
A Supplementary Material

A.1 Proof of Propostion 1

We prove that the optimal response-linear achievable interpolator in linear regression is

wO =

(
δ

d
ΦXT +Σ−

1
2 (XΣ−

1
2 )†
)(

In+
δ

d
XΦXT

)−1

y.

Proof. First, we note that as wO ∈ L, there exists Rd×n 3 Q = Q(X,Σ,Φ, δ) such that wO =
Qy = QXw? +Qξ. Therefore, the definition of wO,

wO = arg min
w∈G∩L

Eξ,w?r(w)− r(w?),

can be restated as

wO = arg min
wO=Qy
XQy=y

B(wO) + V (wO), (18)

where

B(wO) =
r2

d
Tr
(
Σ(QX − Id)Φ(QX − Id)T

)
,

V (wO) = σ2Tr
(
ΣQQT

)
.

Claim 1. (18) implies

wO = arg min
wO=Qy
XQX=X

B(wO) + V (wO). (19)

We prove this claim. XQy = y almost surely for all realizations of the data (that is, a.s. for all
realizations of X, ξ, w?) implies

0 = E
(
XQ(Xw? + ξ)|X,w?

)
− E

(
Xw? + ξ|X,w?

)
= X(QX − Id)w?

almost surely for all realizations of X,w?. Therefore,

0 = Ew?

(
‖X(QX − Id)w?‖22 | w?

)
= w?TE

(
(QX − Id)TXTX(QX − Id)

)
w? (20)

almost surely for all realizations of w?. It follows that E
(
(QX − Id)TXTX(QX − Id)

)
= 0. This

is because, if not, then there exists v ∈ Rd and ε > 0 such that

∀u ∈ Bε(v) uTE
(
(QX − Id)TXTX(QX − Id)

)
u > 0. (21)

Recall that w? ∼ Pw? , where Pw? is by assumption such that ν(A) > 0 implies Pw?(A) > 0 for all
Lebesgue measurable A ∈ Rd (where ν is the Lebesgue measure). However, as Bε(v) has positive
Lebesgue measure, (21) is hence a contradiction to (20). Finally, as ‖A‖ =

√
Tr(AAT ) is a norm,

E
(
(QX − Id)TXTX(QX − Id)

)
= 0 implies that X(QX − Id) = 0 almost surely. This finishes

the proof of the claim.

Now we use Theorem 2 of Penrose (1955) which states that for any matrices A,B,C and D, all
solutions B to the equation ABC = D can be written as B = A†DC† + S −A†ASCC† where S
is arbitrary. Therefore, XQX = X is equivalent to

Q = X†XX† + S −X†XSXX† = X† + S −X†XS

for some arbitrary S ∈ Rd×n. Hence, if we write Q = Q(S) and wO = wO(S), (19) is equivalent to
an unconstrained optimization problem over Rd×n in the form

wO = arg min
S

f(S), (22)

where f(S) = B(wO(S)) + V (wO(S)). Now we show that f : Rd×n → R is strictly convex. Note
that the map

Rd×n 3 S 7→ Σ
1
2 (Q(S)X − Id)Φ

1
2
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is affine and nonzero and the map Rd×d 3 A 7→ Tr(AAT ) is strictly convex because ‖A‖ =√
Tr(AAT ) is a norm. The composition of these two maps is Rd×n 3 S 7→ d

r2B(wO(S)), which is
therefore strictly convex. A similar argument proves that Rd×n 3 S 7→ V (wO(S)) is strictly convex
and hence also f is. Moreover, f is differentiable. Therefore, to find a unique global minimum of f ,
it is enough to find S? ∈ Rd×n such that ∂f(S?) = 0. Using tools of matrix calculus we find

∂f(S) = 2(Id −X†X)ΣA,

where

A =

(
σ2S +

r2

d
(SX − Id)ΦXT +X†(In −XS)(σ2In +

r2

d
XΦXT )

)
.

Because Rd 3 v 7→ (Id −X†X)v is the projection onto Ker(X) = Im(XT )⊥, this hints towards
finding S? such that A = Σ−1XTB for some matrix B. This is achieved, for example, if

σ2S? +
r2

d
(S?X − Id)ΦXT = Σ−1XTB

and

In −XS? = 0,

for some matrix B. Putting the two equations together implies B = σ2(XΣ−1XT )−1 and hence,
using that Σ−

1
2 (XΣ−

1
2 )† = Σ−1XT (XΣ−1XT )−1 and δ = r2

σ2 , we have

S? =

(
δ

d
ΦXT + Σ−

1
2 (XΣ−

1
2 )†
)(

In +
δ

d
XΦXT

)−1

.

Finaly, because XS? = In, it follows that Q? = X† + S? −X†XS? = S? and hence

wO = Q?y =

(
δ

d
ΦXT +Σ−

1
2 (XΣ−

1
2 )†
)(

In+
δ

d
XΦXT

)−1

y.

A.2 Proof of Proposition 2

We prove that the optimal response-linear achievable interpolator wO is the limit of preconditioned
gradient descent

wt+1 = wt − ηtΣ−1∇R(wt), (23)
provided that the algorithm converges, initialized at

w0 =
δ

d
ΦXT

(
In +

δ

d
XΦXT

)−1

y.

Proof. Preconditioned gradient descent (23) is equivalent to mirror descent

∇φ(wt+1) = ∇φ(wt)− ηt∇R(wt)

with mirror map φ(w) = 1
2w

TΣw. By a result of (Gunasekar et al., 2018), if mirror descent with
mirror map φ, a unique root loss function (e.g. the squared error loss), initialisation w0 and stepsize
(ηt)t∈N satisfies limt→∞R(wt) = 0 then

lim
t→∞

wt = arg min
w∈G

Dφ(w,w0),

where
Dφ(w,w0) = φ(w)− φ(w0)−∇φ(w0)T (w − w0)

is the associated Bregman divergence. By this result applied with φ(w) = 1
2w

TΣw, we have that if
preconditioned gradient descent (23) initialized at w0 converges, its limit satisfies

lim
t→∞

wt = arg min
w∈Rd :Xw=y

‖Σ 1
2 (w − w0)‖22.
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After a linear transformation and an application of a result about approximate solutions to linear
matrix equations (Penrose, 1956), similarly as in (4), we obtain

lim
t→∞

wt = Σ−
1
2 (XΣ−

1
2 )†(y −Xw0) + w0. (24)

Finally, using

w0 =
δ

d
ΦXT

(
In +

δ

d
XΦXT

)−1

y,

we obtain

Σ−
1
2 (XΣ−

1
2 )†(y −Xw0) + w0 =

(
δ

d
ΦXT +Σ−

1
2 (XΣ−

1
2 )†
)(

In+
δ

d
XΦXT

)−1

y = wO.

A.3 Proof of Proposition 3

We prove that for any deterministic initialization w0 ∈ Rd, the limit of converging preconditioned
gradient descent wt+1 = wt − ηtΣ−1∇R(wt) satisfies that

lim
t→∞

wt = arg min
w∈G

V (w).

Proof. Recall from (24) that

lim
t→∞

wt = Σ−
1
2 (XΣ−

1
2 )†(y −Xw0) + w0,

and the definition of the variance V (w) = Eξ,w?‖w − E(w|w?, X)‖2Σ. Therefore, we have

lim
t→∞

wt − E( lim
t→∞

wt|w?, X) = Σ−
1
2 (XΣ−

1
2 )†ξ.

Moreover, the optimal interpolator of Definition 1 satisfies

wb = w? + Σ−
1
2 (XΣ−

1
2 )†ξ,

so that
wb − E(wb|w?, X) = Σ−

1
2 (XΣ−

1
2 )†ξ

and hence
V (wb) = V ( lim

t→∞
wt) = Eξ‖Σ−

1
2 (XΣ−

1
2 )†ξ‖2Σ.

In other words, limt→∞ wt fits the noise in exactly the same way as the optimal interpolator wb,
which has the smallest possible risk among all interpolators. Hence, it is enough to show that wb also
has smallest possible variance among all interpolators. We argue by contradiction. Assume that ŵ is
an interpolator with smaller variance than wb. Then

Xŵ = y

implies that
X
(
ŵ − E(ŵ|w?, X)

)
= ξ

and hence w? + ŵ − E(ŵ|w?, X) is also an interpolator. But w? + ŵ − E(ŵ|w?, X) has zero
bias (recall that the definition of bias is B(w) = Eξ,w?‖E(w|w?, X) − w?‖2Σ) and therefore, by
assumption, has smaller risk than wb. This is a contradiction.

A.4 Assumption 1 implies rank(X) = n with probability 1.

Note that
P(rank(X) 6= n) = P(|Span(x1, . . . , xn)| < n)

= P(∪i∈{1,...,n}{xi ∈ Span(x1, . . . , xi−1, xi+1, . . . , xn)})

≤
n∑
i=1

P({xi ∈ Span(x1, . . . , xi−1, xi+1, . . . , xn)})

=

n∑
i=1

E
(
P({xi ∈ Span(x1, . . . , xi−1, xi+1, . . . , xn)}|x1, . . . , xi−1, xi+1, . . . , xn)

)
= 0,

where the last equation follows directly by applying Assumption 1.
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A.5 Response-linear interpolator with optimal bias

By choosing σ2 = 0 in A.1, the proof of Proposition 1, one obtains the interpolator with optimal bias
among response-linear achievable interpolators. This interpolator is

ΦXT (XΦXT )−1y,

which is in agreement with the asymptotic result of (Amari et al., 2021). Therefore, when the prior
is isotropic, as claimed in 5.3 the interpolator with optimal bias among response-linear achievable
interpolators is the minimum-norm interpolator.

A.6 Proof of equation (14)

We prove that, when the prior is isotropic Φ = Id, under Assumptions 3 and 5, if n, d → ∞ with
d
n → γ > 1 then we have with probability 1 that

lim
d→∞

Eξ,w∗r(wV )− r(w?) = B(wV ) + V (wV ),

where

B(wV ) = r2 γ − 1

γ

∫ ∞
0

s dH(s),

V (wV ) =
σ2

γ − 1
.

Proof. The proof uses techniques which were already developed in Hastie et al. (2019). Namely
Theorem 1 of Rubio and Mestre (2011) and an exchange of limits. Recall that

wV = Σ−
1
2 (XΣ−

1
2 )†Xw? + Σ−

1
2 (XΣ−

1
2 )†ξ

and Z = XΣ−
1
2 . Therefore, we have

Eξ,w?r(wV )− r(w?) = B(wV ) + V (wV ),

where, it was proved in Hastie et al. (2019) that

V (wV ) = σ2Tr
(
(ZTZ)†

)
−→ σ2

γ − 1

because Zi
i.i.d∼ N (0, Id). For the bias term we also use techniques similar to (Hastie et al., 2019). In

particular, we have

B(wV ) = Ew?w?TΣ
1
2 (I − Z†Z)T (I − Z†Z)Σ

1
2w?

= Ew?Tr
(
Σ

1
2w?w?TΣ

1
2 (I − Z†Z)

)
=
r2

d
Tr
(
Σ(I − Z†Z)

)
.

Moreover, we have

Z† = (ZTZ)†ZT ,

so that if we denote Σ̂ = ZTZ/n to be the empirical covariance matrix of the whitened features, then

Z†Z = Σ̂†Σ̂ = lim
λ→0+

(Σ̂ + λId)
−1Σ̂.

Therefore,

B(wV ) = lim
λ→0+

r2

d
Tr
(
(I − (Σ̂ + λId)

−1Σ̂)Σ
)

= lim
λ→0+

r2

d
λTr
(
(Σ̂ + λId)

−1Σ
)
.
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Now, we use Theorem 1 of (Rubio and Mestre, 2011) to compute the limit of Tr
(
(Σ̂ + λId)

−1Σ
)

as d/n→ γ > 1 with d→∞, n→∞. This theorem shows that if Θ = (Θd)d∈N is a sequence of

matrices such that
√

Tr
(
ΘΘT

)
is uniformly bounded, then

Tr
(
Θ((Σ̂ + λId)

−1 − cd(λ)Id)
)
−→ 0, (25)

where cd(λ) is a certain quantity defined through an implicit equation (for simplicity we do not define
it, as we only need to know its limit). If we choose Θ = Id/d, then because Σ̂ = ZTZ/n where
Zi

i.i.d∼ N (0, Id) and the spectral distribution FId is just the distribution induced by the measure δ1
for all d ∈ N, we have

lim
d→∞

cd(λ)→ m(−λ),

where m is the Stieltjes transform of the limiting spectral distribution of ZTZ/n given by the
Marčenko-Pastur theorem (Marčenko and Pastur, 1967). Now that we know cd(λ)→ m(−λ), we
use (25) again but with Θ = Σ/d. This shows that

Tr
(

Σ

d
(Σ̂ + λId)

−1

)
− Tr

(
Σ

d

)
m(−λ) −→ 0,

provided that
√

Tr(Σ2)/d is uniformly bounded. This is true when Assumption 3 holds so that
λmax(Σ) is uniformly bounded. Moreover,

1

d
Tr(Σ) =

1

d

d∑
i=1

λi(Σ) =

∫
s dFΣ(s) −→

∫
s dH(s),

where in the last line we used Assumptions 5 and 3. Therefore, we arrive at

r2

d
λTr
(
Σ(Σ̂ + λId)

−1
)
−→ r2λm(−λ)

∫
s dH(s).

Finally, assuming we can exchange limits (which we justify shortly), we have

lim
d→∞

B(wV ) = lim
d→∞

lim
λ→0+

r2

d
λTr
(
Σ(Σ̂ + λId)

−1
)

(26)

= lim
λ→0+

lim
d→∞

r2

d
λTr
(
Σ(Σ̂ + λId)

−1
)

= lim
λ→0+

r2λm(−λ)

∫
s dH(s),

and becausem is the Stieltjes transform of the standard Marčenko-Pastur law, it is known (Proposition
3.11 of Bai and Silverstein (2010)) that

lim
λ→0+

λm(−λ) =
γ − 1

γ
.

However, to fully finish the proof, one needs to first justify exchanging the limits in (26). We do this
now. Define a sequence of functions fd : R+ → R with

fd(λ) =
r2

d
λTr
(
Σ(Σ̂ + λId)

−1
)

and

f(λ) = r2λm(−λ)

∫
s dH(s).

We proved that limd→∞ fd(λ) = f(λ) pointwise. To assert

lim
d→∞

lim
λ→0+

fd(λ) = lim
λ→0+

f(λ)

it is therefore, by the Moore-Osgood theorem, enough to show that (fd)d∈N is uniformly convergent.
As (fd)d∈N has a pointwise limit, it is enough to show that every subsequence of (fd)d∈N has
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a uniformly convergent subsequence. For this, we show that (fd)d∈N is uniformly bounded and
has uniformly bounded derivative, which gives the convergent subsequences by the Arzela-Ascoli
theorem. Indeed, we have that

|fd(λ)| ≤ r2λmax(Σ)

and as f ′d(λ) = r2

d Tr
(
Σ(Σ̂ + λId)

−2Σ̂
)

we have

|f ′d(λ)| ≤ r2λmax(Σ)
λmax(Σ̂)

(λmin(Σ̂)+ + λ)2
≤ r2λmax(Σ)8

(
√
γ + 1)2

(
√
γ − 1)4

.

In the inequality we used Theorem 1 of Bai and Yin (1993) which shows that, with probability 1,

lim inf
d→∞

λmin(Σ̂)+ ≥ 1

2
(
√
γ − 1)2,

lim sup
d→∞

λmax(Σ̂) ≤ 2(
√
γ + 1)2.

A.7 V`2 in strong weak features model with γψ1 = 1.

In this subsection we justify the statement (of the last paragraph of Section 5.3) that, in the strong
weak features model of covariance matrices

Σ = diag(ρ1, . . . , ρ1, ρ2, . . . , ρ2) ∈ Rd×d,
where the number of ρ1s is d · ψ1 with ψ1 ∈ [0, 1], we have

V`2 = σ2

(
v′(0)

v(0)2
− 1

)
→∞

as ρ2 → 0 for any γ > 1 such that γψ1 = 1. Indeed, using the relation

m(z) +
1

z
= γ(v(z) +

1

z
),

(which can be shown to hold) and Definition 6 of the Stieltjes transform and its limit, it can be
checked that

v(0) =
x+

√
x2 + 4(γ − 1)ρ1ρ2

2(γ − 1)ρ1ρ2
,

where x = ρ1 +ρ2−γψ1ρ1−γ(1−ψ1)ρ2. Moreover, taking a derivative in the Silverstein equation
(Silverstein, 1995), which states that

− 1

v(z)
= z − γ

∫
s

1 + sv(z)
dH(s),

gives

v′(0)

v(0)2
− 1 = γv′(0)∆, (27)

where

∆ =

(
ψ1ρ

2
1

(1 + ρ1v(0))2
+

(1− ψ1)ρ2
2

(1 + ρ2v(0))2

)
. (28)

By rearranging (27) we obtain

v′(0)

v(0)2
− 1 =

1

1− γ∆v(0)2
− 1. (29)

Now if γψ1 = 1, then x = ρ2(2− γ) and

v(0) =
2− γ +

√
(2− γ)2 + 4(γ − 1)ρ1ρ2

2(γ − 1)ρ1
.
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Hence

v(0)
√
ρ2 −→

√
1

(γ − 1)ρ1

as ρ2 → 0. Using (28) and (29), it can be therefore checked that, as ρ2 → 0,

√
ρ2

(
v′(0)

v(0)2
− 1

)
−→ 1

2

√
ρ1

γ − 1
.

Therefore, v
′(0)
v(0)2 − 1→∞ as ρ2 → 0.

A.8 Empirical comparison of the Graphical Lasso for some covariance matrices

We illustrate how the interpolator wOe, obtained by using the Graphical Lasso approximation of the
covariance matrix, performs in comparison to the optimal response-linear achievable interpolator wO
for two regimes of covariance matrices. In this Section, we do this in the regime of an isotropic prior
Φ = Id. See Section A.9 for the case Φ 6= Id. The interpolator

wOe=

(
δe
d
XT +Σe

− 1
2 (XΣe

− 1
2 )†
)(

In+
δe
d
XXT

)−1

y,

is constructed by using the Graphical Lasso estimator Σe (Friedman et al., 2007) of the covariance
matrix (implemented in scikit-learn (Pedregosa et al., 2011)), and choosing δe which minimizes the
crossvalidated error on random subsets of the data as described in Section 5.1.

First, we look at the autoregressive regime, where

Σi,j = ρ|i−j|

for all i, j ∈ {1, . . . , d} and ρ ∈ (0, 1).

1.5 2.0 2.5 3.0 3.5 4.0

1.5

2.0

2.5

3.0

3.5

Ri
sk

Comparison of interpolators
wO

wOe

wb

Figure 3: Plot of Eξr(w) (points) for w ∈ {wO, wOe, wb} in the autoregressive regime with d =
bγnc, r2 = 1, σ2 = 1, n = 2000, ρ = 0.5.

Second, we consider an exponential regime (Dobriban and Wager, 2015), where the eigenvalues of Σ
are evenly spaced quantiles of the standard exponential distribution. Namely,

Σi,i = −log(1− pi),

where pi = i/(d+ 1) ∈ (0, 1) for i ∈ {1, . . . , d}. The off-diagonal entries are 0.
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Figure 4: Plot of Eξr(w) (points) for w ∈ {wO, wOe, wb} in the exponential regime with d =
bγnc, r2 = 1, σ2 = 1, n = 2000.

Note that the Graphical Lasso works well in the regimes of covariance matrices that we presented,
because in these regimes the empirical-covariance-based estimator wOe is seen to reproduce the
behaviour of the population-covariance-based estimator wO.

However, we do not make the claim that the Graphical Lasso approximation will approximate the
population covariance matrix well in general. The covariance matrices considered in this work have a
notable sparsity structure, and the Graphical Lasso approximation may not perform well for dense
covariance matrices.

It is interesting to study which covariance matrix approximators one should use. If we consider
Σe = XTX/n+λId for any λ ∈ R, one can check using the singular value decomposition of X that

Σe
− 1

2 (XΣe
− 1

2 )†y = X†y,

so that the corresponding preconditioned gradient descent converges to the same limit as gradient
descent and hence removes the benefit of preconditioning. The last statement is also true when using
the Ledoit-Wolf shrinkage covariance approximation (Ledoit and Wolf, 2004).

A.9 Empirical approximation in non-isotropic regimes

In the examples considered so far, we empirically illustrated that wOe approximates wO well.
However, the considered examples used an isotropic prior, i.e. Φ = Id. It is natural to ask whether
we are also able to match the generalization performance of wO when Φ 6= Id.

If we knew Φ, or had some prior information about Φ, then we can incorporate this information into
an estimate Φ̂ and use the fully empirical approximation

wOeΦ̂ =

(
δe
d

Φ̂XT + Σe
− 1

2 (XΣe
− 1

2 )†
)(

In +
δe
d
XΦ̂XT

)−1

y, (30)

which is likely to perform better than if we used Φ̂ = Id as in wOe (11).

However, in Figures 5, 6 we empirically illustrate that the interpolator wOe has generalization very
similar to that of wO and wOeΦ even in regimes when the prior is not isotropic (Φ 6= Id). Using wOe
corresponds to having no information about the prior, while wOeΦ corresponds to having complete
information about the covariance matrix of the prior. We see that both wOeΦ and wOe approximate
wO well in terms of generalization performance.

In Figure 5, we consider a prior where Φ is in the autoregressive regime. That is

Φij = ρ|i−j|
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for all i, j ∈ {1, . . . , d} and we set ρ = 0.5. The population covariance matrix Σ is in the exponential
regime (Dobriban and Wager, 2015), where the eigenvalues of Σ are evenly spaced quantiles of the
standard exponential distribution. Namely,

Σii = −log
(
1− i/(d+ 1)

)
,

and the off-diagonal entries are 0. In Figure 6 we set Σ to be in the autoregressive regime with
ρ = 0.5 and we consider the “hard prior” regime (Richards et al., 2021) where Φ = Σ−1.
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Figure 5: Plot of Eξr(w) for w ∈
{wO, wOe, wOeΦ, wb} with r2 = 1, σ2 =
1, γ = bd/nc, n = 2000. Σ follows the expo-
nential regime and Φ follows the autoregressive
regime with ρ = 0.5.
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Figure 6: Plot of Eξr(w) for w ∈
{wO, wOe, wOeΦ, wb} with r2 = 1, σ2 =
1, γ = bd/nc, n = 2000. Σ follows the autore-
gressive regime with ρ = 0.5 and Φ = Σ−1

follows the “hard” prior regime.

A.10 Proof of Propostion 4

We prove that the optimal response-linear achievable interpolator in random features regression is

aO=Σ−1
z

(
ΣzxΦXT +ZT

(
ZΣ−1

z ZT
)−1(d

δ
In+XΦXT−ZΣ−1

z ΣzxΦXT
))(d

δ
In+XΦXT

)−1

y.

The proof follows analogous steps to the proof of Proposition 1.

Proof. First, we note that as aO ∈ L, there exists Rd×n 3 Q = Q(X,Σ,Φ, δ) such that aO = Qy =
QXw? +Qξ. Therefore, the definition of aO,

aO = arg min
a∈G∩L

Eξ,w?r(fa)− r(w?),

can be restated as

aO = arg min
aO=Qy
ZQy=y

Eξ,w?f1(Q) + f2(Q) + f3(Q), (31)

where

f1(Q) =
r2

d
Tr
(
ΣzQXΦXTQT

)
f2(Q) = σ2Tr

(
ΣzQQ

T
)

f3(Q) = −2
r2

d
Tr
(
QTΣzxΦXT

)
,

where Σz = Ex̃(σ(Θx̃/
√
d)σ(Θx̃/

√
d)T ) and Σzx = Ex̃(σ(Θx̃/

√
d)x̃T ). Moreover, ZQy = y

almost surely implies that ZQX = X almost surely. This is because taking expectation with respect
to ξ in ZQy = y implies

(ZQX −X)w? = 0
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and therefore

0 = Ew?

(
‖(ZQX −X)w?‖22 | w?

)
= w?TE

(
(ZQX −X)T (ZQX −X)

)
w?.

Because this holds almost surely for all realizations of w? ∈ Rd, similarly as in Section A.1, it follows
that E

(
(ZQX−X)T (ZQX−X)

)
= 0. Finally, therefore also E

(
Tr((ZQX−X)T (ZQX−X))

)
=

0 and because ‖A‖ =
√

Tr(AAT ) is a norm, this implies that ZQX −X = 0 almost surely. Hence,
(31) is equivalent to

wO = arg min
aO=Qy
ZQX=X

f1(Q) + f2(Q) + f3(Q). (32)

Now we use Theorem 2 of Penrose (1955) which states that for any matrices A,B,C and D, all
solutions B to the equation ABC = D can be written as B = A†DC† + S −A†ASCC† where S
is arbitrary. Therefore, ZQX = X is equivalent to

Q = Z†XX† + S − Z†ZSXX† = Z† + S − Z†ZS,

for some arbitrary S ∈ RN×n. Hence, (32) is equivalent to an unconstrained optimization problem
over RN×n in the form

wO = arg min
S

f(S), (33)

where f(S) = f1(aO(S)) + f2(aO(S)) + f3(aO(S)). Now we show that f : RN×n → R is
strictly convex. This is done in precisely the same way as in the proof A.1. Namely, we note
that ‖A‖ =

√
Tr(AAT ) is a norm and hence RN×N 3 A 7→ Tr(AAT ) is strictly convex. As

f1(S), f2(S) are compositions of an affine map with RN×N 3 A 7→ Tr(AAT ), and by noting that
f3(S) is affine, it follows that S 7→ f(S) is strictly convex. Moreover, f is differentiable. Therefore,
to find a unique global minimum of f , it is enough to find S? ∈ RN×n such that ∂f(S?) = 0. Using
tools of matrix calculus we find

∂f(S) = 2(IN − Z†Z)ΣA,

where

A =

(
σ2S +

r2

d

(
SX − Σ−1

z Σzx
)
ΦXT + ΣzZ

†(In − ZS)(σ2In +
r2

d
XΦXT

))
.

Because RN 3 v 7→ (IN − Z†Z)v is the projection onto Ker(Z) = Im(ZT )⊥, this hints towards
finding S? such that A = Σ−1ZTB for some matrix B. This is achieved, for example, if

σ2S? +
r2

d

(
S?X − Σ−1

z Σzx
)
ΦXT = Σ−1ZTB

and

In − ZS? = 0,

for some matrix B. The first equation implies

S? = Σ−1
z

(
r2

d
ΣzxΦXT + ZTB

)(
σ2In +

r2

d
XΦXT

)−1

(34)

and using that ZS? = In gives

B =

(
ZΣ−1

z ZT
)−1(

σ2In +
r2

d
XΦXT − r2

d
ZΣ−1

z ΣzxΦXT

)
.

Plugging B back into (34) gives

S? = Σ−1
z

(
ΣzxΦXT +ZT

(
ZΣ−1

z ZT
)−1(d

δ
In+XΦXT−ZΣ−1

z ΣzxΦXT
))(d

δ
In+XΦXT

)−1

.

Finaly, because ZS? = In, it follows that Q? = Z† + S? − Z†ZS? = S? and hence

aO = Σ−1
z

(
ΣzxΦXT +ZT

(
ZΣ−1

z ZT
)−1(d

δ
In+XΦXT−ZΣ−1

z ΣzxΦXT
))(d

δ
In+XΦXT

)−1

y.
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A.11 Proof of Proposition 5

We prove that the optimal response-linear achievable interpolator aO in random features regression is
the limit of preconditioned gradient descent on the last layer,

wt+1 = wt − ηtΣz−1∇R(wt),

provided that the algorithm converges and initialized at

a0 = Σ−1
z ΣzxΦXT

(
d

δ
In +XΦXT

)−1

y.

Proof. As before, by a result of (Gunasekar et al., 2018) we have that the limit of

wt+1 = wt − ηtΣz−1∇R(wt),

on the last layer, initialized at some a0 and provided that it converges, satisfies

lim
t→∞

wt = Σ
− 1

2
z

(
ZΣ
− 1

2
z

)†(
y − Za0

)
+ a0.

Using

a0 = Σ−1
z ΣzxΦXT

(
d

δ
In +XΦXT

)−1

y,

we obtain

Σ
− 1

2
z

(
ZΣ
− 1

2
z

)†(
y − Za0

)
+ a0 =

Σ−1
z

(
ΣzxΦXT +ZT

(
ZΣ−1

z ZT
)−1(d

δ
In+XΦXT−ZΣ−1

z ΣzxΦXT
))(d

δ
In+XΦXT

)−1

y.
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A.12 Random features example

We illustrate the test error of the random features model x 7→ fa(x) = aTσ(Θx/
√
d) for the optimal

response-linear achievable interpolator, faO , with

aO=Σ−1
z

(
ΣzxΦXT +ZT

(
ZΣ−1

z ZT
)−1(d

δ
In+XΦXT−ZΣ−1

z ΣzxΦXT
))(d

δ
In+XΦXT

)−1

y

in comparison to the test error for the minimum-norm interpolator a`2 = Z†y on a standard example.
Let xi ∼ Unif(Sd−1(

√
d)) and Θ ∈ RN×d be randomly initialized such that the rows of Θ satisfy

Θi ∈ Sd−1(
√
d). Here, Sd−1(

√
d) is the sphere with radius

√
d in Rd. We numerically compute Σz =

Ex̃(σ(Θx̃/
√
d)σ(Θx̃/

√
d)T ) and Σzx = Ex̃(σ(Θx̃/

√
d)x̃T ) by sampling from Unif(Sd−1(

√
d))

and use the true signal-to-noise ratio δ. We observe, as expected, that faO generalizes better than fa`2 .
This is so even for large γ = bN/dc, where Mei and Montanari (2019) showed that, for high-enough
signal-to-noise ratio, the test error of the minimum-norm interpolator converges to the test error of the
optimally-tuned ridge regression estimator in the limit as N/d→∞ (under certain assumptions).
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Figure 7: Plot of test error of f ∈ {fa`2 , faO} for γ = bN/dc when xi ∼ Unif(Sd−1(
√
d)) with

r2 = 5, σ2 = 1, bn/dc = 3, n = 2000.
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