Ŷ b) = 1

|Itr|
P

i2Itr
l(ŷi, yi);

22 ✓(t+1)
 ✓t � ↵fr✓Ls(Y b, Ŷ b);

23 Update !(t+1)
 !t

� ↵s

P
n

s=1r!Ls(Y b, Ŷ b);

24 OUTPUT: ✓ = [�,W], trained parameter of backbone network, !, trained parameter of GNN.

With given training data (Xtr, Ytr), we define S as a set of all the data sub-matrices that could be
sampled and exposed to the model during training

S = {(X1, Y1), (X2, Y2), · · · , (Xm, Ym), · · · , (XM , YM)}.

The SGD training can be seen as a sequence of operations each of which picks an instance from
S in an i.i.d. manner as a proxy training data and leverage it to compute updating gradient. We
further introduce S

\m which removes the m-th sub-matrix and S
m which replaces m-th sub-matrix

by another one. Specifically, we have

S
\m = {(X1, Y1), · · · , (Xm�1, Ym�1), (Xm+1, Ym+1) · · · , (XM , YM)},

S
m = {(X1, Y1), · · · , (Xm�1, Ym�1), (Xm0 , Ym0), (Xm+1, Ym+1) · · · , (XM , YM)}.

Justification of the i.i.d. Sampling. In fact, for our inductive learning approach in Section 2.2, the
observed features for each proxy data are randomly sampled. The feature-level sampling at one
time can be seen as k times i.i.d. sampling from all the raw features without replacement. Denote
C = {cn}dn=1 as a set of all the raw features in training set, K as a set of k distinct indices in
{1, · · · , d} and CK denotes a subset of raw features with indices from K. Obviously, there are

�
d

k

�

different configurations for K (or CK) in total. We can equivalently treat once feature-level sampling
as a one-time i.i.d. sampling from a set of candidates {Km} which contains

�
d

k

�
index sets and each

index set Km contains k indices from {1, · · · , d}. Next we discuss two cases.

15

1) If we do not consider instance-level mini-batch partition, then the set S will consist of M =
�
d

k

�

sub-matrices. Specifically, the m-th sub-matrix Xm is induced by CKm which extracts the columns
(corresponding to features generated by raw features in CKm) of Xtr.

2) If we use instance-level mini-batch partition, the case would be a bit more complicated. First of all,
the instance-level partition is not a strictly i.i.d. sampling process over training instances since their
exists dependency among different mini-batches in one epoch. Yet, in practice, the batch size B is
very large (e.g. B = 100000 in our experiment), so the number of mini-batches in one epoch is much
smaller than B, which allows us to neglect the dependency in one epoch. Furthermore, since the
instance-level selection is dependent of feature-level sampling, the whole sampling process for proxy
data can be seen as a series of i.i.d. sampling over

�
N

B

�
⇥
�
d

k

�
sub-matrices of Xtr, which consists of

the set S in this case.

Next, we recall the generalization gap of our interests. The generalization error R(hS) is defined as
R(hS) = E(X,Y)[L(Y, h(X; S))]. (9)

where the expectation contains two stages of sampling: 1) a feature set F = {fj} is sampled
according to fj ⇠ F , and 2) data (X, Y) is sampled according to (xi, yi) ⇠ DF . The empirical risk
that our approach optimizes with the training data would be

Remp(hS) =
1

M

MX

m=1

L(Ym, h(Xm; S)). (10)

Then the expected generalization gap would be
EA[R(hS)�Remp(hS)], (11)

where the expectation is taken over the randomness of AS that stems from sampling in SGD.

We next prove the result in Theorem 1 in our maintext. Our proof is based on algorithmic stability
analysis [9], following similar lines of reasoning in [20, 47]. The main idea of the stability analysis is
to bound the output difference of a loss function from a single data point perturbation. Differently, in
our case, the ‘data point’ is a data sub-matrix in S. Therefore, our proof can be seen an extension
of stability analysis to matrix data or graph as input. The proof can be divided into two parts. First,
we derive a generalization error bound on condition of �-uniform stability of the learning algorithm,
Then we prove the bound for � based on our model architecture and SGD training.

C.1 Generalization error with uniform stability condition

We first introduce the definition for uniform stability of a randomized learning algorithm as a building
block of our proof. A randomized learning algorithm AS is �-uniform stable with regard to loss
function L if it satisfies

sup
S,(X,Y)

|ES [L(Y, h(X; S))]� ES [L(Y, h(X; S\m))]|  �. (12)

We first prove a generalization bound using the uniform stability as a condition and then we prove
that the learning algorithm in our case satisfies the condition.
Theorem 2. Assume a randomized algorithm AS is �-uniform stable with a bounded loss function

0  L(Y, h(X; S))  L. Then with probability at-least 1� � (0 < � < 1), over the random draw

of S , we have

EA[R(hS)�Remp(hS)]  2 · � + (4M� + L)

s
log 1

�

2M
. (13)

Proof. Using triangle inequality, the stability property in (12) yields,
sup

S,(X,Y)
|ES [L(Y, h(X; S))]� ES [L(Y, h(X; Sm))]|

 sup
S,(X,Y)

|ES [L(Y, h(X; S))]� ES [L(Y, h(X; S\m))]|

+ sup
S,(X,Y)

|ES [L(Y, h(X; Sm))]� ES [L(Y, h(X; S\m))]|

 2�.

(14)

16

We will use McDiarmid’s concentration inequality for the following proof. Let Z be a random
variable set and f : ZM

! R. If it satisfies

sup
z1,··· ,zm,··· ,zM ,z0

m

|f(z1, · · · , zm, · · · , zM)� f(z1, · · · , z
0
m
, · · · , zM)|  cm, (15)

then we have

P (f(z1, · · · , zM)� Ez1,··· ,zM [f(z1, · · · , zM)] � ✏)  exp

�

2✏2
P

M

m=1 c
2
m

!
. (16)

Recall that data (Xs, Ys) are assumed to be i.i.d. sampled, so we have (assuming O = (X, Y))

ES [L(Ym, h(Xm; S))]

=

Z
L(Ym, h(Xm; S))p(O1, · · · ,OM)dO1 · · · dOM

=

Z
L(Ym, h(Xm; S))p(O1) · · · p(OM))dO1 · · · dOM

=

Z
L(Ym0 , h(Xm0 ; Sm))p(O1) · · · p(Om0) · · · p(OM)dO1 · · · dOm0 · · ·OM

=

Z
L(Ym, h(Xm; Sm))p(O1, · · · ,Om0 , · · · ,OM)dO1 · · · dOm0 · · · dOM ⇥

Z
p(Om)dOm

=

Z
L(Ym0 , h(Xm0 ; Sm))p(O1, · · · ,Om0 ,Om, · · · ,OM)dO1 · · · dOMdOm0

=ES,Om0 [L(Ym0 , h(Xm0 ; Sm))].
(17)

Using above equation and the �-uniform stability we have

ES [EA[R(hS)�Remp(hS)]]

=ES [EO[EA[L(Y, h(X; S))]]]�
1

M

MX

m=1

ES [EA[L(Ym, h(Xm; S))]]

=ES [EO[EA[L(Y, h(X; S))]]]� ES [EA[L(Ym, h(Xm; S))]]

=ES,Om0 [EA[L(Ym0 , h(Xm0 ; S))]]� ES,Om0 [EA[L(Ym0 , h(Xm0 ; Sm))]]

=ES,Om0 [EA[L(Ym0 , h(Xm0 ; S))� L(Ym0 , h(Xm0 ; Sm))]]

ES,Om0 [EA[|L(Ym0 , h(Xm0 ; S))� L(Ym0 , h(Xm0 ; Sm))|]]

2�.

(18)

Also we have the following inequalities,

|EA[R(hS)�R(hSm)]| = |EO[EA[L(Y, h(X; S))]]� EO[EA[L(Y, h(X; Sm))]]|

= |EO[EA[L(Y, h(X; S))]]� EA[L(Y, h(X; Sm))]|

 EO[EA[|L(Y, h(X; S))� L(Y, h(X; Sm))|]]

 2�,

(19)

|EA[Remp(hS)�Remp(hSm)]| |
1

M

MX

m0=1,m0 6=m

(EA[L(Ym0 , h(Xm0 ; S))� L(Ym0 , h(Xm0 ; Sm))])|

+|
1

M
EA[L(Ym, h(Xm; S))� L(Ym0 , h(Xm0 ; Sm))]|

2
M � 1

M
� +

�

M

2� +
�

M
.

(20)

17

Letting KS = R(hS)�Remp(hS) and using (19) and (20), we obtain

|EA[KS]� EA[KSm]| = |EA[R(hS)�Remp(hS)]� EA[R(hSm)�Remp(hSm)]|

 |EA[R(hS)]� EA[R(hSm)]|+ |EA[Remp(hS)]� EA[Remp(hSm)]|

 2� + (2� +
�

M
)

 4� +
�

M
.

(21)

Based on the above fact, we can apply the result of (16),

P (EA[KS]� ES [EA[KS]] � ✏)  exp

�

2✏2

M(4� + �

M
)2

!
. (22)

Letting � = exp (� 2✏2

M(4�+ �
M)2

) and using (18), we obtain the following result and conclude the
proof.

P

EA[KS]  2� + (4M� + �)

r
log (1/�)

2M

!
� 1� �. (23)

C.2 Deriving bound for �

We proceed to prove our main result in Theorem 1 by deriving the bound for � based on the SGD
algorithm and our GNN model. Let ⇥S and ⇥Sm denote the weight matrix of the classifier in the
backbone network. Recall that our model is ŷi = h(xi;) = �(

P
i02NL̃(i)[{i} c

L

ii0xi0W�). Hence,
we have

|ESGD[L(Y, h(X; S))� L(Y, h(X; Sm))]|

=

�����ESGD

"
1

N

X

i2I

l(yi, h(xi; S))�
1

N

X

i2I

l(yi, h(xi; Sm))

#�����


�

N
ESGD

"
X

i2I

|h(xi; S)� h(xi; Sm)|

#
(since l(·, ·) is �-Lipschitz)

=
�

N
ESGD

2

4
X

i2I

������
�

0

@
X

i02NL̃(i)[{i}

cL
ii0xi0WS�S

1

A� �

0

@
X

i02NL(i)[{i}

cL
ii0xi0WSm�Sm

1

A

������

3

5


�

N
ESGD

2

4
X

i2I

������

X

i02NL̃(i)[{i}

cL
ii0xi0WS�S �

X

i02NL(i)[{i}

cL
ii0xi0WSm�Sm

������

3

5

(due to the fact |�(x)� �(y)|  |x� y|)


�

N
ESGD

2

4
X

i2I

������

X

i02NL̃(i)[{i}

cL
ii0xi0

������
2

· kWS�S �WSm�Smk2

3

5


�

N

X

i2I

������

X

i02NL̃(i)[{i}

cL
ii0xi0

������
2

ESGD[kWS�S �WSm�Smk2].

(24)

We need to bound the two terms in (24). First, notice that for 8xi, it satisfies kxik2 p
d and kxijk1  d and the graph convolution with mean pooling induce the fact that
k
P

i02NL̃(i)[{i} c
L

ii0xi0k1  d. Using the inequality of arithmetic and geometric means, we have
k
P

i02NL̃(i)[{i} c
L

ii0xi0k2 
p
d.

18

We proceed to bound the second term by considering the randomness of SGD. We can define
 S = WS�S as model parameters and we need to derive bound for ESGD[k S � Smk2]. Then
define a sequence of model parameters { S,0, S,1, · · · , S,T } where S,t denotes the model
parameters learned by SGD on S with the updating in t-th step as

 S,t+1 = S,t � ↵r L(h(Xt; S,t), Yt) = S,t � ↵
1

Nt

X

i2It

r l(h(xi; S,t), yi). (25)

Similarly, { Sm,0, Sm,1, · · · , Sm,T } denotes a sequence of model parameters learned by SGD
on S

m. We then derive bound for �⇥t = S,t � Sm,t by considering two cases.

First, at step t, SGD picks data (Xt, Yt) and t 6= m, i.e., (Xt, Yt) exists in both S and S
m. This case

will happen with probability M�1
M

. The derivative of model output is

@h(xi;)

@
= �0

0

@
X

i02NL̃(i)[{i}

cL
ii0xi0

1

A ·

X

i02NL̃(i)[{i}

cL
ii0xi0 . (26)

Using the fact |�0(x)� �0(y)|  |�(x)� �(y)|  |x� y|, we have

kr L(h(Xt; S,t), Yt)�r L(h(Xt; Sm,t), Yt)k2


1

Nt

X

i2It

kr l(h(xi; S,t), yi)�r l(h(xi; Sm,t), yi)k2


�0

Nt

X

i2It

kr h(xi; S,t)�r h(xi; Sm,t)k2


�0

Nt

X

i2It

������
�0

0

@
X

i02NL̃(i)[{i}

cL
ii0xi0 S,t

1

A ·

X

i02NL̃(i)[{i}

cL
ii0xi0 � �

0

0

@
X

i02NL̃(i)[{i}

cL
ii0xi0 Sm,t

1

A ·

X

i02NL̃(i)[{i}

cL
ii0xi0

������
2


�0

Nt

X

i2It

������

X

i02NL̃(i)[{i}

cL
ii0xi0

������
2

������
�0

0

@
X

i02NL̃(i)[{i}

cL
ii0xi0 S,t

1

A� �0

0

@
X

i02NL̃(i)[{i}

cL
ii0xi0 Sm,t

1

A

������
2


�0

Nt

X

i2It

p

d

������

X

i02NL̃(i)[{i}

cL
ii0xi0 S,t �

X

i02NL̃(i)[{i}

cL
ii0xi0 Sm,t

������
2

(due to |�0(x)� �0(y)|  |x� y|)


�0

Nt

X

i2It

p

d

������

X

i02NL̃(i)[{i}

cL
ii0xi0

������
2

k S,t � Sm,tk2

�0dk� tk2.
(27)

Second, at step t, SGD picks (Xt, Yt) and t = m, i.e., (Xt, Yt) picked by the algorithm on S and
(X0

t
, Y 0

t
) picked by the algorithm on S

m are distinct. This case would happen with probability 1
M

.

19

We have
kr L(h(Xt; S,t), Yt)�r L(h(X

0
t
; Sm,t), Y

0
t
)k2


1

Nt

X

i2It,j=I
0
t[i]

kr l(h(xi; S,t), yi)�r l(h(x
0
i
; Sm,t), y

0
i
)k2

(since Nt = N 0
t

and assume I 0
t
[i] denotes the i-th entry in I 0

t
)


�0

Nt

X

i2It,j=I
0
t[i]

k�0

0

@
X

i02NL̃(i)[{i}

cL
ii0xi0 S,t

1

A ·

X

i02NL̃(i)[{i}

cL
ii0xi0

��0

0

@
X

i02NL̃(j)[{j}

cL
ji0xi0 Sm,t

1

A ·

X

i02NL̃(j)[{j}

cL
ji0xi0k2


�0

Nt

X

i2It,j=I
0
t[i]

������
�0

0

@
X

i02NL̃(j)[{j}

cL
ji0xi0 S,t

1

A ·

X

i02NL̃(j)[{j}

cL
ji0xi0

������
2

+
�0

Nt

X

i2It,j=I
0
t[i]

������
�0

0

@
X

i02NL̃(j)[{j}

cL
ji0xi0 Sm,t

1

A ·

X

i02NL̃(j)[{j}

cL
ji0xi0

������
2

2�0
p

d,

(28)

where the last inequality is due to |�0(x)|  1.

Combining (27) and (28) we have
ESGD[k� t+1k2]


M � 1

M
ESGD

⇥
k(S,t � ↵r L(h(Xt; S,t), Yt))� (Sm,t � ↵r L(h(Xt; Sm,t), Yt))k2

⇤

+
1

M
ESGD

h��(S,t � ↵r L(h(Xt; S,t), Yt))� (Sm,t � ↵r L(h(XF
0
t
; Sm,t), YF

0
t
))
��
2

i

ESGD[k� tk2] + (1�
1

M
)↵ESGD

⇥
kr L(h(Xt; S,t), Yt)�r L(h(Xt; Sm,t), Yt)k2

⇤

+
1

M
↵ESGD

⇥
kr L(h(Xt; S,t), Yt)�r L(h(X

0
t
; Sm,t), Y

0
t
)k2
⇤

=ESGD[k� tk2] + (1�
1

M
)�0dESGD[k� tk2] +

2

M
�0
p

d

(1 + �0dESGD[|� t|] +
2

M
�0
p

d.

(29)
The above inequality yields,

ESGD[|� T |] 
2�0
p
d

M

TX

t=1

(1 + �0d)t�1. (30)

Plugging the result into (24) we will obtain,

� 
2��0d

M

TX

t=1

(1 + �0d)t�1. (31)

We complete the proof for Theorem 1.

D Dataset Information

D.1 Dataset Information

We present detailed information for our used datasets concerning the data collection, preprocessing
and statistic information.

20

Table 2: Information for experiment datasets. The Github dataset directly provides preprocessed 0-1
features.

Dataset Domain #Instances #Raw Feat. Cardinality #0-1 Feat. #Class

Gene Life 3190 60 4⇠6 287 3
Protein Life 1080 80 2⇠8 743 8
Robot Computer 5456 24 9 237 4
Drive Computer 58509 49 9 378 11
Calls Life 7195 10 4⇠10 219 10

Github Social 37700 - ⇠ 4006 2
Avazu Ad. 40,428,967 22 5⇠1611749 2,018,025 2
Criteo Ad. 45,840,617 39 5⇠541311 2,647,481 2

UCI datasets. The six datasets are provided by UCI Machine Learning repository [1]. They are from
different domains, including biology, engineering and social networks. Gene dataset contains 60
DNA sequence elements, and the task is to recognize exon/intron boundaries of DNA. Protein dataset
[10] consists of the expression levels of 77 proteins/protein modifications, genotype, treatment type
and behavior, and the task is to identify subsets of proteins that are discriminant between eight classes
of mice. Robot dataset is collected as a robot navigates through a room following a wall with 24
ultrasound sensor readings, and the task is to predict the robot behavior. Drive dataset is extracted
from electric current drive signals with 49 attributes, and the task is to identify 11 different classes
with different conditions. Calls dataset was created by segmenting audio records belonging to 4
different families, 8 genus, and 10 species, and the task is to identify the class of species. Github
dataset [41] is a large social network of GitHub developers with their location, repositories starred,
employer and e-mail address, and the task is to predict whether the GitHub user is a web or a machine
learning developer.

The six UCI datasets have diverse statistics. Overall, they contain thousands of instances and dozens
of raw features with a mix up of categorial and continuous ones. The categorical raw features have
cardinality ranged from 2 to 12. As mentioned in Section 2.1, the cardinality means the number
of possible values for a discrete feature. For continuous features in each dataset (if exist), we first
normalize the values into 0-mean and 1-standard-deviation distribution and then hash them into 10
buckets with evenly partition between the maximum and the minimum. Then each raw feature can be
converted into one-hot representation. After converting all the features into binary ones we get up to
hundreds of 0-1 features for each dataset. Table 2 summarizes the basic information for each dataset.

CTR prediction datasets. The two click-through rate (CTR) prediction datasets have millions of
instances and dozens of raw features with diverse cardinality. The goal of CTR prediction task is
to estimate the probability that a user will click on an advertisement with the user’s profile features
and the ad’s content features. In specific, Criteo4 is a widely used public benchmark dataset for
developing CTR models, which includes 45 million users’ click records, 13 continuous raw features
and 26 categorical ones 5. We follow [24, 23] and use log transformation to convert the continuous
features into discrete ones. Avazu6 is another publicly accessible dataset for CTR prediction, which
contains users’ mobile behaviors including whether a displayed mobile ad is clicked by a user or not.
It has 40 millions users’ click records, 23 categorical raw feature spanning from user/device features
to ad attributes (all are encoded to remove user identity information). The cardinality of different raw
features for these two datasets are very diverse, ranging from 5 to a million. The raw features with
very large cardinality include some id features, e.g. device id, site id, app id, etc. For each dataset, we
convert each raw feature into one-hot representations and obtain 0-1 features. For features appearing
less than 4 times we group them as one feature. After preprocessing, we obtain nearly 2 million 0-1
features for Avazu and Criteo as shown in Table 2.

4http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
5In computational advertisement community, the raw features (e.g. site category, device id, device type, app

domain, etc.) are often called fields. We call them raw features in our paper to keep the notation self-contained.
6https://www.kaggle.com/c/avazu-ctr-prediction

21

D.2 Dataset Splits

UCI datasets. For each of UCI datasets, we first randomly partition all the instances into train-
ing/validation/test sets according to the ratio of 6:2:2. Then we randomly select a certain ratio
(30% ⇠ 80% in our experiments) of features as observed features and use the remaining as un-
observed ones. The model is trained with observed features of training instances, validated with
observed features of validation instances and tested with all the features of test instances.

CTR prediction datasets. As illustrated in Section 4, for Avazu/Criteo we split all the instances into
ten folds in chronological order. Then we use the first fold for training, second fold for validation, and
third to tenth folds for test. In such way, the validation data and test data will naturally contain new
features not appeared in training data. Here we provide more illustration about this. As mentioned
above, Avazu dataset contains 23 categorial raw features and some of them have very large cardinality.
For example, the cardinality of raw features app id and device id are 5481 and 381763, respectively. In
practical systems, there will be new apps introduced and new devices observed by the system as time
goes by, and they play as new values out of the known range of existing raw features, which consist
of new 0-1 features that are not unseen by the model (as introduced in the beginning of Section 2.1).
Since we chronologically divide the dataset into training/validation/test sets, the validation and test
sets would both contain a mixture of features seen in training set and new features unseen in training.
Concretely, for Avazu, there are totally 618411 features in training set, 248614 new features (unseen
by training data) in validation set, and totally 1151000 new features (unseen by both training and
validation sets) in all the test sets. For Criteo, there are totally 1340248 features in training set,
472023 new features (unseen by training data) in validation set, and totally 835210 new features
(unseen by both training and validation sets) in all the test sets.

E Implementation Details

We present implementation details for our experiments for reproducibility. We implement our model
as well as all the baselines with Python 3.8, Pytorch 1.7 and Pytorch Geometric 1.6. The experiments
are all run on a RTX 2080Ti, except for our scalability test in Section 4.3 where we use a RTX 8000.

E.1 Details for UCI experiments

Architectures. For experiments on UCI datasets, the network architecture for our backbone network
is

• A three-layer neural network with hidden size 8 in each layer.

• The activation function is ReLU.

• The output layer is a softmax function for multi-class classification or sigmoid for two-class
classification.

The architecture for our GNN network is

• A four-layer GCN [25] network with hidden size 8 in each layer.

• Adding self-loop and using normalization for graph convolution in each layer.

• No activation unit is used.

Training Details. We adopt self-supervised learning approach with n-fold splitting. Concretely,
in each epoch, we feed the whole training data matrix into the model and randomly divide all the
observed features into n = 5 disjoint sets {F s}

n

s=1. Then a nested optimization is considered: 1) we
update the backbone network with n steps where in the s-th step, we mask observed features in F s;
2) then we update the GNN network with one step using the accumulated loss of the n steps. The
training procedure will repeat the above process until a given budget of 200 epochs. Also, in each
epoch, the validation loss is averaged over n-fold data where for the s-th fold the features in F s are
masked and the model will use the remaining observed features for prediction. Finally, we report the
test accuracy achieved by the epoch that gives the minimum logloss on validation dataset.

22

Hyperparameters. Other hyper-parameters are searched with grid search on validation dataset. We
use the same hyperparameter settings for six datasets, which indicates that our model is dataset
agnostic in some senses. The settings and searching space are as follows:

• The learning rates ↵f , ↵s are searched within [0.1, 0.01, 0.001]. We set ↵f = 0.01 and
↵s = 0.001.

• The ratio for DropEdge ⇢ is searched within [0.0, 0.2, 0.5]. We set ⇢ = 0.5.
• The fold number for data partition n is searched within [2, 5, 10]. We set n = 5.

Baselines. All the baselines are implemented with a three-layer neural network, the same as the
backbone network in our model. The baselines are all trained with a given budget of 200 epochs,
and we report the test accuracy achieved by the epoch that gives the minimum logloss on validation
dataset. The difference of them lies in the ways for leveraging observed and unobserved (new)
features in training and inference. The detailed information for baseline methods is as follows.

• Base-NN. Use observed features of training instances for model training, and observed
features of validation/test instances for model validation/test.

• Oracle-NN. User all the features of training instances for model training, and all the features
of validation/test instances for model validation/test.

• INL-NN. The training process contains two stages. In the first stage, we train the model
with initialized parameters using observed features of training instances for 200 epochs
and save the model at the epoch that gives the minimum logloss on validation dataset (with
observed features). In the second stage, we load the saved model in the first stage, train it
using unobserved features of training instances for 200 epochs and report the test accuracy
(using all the features) achieved by the epoch that gives the minimum logloss on validation
dataset (using all the features).

• Average-NN. Use observed features of training instances for model training. In test stage,
we average the embeddings of observed features as the embeddings of unobserved features.
Then the model would use all the features of test instances for inference (by using the trained
embeddings of observed features and estimated embeddings of unobserved ones).

• Pooling-NN. Use observed features of training instances for model training. In test stage,
we replace the GNN model in FATE with mean pooling over neighbored nodes. Specifically,
the embeddings of unobserved features are obtained by non-parametric message passing
using mean pooling over the feature-data bipartite graph.

• KNN-NN. Use observed features of training instances for model training. In test stage,
we compute the Jaccard similarity scores between any pair of observed and unobserved
features. Then for each unobserved feature, its embedding is obtained by taking average
of the embeddings of the observed features with top 20% Jaccard similarities as the target
unobserved feature.

E.2 Details for Avazu/Criteo experiments

Architectures. For experiments on Criteo and Avazu datasets, we consider two specifications for the
backbone network. First, we specify it as a feedforward NN, whose architecture is

• A three-layer neural network with hidden size 10-400-400-1.
• The activation function is ReLU unit except the last layer using sigmoid.
• We use BatchNorm and Dropout with probability 0.5 in each layer.

Second, we specify it as DeepFM network [17], which also contains an embedding layer and a
subsequent classification layer. The embedding layer is an embedding lookup W which maps each
nonzero index in xi to an embedding, denoted as {zm

i
} where z

m

i
denotes the embedding for the

m-th raw feature of instance i. The subsequent classification layer can be denoted by

ŷi =
DX

j=1

wj · xij + FM({zm
i
}) + FNN(zi), (32)

23

where zi =
P

d

m=1 z
m

i
, FNN is a feedforward neural network and FM is a factorization machine

which can be denoted as
FM({zm

i
}) =

X

m,m0

< z
m

i
, zm

0

i
> . (33)

For our model FATE-DeepFM, we use the GNN model to compute feature embeddings Ŵ based on
which we use the input feature vector of an instance xi to obtain {z

m

i
} and zi and then plug into the

subsequent classification layer.

The architecture for our GNN network is

• A two-layer GraphSAGE [18] network with hidden size 10 in each layer.

• No activation unit.

Training Details. We adopt inductive learning approach with k-shot sampling for training our model.
Furthermore, we use instance-level mini-batch partition to control space cost. Concretely, in each
epoch, we first randomly shuffle all the training instances and partition them into mini-batches with
size B. Then for each mini-batch, we consider a training iteration where the backbone network is
updated with n steps and the GNN model is updated with one step. For s-th step update for the
backbone, we uniformly sample k raw features from d existing ones, obtain a new feature set Fs

induced by the sampled k raw features, and extract the corresponding columns in the data matrix
to form a proxy data, i.e., a B ⇥ |Fs| sub-matrix from Xtr. We then use the proxy data matrix to
update the backbone. After n-step updates for the backbone, we update the GNN model with the
accumulated loss of the n steps.

All the models including FATE and baselines are trained with a given budget of 100 epochs. For every
10 training iteration, we compute the validation loss and ROC-AUC on validation dataset. Finally,
we report the test ROC-AUC achieved by the epoch that gives the highest ROC-AUC on validation
dataset.

Hyperparameters. Other hyper-parameters are searched with grid search on validation dataset. The
settings and searching space are as follows:

• The learning rates ↵f , ↵s are searched within [0.1, 0.01, 0.001, 0.0001, 0.00001]. We set
↵f = 0.0001 and ↵s = 0.0001 for NN as backbone. For DeepFM as backbone, we set
↵f = 0.0001 and ↵s = 0.0001 on Criteo, and ↵s = 0.00001 on Avazu.

• The ratio for DropEdge ⇢ is searched within [0.0, 0.2, 0.5]. We set ⇢ = 0.5.

• The batch size B is searched within [10000, 20000, 100000, 200000]. We set B = 100000.

• The sampling size k for data partition is searched within [7, 11, 13, 17, 20] for Avazu and
[13, 16, 21, 24, 27] for Criteo. We set k = 17 for Avazu and k = 24 for Criteo.

F More Experiment Results

We supplement more experiment results as further discussions of our method, including salability
tests and ablation studies.

F.1 Scalability Test

We conduct experiments for scalability test on Criteo dataset. The scalability experiment is deployed
on a RTX 8000 GPU with 48GB memory (though our comparison experiments in Section 4.1 and 4.2
require less than 12GB memory for each trial).

Impact of Batch Sizes. We statistic the running time per mini-batch for training and inference on
Criteo dataset in Fig. 6(a) and (b) where the batch size is changed from 1e5 to 1e6. The results are
taken average over 20 mini-batches. As we can see, as the batch size increases, the training time and
inference time both increase linearly, which depicts that our model has linear scalability w.r.t. the
number of instances for each update and inference. Also, in Fig. 6(c) and (d), we present the GPU
memory cost for training and inference on Criteo dataset. As we can see, the space cost of FATE also
increases linearly with respect with batch sizes. Indeed, as discussed in Section 3.2, the time and

24

space complexity of FATE is O(Bd) using mini-batch training where d is relative small value (up to
a hundred). Hence, the empirical results verify our analysis.

Impact of Feature Numbers. We also discuss the model’s scalability concerning different feature
numbers, i.e. the dimension of feature vectors D for training data (D0 for test data). There are totally
39 raw features in Criteo dataset and we only use [39, 36, 33, 30, 27, 24, 21, 18, 15] of them for exper-
iments, which induces [2647481, 2475154, 1956637, 1949494, 1466711, 927535, 862927, 850016]
features, and also compare the training/inference time per mini-batch and GPU memory costs. The
results are shown in Fig. 7(a)-(d). We can see that as the feature number increases, the time and space
costs both go up in linear trends, which indicates FATE has linear scalability w.r.t. feature number D.
In fact, more feature numbers would require larger model size (for feature embeddings) and induce
larger computational graph due to the increase of d; also, the increase of d would also require more
training/inference time based on our complexity analysis.

F.2 Ablation Studies

We next conduct ablation studies for some key components in our framework and discuss their
impacts on our model. The results are shown in Table 3 and Table 4.

Effectiveness of DropEdge. In Table 3, we compare with not using DropEdge regularization in
training stage. The results show that FATE consistently achieve superior accuracy throughout six
datasets, which demonstrate the effectiveness of DropEdge regularization that can help to alleviate
the over-fitting on training features.

Effectiveness of Asynchronous Updates. We also compare our asynchronous updates (alternative
fast updates for Backbone network and slow updates for GNN) with directly using end-to-end jointly
training of two networks. The results show that FATE with asynchronous updates can outperform joint
training approach over a large margin, which verify the effectiveness of our proposed asynchronous
updating rule. The reason is that using asynchronous updates can decouple the training for two
networks and further help two models learn useful information from observed data. Also, we observe
that using slow updates for GNN network with the accumulated loss of several data splits can stabilize
its training and alleviate the over-fitting.

Comparison between Training Approaches. We further investigate the k-fold splitting and n-fold
sampling strategies used in our training approaches in Table 3. Recall that in UCI datasets, we
adopt the self-supervised learning approach for training. Here we compare our used n-fold splitting
with leave-one-out, which leave out partial features as a fixed set for masking in training, and k-
shot sampling, which randomly sample b0.8 ⇤Dc training features as observed ones and mask the
remaining for each update. The results show that the n-fold splitting and k-shot sampling strategies
both provide superior performance in six datasets. Furthermore, when using different n’s, the relative
performance of n-fold splitting and k-shot sampling approaches diverge in different cases. Overall,
we found using n-fold splitting with n = 5 or n = 10 work the best on average. In fact, the n-fold
splitting and k-shot sampling both play as a role in mimicking new features and exposing partial
observed features to the model in training. The difference is that n-fold splitting guarantees that in
each iteration the model can be updated on each feature in training set while the k-shot sampling
introduces more randomness. Unlike UCI datasets, in two large-scale datasets Criteo and Avazu
where we adopt the inductive learning approach for training, we found using k-shot sampling works
consistently better than n-fold splitting. One possible reason is that k-shot sampling can increase
the diversity of proxy data (containing partial features and partial instances) used for each training
update and can presumably help the model to overcome feature-level over-fitting in large datasets.
Such results are consistent with our theoretical generalization error analysis in Section 3.

Impact of Sampling Sizes. We next study the impact of sampling size k on the model performance.
We use different k’s for inductive learning on Avazu and Criteo. The results are shown in Table 4. As
we can see, as k increases, the training AUC goes up, which demonstrates that larger sampling size
can help for optimization since it reduces the variance of sampling and enhances training stability.
Furthermore, it is not always beneficial to increase k. When it becomes large enough and close to the
number of raw features d, the model would suffers from over-fitting. The results further demonstrate
that large sampling size would lead to feature-level over-fitting, which echoes our theoretical results in
Section 3. Recall that Theorem 1 shows that model’s generalization gap depends on the randomness in

25

sampling over training features. Here when k is large, there will be less randomness from feature-level
data partition, which will degrade model’s generalization ability.

26

Table 3: Ablation studies for DropEdge regularization, asynchronous updates for two networks
(compared with end-to-end joint training) and our sampling strategies (n-fold splits and k-shot
sampling compared with leave-one-out) on six UCI datasets. We run each experiment five times with
different random seeds and report the mean scores.

Models Gene Protein Robot Drive Calls Github

w/o DropEdge 0.9226 0.9031 0.8062 0.5261 0.9760 0.8688
End-to-end Joint 0.9257 0.8963 0.8454 0.1073 0.9762 0.7557

FATE (ours) 0.9345 0.9178 0.8815 0.6440 0.9839 0.8743
Leave-one-out 0.8564 0.6574 0.7641 0.4448 0.9334 0.8533

n-fold split (n = 10) 0.8884 0.8426 0.8888 0.5910 0.9851 0.8723
n-fold split (n = 5) 0.9345 0.9178 0.8815 0.6440 0.9839 0.8743
n-fold split (n = 2) 0.9298 0.8398 0.8359 0.5234 0.9514 0.8771

k-shot sample (n = 10) 0.9404 0.9046 0.8839 0.5559 0.9812 0.8712
k-shot sample (n = 5) 0.9379 0.9102 0.8802 0.6060 0.9819 0.8712
k-shot sample (n = 1) 0.9304 0.8778 0.8568 0.5408 0.9611 0.8722

Table 4: Ablation studies for different sampling sizes k for k-shot sampling in inductive learning on
Avazu and Criteo. We report ROC-AUC on training data, validation data and 8-fold test data (T1-T8).
Dataset k Train Val T1 T2 T3 T4 T5 T6 T7 T8

Avazu

11 0.7815 0.7369 0.6853 0.6950 0.7058 0.7093 0.7137 0.7186 0.7183 0.7193
14 0.7842 0.7399 0.6896 0.6989 0.7080 0.7091 0.7142 0.7190 0.7201 0.7210
17 0.7902 0.7433 0.6894 0.6995 0.7082 0.7105 0.7156 0.7203 0.7215 0.7216
20 0.7978 0.7420 0.6872 0.6978 0.7080 0.7091 0.7146 0.7201 0.7201 0.7202

Criteo

16 0.7955 0.7725 0.7669 0.7666 0.7688 0.7695 0.7714 0.7721 0.7722 0.7722
21 0.7988 0.7752 0.7699 0.7695 0.7714 0.7721 0.7736 0.7739 0.7741 0.7744
24 0.8005 0.7758 0.7701 0.7694 0.7712 0.7727 0.7732 0.7745 0.7740 0.7743
27 0.8025 0.7747 0.7698 0.7683 0.7711 0.7713 0.7727 0.7743 0.7734 0.7744
30 0.8057 0.7750 0.7690 0.7678 0.7701 0.7708 0.7725 0.7735 0.7723 0.7739

27

(a) Training time per mini-batch (b) Inference time per mini-batch

(c) GPU memory cost for training (d) GPU memory cost for inference

Figure 6: Scalability test of time and space costs w.r.t. batch sizes B for training and inference on
Criteo dataset.

28

(a) Training time per mini-batch (b) Inference time per mini-batch

(c) GPU memory cost for training (d) GPU memory cost for inference

Figure 7: Scalability test of time and space costs w.r.t. feature numbers D for training and inference
on Criteo dataset.

29

	Introduction
	Methodology
	Proposed Model
	Model Learning

	Generalization Analysis
	Experiments
	Experiment on UCI Datasets
	Experiment on CTR Prediction
	Further Discussions

	Connection to Other Learning Paradigms
	Conclusion
	More Discussions for Permutation-Invariant Property of Embedding Layers
	Training Algorithms
	Analysis of Generalization Error
	Generalization error with uniform stability condition
	Deriving bound for

	Dataset Information
	Dataset Information
	Dataset Splits

	Implementation Details
	Details for UCI experiments
	Details for Avazu/Criteo experiments

	More Experiment Results
	Scalability Test
	Ablation Studies

