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Abstract

LLMs are becoming increasingly capable and001
widespread. Consequently, the potential and002
reality of their misuse is also growing. In003
this work, we address the problem of detect-004
ing LLM-generated text that is not explicitly005
declared as such. We present a novel, general-006
purpose, and supervised LLM text detector,007
SElected-Next-Token tRAnsformer (SENTRA).008
SENTRA is a Transformer-based encoder009
leveraging selected-next-token-probability se-010
quences and utilizing contrastive pre-training011
on large amounts of unlabeled data. Our exper-012
iments on three popular public datasets across013
24 domains of text demonstrate SENTRA is014
a general-purpose classifier that significantly015
outperforms popular baselines in the out-of-016
domain setting.017

1 Introduction018

The problem of determining whether a text has019

been generated by an LLM or written by a human020

has been widely studied in both academia (Tang021

et al., 2024) and industry. Several commercial-022

level automated text detection systems have been023

developed, including GPTZero (Tian and Cui,024

2023), Originality (Originality.AI, 2025), Sapling025

(Sapling AI, 2025), and Reality Defender (Real-026

ity Defender, 2025). Although significant progress027

has been made in detecting LLM-generated text028

over the past several years, these systems remain029

far from perfect and are often unreliable. A ma-030

jor limitation is their brittleness: they can perform031

well on certain types of LLM-generated text but032

fail catastrophically in other cases (Dugan et al.,033

2024). This issue is particularly pronounced when034

operating in a real world scenario, where models035

must handle out-of-domain (OOD) data, different036

LLM generators, or various LLM "attacks" (Dugan037

et al., 2024; Zhou et al., 2024). Therefore, it is038

crucial to develop more generalizable methods that039

deliver reliable performance across these settings.040

The probability of a document under and LLM’s 041

model can be measured by auto-regressively feed- 042

ing the document’s tokens into the LLM and ob- 043

serving the predicted probabilities for each token. 044

This process produces a sequence of values called 045

selected-next-token-probabilities (SNTP) that has 046

been extensively used in prior work on LLM- 047

generated text detection (Guo et al., 2023; Hans 048

et al., 2024; Verma et al., 2024). These prior works 049

primarily rely on either heuristics (handcrafted 050

functions) applied to SNTP sequences or linear 051

models trained on expert-derived features (Hans 052

et al., 2024; Verma et al., 2024). In contrast, our 053

proposed approach encodes SNTP sequences us- 054

ing a Transformer model pre-trained on unlabeled 055

data, leveraging the expressivity of Transformers 056

to directly learn a representation of the probability 057

that a single or multiple LLMs assign to tokens in a 058

document. More specifically, we propose SElected- 059

Next-Token tRAnsformer (SENTRA), a method for 060

detecting LLM-generated text that directly learns 061

a detection function in a supervised manner from 062

SNTP sequences. This method utilizes a novel 063

Transformer-based architecture with a contrastive 064

pre-training mechanism. The learned representa- 065

tion can be fine-tuned on labeled data to create a su- 066

pervised model that distinguishes LLM-generated 067

texts from human-written texts. 068

For the LLM-text-detection task, supervised de- 069

tectors have been shown to generalize poorly out- 070

side the training distribution (Dugan et al., 2024). 071

Prior supervised methods typically leverage raw to- 072

kens as input and tend to overfit to token selections 073

in a document. Heuristic or linear models on SNTP 074

input have been shown to generalize well, but these 075

simple models lack the expressivity to fully exploit 076

the information in the SNTP sequences. Our SEN- 077

TRA network addresses this issue by learning gen- 078

eralizable functions on SNTP. We show empirically 079

that the supervised method presented in this paper 080

generalizes to unseen domains better than both su- 081
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pervised and unsupervised baselines by leveraging082

our proposed Transformer-based architecture, thus083

demonstrating greater generalization to distribution084

shifts.085

In this paper, we demonstrate the following:086

• Detectors utilizing SENTRA as their encoder087

generalize well to domains outside of the training088

distribution(s).089

• Contrastive pre-training of SENTRA leads to im-090

proved generalization results on new domains.091

• SENTRA outperforms all studied baselines in092

out-of-domain evaluations on three widely used093

benchmark datasets.094

Because of the number of possible domains, im-095

proving out-of-domain generalization is the most096

important task to achieve LLM generated text de-097

tection in the wild.098

2 Related Work099

With the rise of LLMs, significant research has100

been conducted on accurately detecting text gener-101

ated by these models (Tang et al., 2024). At a high102

level, these detectors can be categorized into three103

approaches: watermarking, unsupervised (or zero-104

shot) detection, and supervised detection. Water-105

marking generally relies on the LLM deliberately106

embedding identifiable traces in its output (Liu107

et al., 2025). In this work, we focus on the general108

detection problem, including cases involving non-109

cooperative LLMs; therefore, we do not consider110

watermarking as a point of comparison. Unsuper-111

vised methods typically leverage metrics computed112

by an LLM on the target document. These meth-113

ods can be further divided into white-box detection,114

where the candidate LLM is known (Mitchell et al.,115

2023), and black-box detection, where the candi-116

date LLM is unknown (Tang et al., 2024). Given117

our focus on the general detection problem, we pri-118

oritize black-box detection methods. Supervised119

methods, on the other hand, involve collecting a120

corpus of human-written and LLM-generated text121

samples, which are then used to train the detection122

models (Verma et al., 2024; Soto et al., 2024).123

Selected-next-token-probabilities (SNTP) have124

been widely used for LLM detection in both white125

and black box settings (Guo et al., 2023; Hans et al.,126

2024; Verma et al., 2024). Perplexity (Jelinek et al.,127

1977) is a commonly used metric to evaluate an128

LLM’s ability to model a given dataset. In the con-129

text of AI detection, a lower perplexity score on130

a document indicates an LLM "fits" a document 131

and this indicates a higher likelihood the document 132

was LLM-generated. Conversely, a higher perplex- 133

ity score suggests the LLM’s probability model 134

does not fit or accurately represent the candidate 135

text, implying a lower likelihood that the text was 136

generated by the LLM (Guo et al., 2023). 137

Some detectors use multiple sequences of SNTP 138

for the detection task (Verma et al., 2024; Hans 139

et al., 2024). Verma et al. (2024) leveraged SNTPs 140

from two Markov models, along with an LLM’s 141

SNTP, extracted features, and a forward feature 142

selection scheme as inputs to a linear classifier. In 143

contrast to Guo et al. (2023), Hans et al. (2024) 144

argued that relying solely on the perplexity score 145

for LLM-generated content detection can be mis- 146

leading. Although human-authored text generally 147

results in higher perplexity, prompts can signifi- 148

cantly influence perplexity values. The authors 149

highlighted the "capybara problem", where the ab- 150

sence of a prompt can cause an LLM-generated 151

response to have higher perplexity, leading to false 152

detections. They addressed this issue by introduc- 153

ing cross-perplexity as a normalizing factor to cali- 154

brate for prompts that yield high perplexity. 155

DetectGPT is an unsupervised method based on 156

the idea that texts generated by LLMs tend to "oc- 157

cupy negative curvature regions of the model’s log 158

probability function" (Mitchell et al., 2023). The 159

method generates perturbations of the sample text 160

using a smaller model and compares the log proba- 161

bility of the sample text to that of the perturbations. 162

Fast-DetectGPT replaces the perturbations in De- 163

tectGPT with a more efficient sampling step (Bao 164

et al., 2024). Nguyen-Son et al. (2024) observed 165

that the similarity between a sample and its counter- 166

part generation is notably higher than the similarity 167

between the counterpart and another independent 168

regeneration. They demonstrated that this differ- 169

ence in similarity is useful for detection. 170

The most common supervised baseline for LLM- 171

generated text detection is a RoBERTa classifier 172

(Liu et al., 2019) trained on a corpus of labeled 173

text, where each document is marked as either 174

human-written or LLM-generated. Several stud- 175

ies have expanded on this approach to supervised 176

text-based classification. Yu et al. (2024) trained 177

a feed-forward classifier with two hidden layers 178

using intrinsic features derived from Transformer 179

hidden states, determined via KL-divergence. Tian 180

et al. (2024) address the challenge of detecting 181

short texts by treating short samples in the training 182
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Figure 1: SENTRA leverages the selected-next-token-probabilities from two frozen LLMs. These two sequences
of logits are concatenated into a vector. Each of these vectors are projected to the dimension of the bi-directional
Transformer.

corpus as partially "unlabeled". Hu et al. (2023)183

employed adversarial learning to improve the ro-184

bustness of their RoBERTa-based classifier against185

paraphrase attacks.186

Several publications have explored contrastive187

training for the LLM detection task (Bhattacharjee188

et al., 2023, 2024; Soto et al., 2024; Guo et al.,189

2024). These studies use contrastive pre-training190

for a text Transformer, which is chosen to be191

RoBERTa (Liu et al., 2019) in many cases, to guide192

the network toward a representation more useful193

for LLM-generated text detection. Furthermore,194

many prior contrastive training strategies focus on195

identifying stylometric features (Soto et al., 2024;196

Guo et al., 2024), while other studies extract stylo-197

metric features directly and train classifiers using198

those features (Kumarage et al., 2023a). Rather199

than focusing on text representations, our method is200

mainly designed to produce useful SNTP represen-201

tations and, thus, proposes a different contrastive202

pre-training scheme that compares textual represen-203

tations with those of the SNTP Transformer.204

However, SNTP and supervised methods have205

been shown, both intuitively and empirically, to206

struggle with generalization to unseen domains (Li207

et al., 2024; Roussinov et al., 2025). For instance,208

Lai et al. (2024) applied adaptive ensemble algo-209

rithms to enhance model performance in OOD sce-210

nario. Meanwhile, Guo et al. (2024) and Soto et al.211

(2024), recognizing the limited number of widely212

adopted general-purpose AI assistants, proposed213

to train an embedding model to learn the writing214

style of LLMs, and thereby improving the detection215

accuracy.216

Prior work has shown SNTP to be an effective in-217

put for identifying LLM generated text (Guo et al.,218

2023; Hans et al., 2024; Verma et al., 2024), but219

they rely on relatively simple metrics or heuris-220

tics. In this paper, we propose a Transformer-based 221

SENTRA model that learns a representation of 222

SNTP sequences used for more effective training 223

of detection models that better generalize to unseen 224

domains. 225

3 Methodology 226

3.1 Overview of the SENTRA Method 227

Consider a document t consisting of an input se- 228

quence of T tokens t = (t1, t2, · · · , tT ). Assum- 229

ing an LLM has parameters θ, the probability of 230

document t given this LLM can be specified as 231

P (t1, t2, · · · , tT |θ) =
T∏
t=1

qi(θ) (1) 232

where 233

qi(θ) = P (ti | t1, t2, · · · , ti−1; θ) (2) 234

is the probability of token ti given the pre- 235

ceding tokens (t1, t2, · · · , ti−1). We denote 236

the observed sequence of selected-next-token- 237

probabilities (SNTP) as 238

q(θ) = (q1(θ), q2(θ), · · · , qT (θ)) . (3) 239

It is common, and done in this work, to use the 240

log representation of these sequences 241

ℓi(θ) = − log qi(θ) (4) 242

where ℓ is the log of the SNTP sequences. 243

Prior work, reviewed in Section 2, has proposed 244

various heuristic functions on these sequences that 245

are useful in detecting LLM-generated text (Guo 246

et al., 2023; Hans et al., 2024). SENTRA replaces 247

these heuristic functions on SNTP sequence(s) with 248

a neural network, as shown in Figure 1 illustrating 249

3



Figure 2: Pre-training: the outputs of SENTRA and a frozen text encoder go through linear layers, (Ws and Wl)
respectively, and normalization before a matrix multiplication (matmul) operation to produce the similarity matrix
M . Blue and orange blocks indicate trainable and frozen components respectively.

our proposed method. In particular, we leverage k250

LLMs, each with parameters θ(k) to produce SNTP251

sequences ℓ(k) and for a candidate document with252

T tokens using process in Equation 2. The k se-253

quences are concatenated to form input sequence254

x. Note that in Figure 1, k = 2.255

Instead of token embeddings often seen in Trans-256

former architectures (Devlin et al., 2019), each257

token-indexed representation xt ∈ x is indepen-258

dently projected using a fully connected layer.259

ht = f(Wxt + b) + Zt (5)260

where h is the dense embedding representation, f261

is the ReLU activation function, W is the weight262

matrix, b is the bias, and Zt are Z ∈ RT×D learned263

positional embeddings. This transformation re-264

sults in a representation of size T ×D for a single265

document. Note a learned [CLS] representation266

h[CLS] ∈ RD is pre-pended to the sequence be-267

fore the positional embeddings are applied. This268

representation ht is passed through a bi-directional269

Transformer (Devlin et al., 2019) Q, as shown in270

Figure 1.271

The output of SENTRA is a learned representa-272

tion over SNTP, capturing the probability assigned273

by two LLMs to the tokens in a document. For clas-274

sification, we use the representation at the [CLS]275

token and append a classification head. This Trans-276

former produces our SENTRA representation Rl277

over SNTP sequences.278

Rl = Q(h) (6)279

where Rl is a D dimensional representation of280

the document over the token length T .281

In summary, SENTRA is the first Transformer-282

based encoder to systematically learn a useful283

representation of SNTP sequences. Similar to284

many Transformer-based approaches (Devlin et al.,285

2019; Radford et al., 2021), that have traditionally286

used different modalities of input information, we 287

demonstrate in Section 3.2 that our method can 288

leverage large quantities of unlabeled data to en- 289

hance this learned representation. 290

3.2 SENTRA Contrastive Pre-Training 291

We further explore the pre-training of SENTRA 292

using unlabeled text data and demonstrate in Sec- 293

tion 4.4 that it significantly improves SENTRA’s 294

performance. Notably, this pre-training scheme is 295

reminiscent of CLIP (Radford et al., 2021). Figure 296

2 illustrates our concept for pre-training SENTRA. 297

We leverage off-the-shelf, pre-trained text represen- 298

tations to help SENTRA learn a useful representa- 299

tion of SNTP sequences. A document is encoded 300

using both a pre-trained text encoder (Devlin et al., 301

2019; Liu et al., 2019) and our SENTRA network, 302

producing representations Rl and Rs. These repre- 303

sentations are projected to a joint embedding space, 304

Ue and Se, using fully connected layers Cl and Cs 305

for the text and SNTP representations respectively. 306

Ue = Cl(Rl)

Se = Cs(Rs)
(7) 307

After applying L2 normalization to Ue and Se to 308

control for scaling, we then compute a comparison 309

matrix M 310

M = (UeS
T
e )e

r (8) 311

where r is learned temperature scalar. 312

The two encoders learn to match representations 313

of the same document within a batch B. Employing 314

the contrastive learning objective, L = Ls+Ll
2 315

Ll = − 1

n

n∑
i=1

log

(
exp(Mii)∑n
j=1 exp(Mij)

)
(9) 316

Ls = − 1

n

n∑
j=1

log

(
exp(Mjj)∑n
i=1 exp(Mij)

)
(10) 317
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we then minimize the cross-entropy loss over the318

columns (text-to-SNTP), and rows (SNTP-to-text)319

of the comparison matrix M , using the ground truth320

text-SNTP pairings in the batch, y = 0, 1, ...B − 1.321

The pre-training scheme effectively enables322

SENTRA to produce representations that align with323

those generated by the frozen text encoder, thereby324

yielding more useful representations of the ℓk=1325

and ℓk=2 sequences.326

In (Radford et al., 2021)’s work, the authors327

jointly trained text and image encoders from328

scratch. Unlike CLIP, which deals with text and329

images, we focus solely on text and on pre-training330

only the SENTRA SNTP encoder. To do this, we331

freeze a pre-trained text encoder and train only332

SENTRA and the contrastive embedding projec-333

tions.334

3.3 Implementation335

We implement our SENTRA model with eight at-336

tention heads, eight layers, and a hidden dimension337

of 768 for a total of 57M parameters. The Trans-338

former architecture and positional embeddings fol-339

low the same definitions as in BERT (Devlin et al.,340

2019). Before pre-training, the SENTRA parame-341

ters are randomly initialized. The frozen text en-342

coder used for contrastive pre-training is initialized343

from RoBERTa (Liu et al., 2019). SENTRA is pre-344

trained on a 600K sample of Common Crawl data345

from RedPajama (Weber et al., 2024). Pre-training346

is conducted for 20 epochs with a batch size of347

256 and a maximum token length of 64. We then348

continue contrastive training for 10 epochs with a349

batch size of 128 and a maximum token length of350

512 to pre-train the later position embeddings. The351

peak learning rate was set to 1e−4 for both phases.352

We use the AdamW (Loshchilov and Hutter, 2019)353

optimizer with a weight decay of 1e− 2 and set the354

contrastive learning temperature to 0.007 (Chen355

et al., 2020). During fine-tuning, we initialize SEN-356

TRA from the pre-trained model, use a learning357

rate of 1e− 4, a weight decay of 1e− 2, and apply358

early stopping with a patience of two epochs on a359

validation dataset.360

As shown in Figure 1, we implemented SEN-361

TRA with two SNTP sequences and therefore k =362

2. Following Binoculars (Hans et al., 2024), we363

use Falcon-7B and Falcon-7B-Instruct (Almazrouei364

et al., 2023) to produce these sequences. We used a365

sequence of two SNTP because Binoculars showed366

it is useful for the detector to compare both SNTP,367

and we used the Falcon models specifically because368

Binoculars showed they worked well (Hans et al., 369

2024). During SENTRA training, the SNTP se- 370

quences are precomputed and cached. At inference, 371

the computational complexity is dominated by the 372

Falcon models. Because we use the same LLMs as 373

Binoculars (Hans et al., 2024) and our SENTRA 374

encoder is small, our method has the same order 375

of complexity as Binoculars. See Appendix B for 376

additional details. 377

We will release our SENTRA implementation 378

and pre-trained model. 379

4 Experiments 380

4.1 Datasets 381

If we define text similar to the training data distribu- 382

tion as in-domain and text that is dissimilar as out- 383

of-domain, it is well established supervised LLM 384

detection methods perform significantly better in- 385

domain than out-of-domain (Dugan et al., 2024). 386

However, a model designed for LLM-generated 387

text detection in real world scenarios will inevitably 388

encounter out-of-domain texts. For this reason, this 389

work focuses on out-of-domain experiments, where 390

key subsets of data are withheld from the training 391

dataset. 392

To evaluate the effectiveness of our proposed 393

method, we used three publicly available datasets: 394

RAID (Dugan et al., 2024), M4GT (Wang et al., 395

2024a) and MAGE (Li et al., 2024), focusing ex- 396

clusively on English-language data. 397

RAID: The full RAID dataset contains over 6 398

million human- and LLM-generated texts spanning 399

8 domains, 11 LLM models, multiple decoding 400

strategies, penalties, and 11 adversarial attack types. 401

We down-sampled it to 500K instances before per- 402

forming out-of-domain split sampling. With the 403

included attacks, the RAID dataset also assesses 404

the effectiveness of different supervised baseline 405

methods against adversarial attacks under the in- 406

attack setup. 407

M4GT: An extension of M4 (Wang et al., 408

2024b), the M4GT dataset is a multi-domain and 409

multi-LLM-generator corpus comprising data from 410

6 domains, 9 LLMs, and 3 different detection tasks. 411

MAGE: The MAGE dataset covers 10 content 412

domains, with data generated by 27 LLMs using 3 413

different prompting strategies. It is specifically de- 414

signed to assess out-of-distribution generalization 415

capability. We use the "Unseen Domains" evalua- 416

tion from (Li et al., 2024). 417

Each dataset is further split into training, val- 418
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idation and test sets. For MAGE, we used the419

published split. To mitigate the label imbalance420

problem, the train and validation splits are balance-421

sampled to ensure an equal number of human- and422

LLM-generated texts. This was achieved by down-423

sampling the majority class to match the size of the424

minority class within split. Addressing this imbal-425

ance is crucial for two reasons: 1) the percentage426

of LLM-generated text is over 97% in the RAID427

dataset by design; 2) across the three datasets, the428

proportion of LLM-generated text varies signifi-429

cantly. The average train and validation set sizes430

show how much data went into the training of the431

supervised methods while ensuring class balance,432

providing a clear comparison to the total dataset433

size. The MAGE dataset has significantly shorter434

texts and this adds difficulties to the detection task435

(Tian et al., 2024; Fraser et al., 2024).436

Beyond out-of-domain evalution, we further as-437

sessed our method in an out-of-LLM (OOLLM)438

setup using MAGE’s out-of-LLM testbed which439

contains 7 LLM splits. Table 4 contains detailed440

statistics on the evaluation datasets. For fair com-441

parison across methods, we use the first 512 tokens442

from each document in all datasets.443

4.2 Baseline Methods444

We evaluated and compared the performance of our445

approach against multiple existing methods, includ-446

ing zero-shot, embedding-based, and supervised447

detectors. For zero-shot, we selected perplexity448

(Guo et al., 2023), Fast-DetectGPT (Bao et al.,449

2024), and Binoculars (Hans et al., 2024) detec-450

tors. For embedding-based detectors, we selected451

UAR (Soto et al., 2024) and evaluated both its452

Multi-LLM and Multi-domain models. For super-453

vised detectors, we chose RoBERTa (Liu et al.,454

2019) with direct fine-tuning, Ghostbuster (Verma455

et al., 2024) which trains a logistic regression clas-456

sifier on forward-selected crafted log-probability457

features, and Text Fluoroscopy (Yu et al., 2024)458

which utilizes intrinsic features. For RoBERTa, we459

used the same settings as the fine-tuning of SEN-460

TRA: a learning rate of 1e− 4, a weight decay of461

1e− 2, and a patience of two epochs.462

We used Falcon-7B and Falcon-7B-Instruct463

across all baseline methods that required LLMs,464

except for Fast-DetectGPT where we followed its465

black-box setting. Appendix C provides a detailed466

description of the setup, assumptions and modifica-467

tions made for each baseline method.468

We compared the baseline methods mentioned469

above with our proposed methods. We present 470

results from two SENTRA encoder variations, R- 471

SENTRA and SENTRA. R-SENTRA has all non- 472

LLM weights in SENTRA encoder initialized at 473

random (without pre-training), whereas the full 474

SENTRA model has those weights pre-trained as 475

described in Section 3.3. 476

Interestingly, prompting an LLM to do the LLM- 477

text detection task is not well studied and does 478

not appear in standard benchmarking work (Dugan 479

et al., 2024; Wang et al., 2024b; Li et al., 2024). In 480

the appendix D, we performed a small case study 481

to evaluate how a SOTA LLM, GPT4-o (OpenAI 482

et al., 2024a), and a reasoning model, o1 (Ope- 483

nAI et al., 2024b), could perform on a sample of 484

the OOD datasets. We were unable, due to the 485

high cost of these APIs, to run the full evaluation 486

datasets through these models and therefore chose 487

to randomly sample from the full datasets and per- 488

form a fair comparison on the smaller test sets. The 489

evaluation results for the GPT4-o and o1 LLMs 490

and their comparison with SENTRA performance 491

are reported in Appendix D. As Table 10 shows, 492

GPT-4o shows little detection skill. o1 was able to 493

detect reasonably well on some datasets, but not as 494

well as SENTRA. This case study shows a full and 495

robust evaluation of LLM performance is needed 496

for the task of LLM-text detection, including using 497

full instead of sampled datasets, exploring alterna- 498

tive prompting strategies, and other comprehensive 499

experimental settings. Since this analysis is beyond 500

the scope and budget of this work, we defer it as 501

the topic of future research. 502

4.3 Ablation Study 503

Table 1 shows the effect of pre-training SENTRA 504

on all datasets. r-SENTRA is the "raw" SENTRA 505

showing the architecture’s performance without 506

pre-training on the M4GT dataset. Across the four 507

datasets, the average and worst-case performance 508

over the domains was increased after pre-training. 509

This shows the contrastive pre-training method pre- 510

sented in Figure 2 is an effective method for im- 511

proving SENTRA as an encoder for the LLM text 512

detection. 513

Table 2 presents an ablation study on SENTRA 514

components. Rows 2 and 3 of Table 2 show the 515

AUROC performance metric after removing each 516

of the two LLMs used to create SENTRA’s SNTP 517

input (see Figure 1). Rows 4 and 5 of the table 518

show the results when the Falcon-7b models (Al- 519

mazrouei et al., 2023) are replaced by different 520
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RAID-OOD M4GT-OOD MAGE-OOD MAGE-OOLLM

Avg W Avg W Avg W Avg W

r-SENTRA 90.9 85.5 92.8 83.9 93.8 84.6 93.5 89.9
SENTRA 92.5 87.0 93.0 87.1 94.2 86.0 93.6 88.0

Table 1: Effect of Pre-training on SENTRA performance. Results are the average (Avg) and worst (W) AUROC
across the domains in the evaluation.

Avg W
r-SENTRA 92.8 83.9

− Base LLM 89.4 81.8
− Instruct LLM 88.1 74.1

− Falcon + Qwen-2.5-3b 89.3 75.0
− Falcon + Gemma-3-1b 91.2 82.7

Table 2: Ablation Study. Results show the average (Avg)
and worst (W) domain AUROC on the M4GT dataset.
The top section, r-SENTRA, is our method without
pre-training. The second section shows the effect of
dropping each of the two frozen LLMs. The last section
shows the effect of swapping the Falcon-7b models for
different pairs of LLMs.

pairs of LLMs: Qwen-2.5-3b (Qwen et al., 2025)521

and Gemma3-1b (Team et al., 2025). From the522

results, we can see that Gemma3-1b (Team et al.,523

2025) is competitive with Falcon-7b, and could be524

an alternative for more compute constrained envi-525

ronments. These choices in LLMs are by no means526

an exhaustive search, and this ablation shows SEN-527

TRA can work with other LLM pairs while echoing528

Binocular’s result showing Falcon-7b is particu-529

larly effective (Hans et al., 2024).530

4.4 Results531

We measure performance of all the methods de-532

scribed in Section 4.2 on three out-of-domain and533

one out-of-LLM evaluation, and the average and534

worst-case AUROC results are presented in Table535

3. For the supervised methods, these evaluations536

assess how well the LLM text detectors perform537

in real world scenarios, where data distributions538

differ from the training distribution. Detectors that539

remain more invariant across these evaluations are540

considered more robust to changes and variations in541

data, thus showing better generalization to unseen542

domains and generators.543

Methods that are not zero-shot or linear models544

are inherently more stochastic; therefore, the UAR,545

RoBERTa, and SENTRA methods were ran over546

three random seeds. The main results in Table 3 547

show the mean over these seeds. Mean and stan- 548

dard deviation over the seeds across all domains 549

and evaluations are shown in Appendix A. On each 550

evaluation, our performance metric is the mean or 551

minimum over the domains. For each method, this 552

requires training a separate model for each random 553

seed, each domain, and each evaluation. Because 554

of the combinations of methods, seeds, domains, 555

and datasets, each additional run becomes very ex- 556

pensive, and therefore, we were limited to three 557

runs on each evaluation. 558

Table 3 presents performance of different base- 559

lines measured by AUROC across different OOD 560

test data for the RAID, M4GT and MAGE datasets 561

(columns RAID-OOD, M4GT-OOD and MAGE- 562

OOD in Table 3 respectively) and for the OOLLM 563

test data for the MAGE dataset (column MAGE- 564

OOLLM in the table). The top section of Table 3 565

shows the performance of label-dependent methods 566

while the second section shows the performance of 567

heuristic methods. 568

Table 3 shows that SENTRA outperformed all 569

the baselines on average and in the worst case 570

across the three OOD and one OOLLM evaluations. 571

SENTRA achieved average AUROC performance 572

improvements of 1.8%, 5.4% and 6.7% for RAID 573

(Dugan et al., 2024), M4GT (Wang et al., 2024a) 574

and MAGE (Li et al., 2024) out-of-domain datasets 575

respectively, as compared to the second-best per- 576

forming baseline. For the OOLLM evalution, SEN- 577

TRA showed a 7.5% increase over the next best 578

baseline. These results show SENTRA serves as a 579

generalizable encoder for LLM detection models 580

when one considers likely OOD or OOLLM dis- 581

tribution shifts. These results show, in the likely 582

event your detector encounters a domain outside 583

the training distribution, we expect SENTRA to 584

have the best expected performance and best worst- 585

case performance on those unseen domains. 586

Since LLMs became increasingly available and 587

their usage has surged, interest in detection tools, 588

such as those presented in this paper, has grown 589
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RAID-OOD M4GT-OOD MAGE-OOD MAGE-OOLLM

Avg W Avg W Avg W Avg W

RoBERTa [20] 90.9 84.4 88.2 82.8 88.3 74.4 87.1 69.9
Text-Fluoroscopy [42] 76.4 70.6 83.2 78.1 63.9 47.8 41.5 28.3
UAR-D [32] 81.7 71.4 75.3 63.9 63.4 40.5 71.7 65.8
UAR-L [32] 87.3 76.3 84.7 71.0 76.4 61.2 80.4 70.7
Ghostbuster [37] 84.7 74.1 87.8 73.3 79.2 65.0 68.5 34.3

PPL [9] 72.9 69.4 87.0 81.7 57.2 45.7 59.0 25.4
Binoculars [11] 82.0 79.4 89.1 79.0 61.7 52.9 61.8 14.7
Fast-DetectGPT [2] 78.6 75.6 87.4 79.1 63.0 54.9 37.9 2.8

SENTRA 92.5 87.0 93.0 87.1 94.2 86.0 93.6 88.0

Table 3: Average (Avg) and worst (W) out-of-domain AUROC across the domains or LLMs. Methods in the top
section are supervised while the methods in the second section are unsupervised. SENTRA is our method with
pre-training. Results for non-deterministic methods are averaged over three random seeds.

(Wu et al., 2023). At the same time, countermea-590

sures have emerged to attack these LLM text detec-591

tors, typically by altering LLM-generated text to592

elicit false negatives (Koike et al., 2024). Dugan593

et al. (2024) demonstrated many attacks can sig-594

nificantly degrade detector performance. In that595

study, the best open-source tool, Binoculars (Hans596

et al., 2024), exhibited much stronger performance597

on non-attacked data than on attacked data. For598

the unsupervised methods, (Guo et al., 2023; Hans599

et al., 2024; Bao et al., 2024), it is not immedi-600

ately clear how to adapt the approach to a known601

attack. In contrast, for the supervised methods, the602

adaptation strategy is straightforward: train on at-603

tacked data. A model that is robust to a known604

attack, like the common paraphrase attack, should605

be able to detect LLM generated text even if that606

attack appears in a new domain. The RAID-OOD607

(Dugan et al., 2024) dataset demonstrates this situa-608

tion where 11 attacks appear in the training and test609

sets. The results in Table 3 show SENTRA outper-610

formed other methods when training and evaluating611

in the out-of-domain scenario where known attacks612

are included.613

5 Conclusions614

In this paper, we proposed a novel general pur-615

pose supervised LLM text detector method SEN-616

TRA that is a Transformer-based encoder lever-617

aging SNTP sequences and utilizing contrastive618

pre-training on large amounts of unlabeled data.619

We show this supervised method acting on SNTP620

input outperforms previously considered heuristic621

functions and other methods that rely on text in-622

put. Since supervised detectors tend to perform 623

better on data that is similar to their training dis- 624

tributions (Dugan et al., 2024), it is essential to in- 625

clude a wide variety of domains when testing such 626

general-purpose detectors. Therefore, we tested the 627

performance of SENTRA on three public datasets 628

RAID, M4GT and MAGE containing a broad range 629

of different domains (24 in total) across various ex- 630

perimental settings and compared its performance 631

with eight popular baselines. We also evaluated 632

SENTRA and the baselines on a out-of-LLM eval- 633

uation. 634

We empirically demonstrated that SENTRA sig- 635

nificantly outperformed all baselines in our stud- 636

ied experimental settings. On our three evaluation 637

datasets, SENTRA outperformed all eight popular 638

baselines for the average and the worst-case OOD 639

scenarios. 640

These results show that SENTRA is a strong 641

method for training LLM text detectors that can 642

generalize well to unseen domains and LLM gen- 643

erators. Our ablation study showed performance 644

of SENTRA increases when two frozen LLMs 645

are used instead of one frozen LLM. We also 646

demonstrated our contrastive pre-training strategy 647

increased the performance of SENTRA on all out- 648

of-domain evaluations. Because SENTRA is better 649

able to handle these critical out-of-domain and out- 650

of-LLM settings, these results demonstrate SEN- 651

TRA is a general-purpose encoder that can serve 652

as a foundation for the LLM text detector models. 653
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6 Limitations654

In this work, we studied the effects of domain655

shifts on detection models. While these have sig-656

nificant impacts on detector performance, other657

factors can also influence results. Notably, prompt658

variation can have a large effect on detectors (Ku-659

marage et al., 2023b). Many LLM detection bench-660

mark datasets use prompt templates (Dugan et al.,661

2024) to generate their samples. However, these662

templates exhibit significantly less prompt variety663

than what a real-world detector is likely to en-664

counter. Benchmark datasets with a broader range665

of prompting strategies are needed to further assess666

the robustness of detection methods.667

We pre-trained our model on a relatively small668

sample of Common Crawl data. The volume of669

data and the amount of compute used for pre-670

training were small relative to what is typically671

used for foundation models (Liu et al., 2019; Rad-672

ford et al., 2021). It is very likely SENTRA673

could be significantly improved with additional674

pre-training on larger datasets.675

7 Ethical Considerations676

In this study, we did not observe any detector677

achieving perfect performance on any slice of data.678

Therefore, any detector will inherently make trade-679

offs between false positives and false negatives680

when deployed in real-world scenarios, such as681

plagiarism detection. Users of LLM detection tech-682

nology should be aware that these detectors are not683

perfect.684

LLM Acknowledgement: We used ChatGPT685

for generating first iterations of some software snip-686

pets. We also consulted ChatGPT on the phrasing687

of some points in the paper and for catching some688

grammatical errors.689
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A Additional Results and Experimental 1212

Notes 1213

The datasets used in this work were used for re- 1214

search purposes. This aligns with their intended 1215

use and licenses. The details of the datasets are 1216

shown in Table 4. 1217

Here we show the mean and standard deviation 1218

across three runs, (random seeds 42,43,44) for the 1219

methods that are not zero shot or logistic regres- 1220

sion based. Note there were three M4GT and four 1221

RAID samples where Ghostbuster could not make 1222

an inference due to the low number of tokens in the 1223

document. For this documents, we infilled a low 1224

prediction score indicating human prediction. For 1225

the RAID dataset, we used the Binoculars for each 1226

document released by (Dugan et al., 2024). 1227

B Computational Complexity 1228

LLM generators are computationally expensive. 1229

Unfortunately, methods that rely on SNTP inputs 1230

depend on LLM inference, making it the most 1231

costly component of all detection methods stud- 1232

ied in this work. However, SENTRA is a relatively 1233

small model with only eight Transformer layers, 1234

meaning that computational costs at inference are 1235

dominated by the production of SNTP inputs. Dur- 1236

ing training, we cache the SNTP sequences so that 1237

the LLMs are run only once per sample. SENTRA 1238

uses the same LLMs as Binoculars (Hans et al., 1239
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Dataset Size Domains LLMs Attks A.Tokens % LLM-Gen A.Train A.Val A.Test
RAID-OOD 500,000 8 11 11 712 97.16% 22,398 2,488 62,500
M4GT-OOD 267,863 6 14 0 471 67.6% 97,584 10,893 33,482
MAGE-OOD 430,630 10 - 0 267 34.86% 167,972 50,387 5,682
MAGE-OOLLM 314,817 - 7 0 267 31.92% 186,636 47,988 8,022

Table 4: Overview of datasets used in the study. Attks is the number of attacks included in the dataset. A.Tokens is
the average token length using the Falcon 1 tokenizer. A.Train, A.Val, and A.Test are the average train, validation,
test set sizes across all domain splits. The train and validation datasets are class balanced. LLM stats for MAGE-
OOD and domain stats for MAGE-OOLLM are not disclosed by the data authors.

abstracts books news poetry recipes reddit reviews wiki
RoBERTa 93.1±1.2 87.0±2.1 91.4±3.4* 95.2±1.3* 84.4±16.9 93.9±1.2* 90.2±2.3 91.8±2.8
Text-Fluor. 71.4±0.0 82.4±0.0 74.9±0.0 70.6±0.0 76.1±0.0 79.2±0.0 73.9±0.0 82.6±0.0
UAR-D 71.4±4.4 85.2±0.8 84.5±1.2 73.2±0.5 89.5±0.8* 82.4±0.3 84.9±1.1 82.3±0.2
UAR-L 89.6±2.0 91.1±0.2 89.8±0.4 76.3±2.6 85.3±1.2 88.8±0.7 88.1±0.4 89.3±0.5
PPL 69.7±0.0 76.8±0.0 69.4±0.0 73.9±0.0 69.6±0.0 76.6±0.0 75.8±0.0 71.3±0.0
Binoculars 83.2±0.0 84.3±0.0 80.2±0.0 83.5±0.0 79.4±0.0 83.2±0.0 82.1±0.0 80.2±0.0
Fast-DetectGPT 80.0±0.0 80.1±0.0 77.9±0.0 77.1±0.0 75.6±0.0 78.8±0.0 80.0±0.0 79.4±0.0
Ghostbuster 88.0±0.0 91.4±0.0 81.6±0.0 88.2±0.0 74.1±0.0 85.0±0.0 81.7±0.0 87.8±0.0
R-SENTRA 94.6±0.3 95.1±0.3* 88.4±0.5 92.5±2.2 85.5±0.9 91.7±0.1 87.8±0.5 91.8±0.3
SENTRA 95.1±0.1* 94.1±1.6 91.3±0.5 95.0±0.8 87.0±1.5 93.7±0.5 90.4±0.9* 93.2±0.7*

Table 5: Mean and standard deviation of the AUROC across random seeds on the RAID dataset.

2024), and because the cost of the SENTRA en-1240

coder is minimal compared to LLM inference, the1241

overall computational complexity of SENTRA is1242

roughly equivalent to that of the Binoculars method.1243

Refer to Table 9 for detailed number of parameters.1244

Pre-training took approximately 36 hours on a1245

GH200 GPU. We also fine-tuned RoBERTa and1246

SENTRA models on GH200 instances. Fine-tuning1247

for each data split too between .5 and 12 hours.1248

C Baseline Assumptions and Setups1249

This section details the assumptions and setups for1250

all baseline methods if we have made modifica-1251

tions.1252

For UAR, the original paper compares the dis-1253

tance between the input query and the closest1254

machine support query against the distance be-1255

tween the closest machine support query and the1256

closest human support query. Mathematically1257

speaking, given Q the input query, H the clos-1258

est human support query, and M is the seeded1259

machine support queries, the distance dQ =1260

minm∈M[d(Q,m), d(H,m)] is used as the predic-1261

tion. Though this allows dQ to be directly usable1262

for metric calculation, this is less trivial than a sim-1263

ple nearest neighbor classification where we cal-1264

culate the percentage of machine support queries1265

among k as the prediction. in our baseline, we em-1266

ployed the simple nearest neighbor approach with1267

k = 10 and cosine similarity distance measure. For1268

each domain, we randomly sampled 1,000 human 1269

and machine texts respectively to form the kNN 1270

seed corpus. We did not group texts into episodes 1271

and kept episode size of 1 due to the generally 1272

longer text lengths compared to twitter posts. 1273

For Text Fluoroscopy, we switched the model 1274

from gte-Qwen1.5-7B-instruct to Falcon-7B- 1275

Instruct to better align with other baselines by elim- 1276

inating the effect of model selection. With this 1277

change, we modified the input dimension to the 1278

feed forward network from 4096 to 4454 due to 1279

falcon models hidden state sizes. Despite the possi- 1280

bilities of under-training, we followed their imple- 1281

mentation and sampled 160 data points for training, 1282

and 20 for validation (during training). The test 1283

set metric at the earliest highest validation accu- 1284

racy was reported. We also optimized the feature 1285

selection script for more efficient batch processing. 1286

For Ghostbuster, we included a minimum accu- 1287

racy score improvement threshold of 1e−4 to avoid 1288

over-fitting and allow early stopping for MAGE 1289

dataset where we observed significantly more fea- 1290

ture selection iterations compared to the other two 1291

datasets. In the case of least square convergence 1292

failure (max_iter=1000) in Logistic Regression 1293

fitting, the current feature list is taken as the best 1294

features for evaluation. 1295
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arxiv outfox peerread reddit wikihow wikipedia
RoBERTa 97.8±0.3* 84.9±2.2 82.8±18.6 89.6±3.9 85.5±2.3 88.5±3.9
Text-Fluor. 84.7±0.0 84.8±0.0 89.2±0.0 83.9±0.0 78.1±0.0 78.3±0.0
UAR-D 73.3±6.7 83.9±0.2 65.7±1.0 86.1±1.0 63.9±0.6 78.9±2.2
UAR-L 93.8±1.2 87.6±0.6 87.1±0.4 80.3±1.1 71.0±2.4 88.4±0.7
PPL 83.6±0.0 85.7±0.0 94.2±0.0 89.7±0.0 81.7±0.0 87.1±0.0
Binoculars 93.1±0.0 82.6±0.0 90.5±0.0 93.8±0.0 79.0±0.0 95.4±0.0
Fast-DetectGPT 91.9±0.0 80.3±0.0 88.2±0.0 91.0±0.0 79.1±0.0 93.7±0.0
Ghostbuster 94.3±0.0 87.3±0.0 81.9±0.0 95.4±0.0 73.3±0.0 94.5±0.0
R-SENTRA 94.6±0.5 88.4±0.4* 94.9±0.2 97.7±0.3* 83.9±1.3 97.4±0.3
SENTRA 92.3±1.0 88.0±0.1 95.0±0.3* 97.7±0.2 87.1±1.7* 97.7±0.3*

Table 6: Mean and standard deviation of the AUROC across random seeds on the M4GT dataset.

cmv eli5 hswag roct sci_gen squad tldr wp xsum yelp
RoBERTa 94.8±1.0 92.9±0.7 87.4±4.2* 88.8±1.0* 84.3±6.5 93.3±1.0 85.7±5.1 90.3±1.5 74.4±3.4 91.3±1.6
Text-Fluoroscopy 62.1±0.0 61.9±0.0 69.5±0.0 71.6±0.0 79.1±0.0 53.3±0.0 73.2±0.0 56.5±0.0 47.8±0.0 64.3±0.0
UAR-D 80.2±1.8 74.4±1.7 63.5±2.3 61.5±2.5 56.5±4.7 59.6±3.4 60.1±1.7 67.8±3.3 40.5±0.9 70.3±0.4
UAR-L 90.1±0.7 81.9±0.7 61.2±2.4 73.5±1.0 80.6±1.7 76.1±0.8 66.3±2.8 88.2±0.9 69.0±1.9 77.5±1.3
PPL 57.9±0.0 61.4±0.0 73.8±0.0 61.2±0.0 49.4±0.0 48.3±0.0 62.9±0.0 59.4±0.0 45.7±0.0 51.9±0.0
Binoculars 71.0±0.0 70.2±0.0 59.3±0.0 52.9±0.0 59.7±0.0 55.3±0.0 63.4±0.0 67.2±0.0 57.6±0.0 60.5±0.0
Fast-DetectGPT 71.3±0.0 70.1±0.0 66.1±0.0 60.5±0.0 56.4±0.0 57.4±0.0 66.2±0.0 64.5±0.0 54.9±0.0 62.1±0.0
Ghostbuster 90.5±0.0 86.0±0.0 66.2±0.0 65.0±0.0 83.6±0.0 78.8±0.0 74.0±0.0 94.1±0.0 72.4±0.0 80.9±0.0
R-SENTRA 98.5±0.2 95.2±0.7 84.6±0.6 87.3±0.6 97.9±0.1* 94.1±0.3* 93.4±0.3 98.6±0.3 93.8±1.7 94.4±0.2
SENTRA 98.6±0.2* 95.4±0.4* 86.0±0.3 88.2±0.5 97.6±0.8 93.9±0.6 94.1±0.4* 98.9±0.1* 94.4±1.0* 95.1±0.2*

Table 7: Mean and standard deviation of the AUROC across random seeds on the MAGE-OOD dataset.

GLM130B _7B bloom_7b flan_t5_small gpt.3.5.trubo gpt_j opt_125m
RoBERTa 77.1±28.7 96.9±0.6* 94.6±1.3* 69.9±22.0 90.3±0.5 85.4±19.6 95.3±0.9*

Text-Fluoroscopy 28.3±0.0 35.7±0.0 42.4±0.0 55.7±0.0 39.0±0.0 41.2±0.0 48.4±0.0
UAR-D 80.4±1.3 70.5±0.6 75.3±0.8 66.3±1.1 70.3±1.8 73.3±0.9 65.8±1.3
UAR-L 82.8±0.6 71.4±0.7 83.9±0.5 70.7±0.6 77.4±0.6 92.3±0.2 84.4±1.2

PPL 91.9±0.0 92.8±0.0 41.8±0.0 35.7±0.0 90.5±0.0 25.4±0.0 35.1±0.0
Binoculars 94.7±0.0 94.8±0.0 48.1±0.0 52.3±0.0 95.2±0.0* 14.7±0.0 32.6±0.0

Fast-DetectGPT 3.8±0.0 2.8±0.0 54.5±0.0 53.1±0.0 7.6±0.0 85.8±0.0 57.8±0.0
Ghostbuster 88.8±0.0 79.8±0.0 78.1±0.0 54.5±0.0 65.7±0.0 78.1±0.0 34.3±0.0
R-SENTRA 96.8±0.2 93.9±0.9 92.5±0.8 89.9±0.6 93.3±0.3 96.4±0.3 91.5±1.0
SENTRA 97.2±0.3* 93.3±1.5 94.1±0.4 92.4±2.0* 92.6±1.4 97.5±0.5* 88.0±2.3

Table 8: Mean and standard deviation of the AUROC across random seeds on the MAGE-OOLLM dataset.
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Method Parameter Count
RoBERTa-base 124M
Text Fluoroscopy 7B (LLM) + 5.1M (FCN) ≈ 7B
UAR 82M
Perplexity 7B (LLM)
Binoculars 14B (2 LLMs)
Fast-DetectGPT 2.7B + 6B (2 LLMs) = 8.7B
Ghostbuster 7B (LLM) + N (LR, N « 7B) ≈ 7B
SENTRA 57M (training), 14B (inference)
R-SENTRA 57M (training), 14B (inference)

Table 9: Parameter count of all methods with the actual LLM(s) used in evaluation. LR stands for logistic regression,
FCN stands for fully connected network. For Ghostbuster, we observed N to be between 20 to 40.

D LLM Prompting Case Study1296

As part of our benchmarking, we evaluated Ope-1297

nAI’s proprietary models, gpt-4o-2024-08-061298

("4o") and o1-2024-12-17 ("o1"), by prompting1299

them directly to classify whether a given text was1300

written by a human or generated by an AI.1301

To control inference costs, we limited the evalua-1302

tion to 100 samples per domain/model on the same1303

datasets from OOD and OOLLM experiments. At1304

the time of writing, we estimate evaluating all sam-1305

ples would cost about $10,000 for GPT-4o and1306

$60,000 for o1. This inference cost is many or-1307

ders of magnitude more expensive than any other1308

method.1309

The system prompt used to obtain the label and1310

a confidence score is the following: "You are an1311

expert in identifying whether text was written by a1312

human or generated by an AI language model. You1313

are tasked to identify if a provided text is written1314

by a human or generated by an AI language model.1315

Return your answer on the first line as one word1316

only: ’Human’ or ’AI’. On the second line, pro-1317

vide a confidence score between 0 and 1. Do not1318

output anything else.". The returned confidence1319

score was interpreted as the model’s probability1320

of the predicted class, thus to compute AUROC1321

fairly, scores were flipped for predictions labeled1322

as "Human". The evaluation results are shown1323

in table 10 alongside with the SENTRA scores.1324

Due to the randomness arose from the reasoning1325

mechanism, we ran o1 model 3 times and averaged1326

the scores. For 4o model, we used temperature=0.1327

These result suggests that the reasoning model (o1)1328

is more capable of performing machine-generated1329

text detection and the standard 4o model, achieving1330

competitive performance on the RAID and M4GT1331

datasets. Nevertheless, our SENTRA model con-1332

sistently outperforms both 4o and o1 across all1333

datasets. 1334

E Hyper-parameter Selection 1335

For RoBERTa, we chose one domain from the 1336

MAGE dataset to tune the learning rate. RoBERTa 1337

was initialized from RoBERTa base for both the 1338

supervised baseline and during contrastive pre- 1339

training. With this learning rate, the RoBERTa 1340

diverged before the first epoch on one MAGE split 1341

and one RAID split. We then turned down the learn- 1342

ing rate for these two splits and reran RoBERTa, 1343

but the models still diverged. It is possible with 1344

additional tuning, RoBERTa could better fit these 1345

datasets, but we did not want to pay special atten- 1346

tion to the fine-tuning any one method. 1347

For SENTRA, we did a small search over the 1348

number of layers, {2,4,8}, for the CMV-MAGE 1349

data split by looking at the in-domain develop- 1350

ment loss. We found four layers to work best. 1351

We later found SENTRA had trouble fitting the 1352

in-distribution validation data of a data. We found 1353

that varying the LR and batch size on this dataset 1354

had no significant effect, so we kept the defaults 1355

of a LR of 1e − 4 and a batch size of 128 which 1356

were the defaults from RoBERTa. We then manu- 1357

ally tuned the pre-training model while looking at 1358

this in-distribution loss. We ultimately found that 1359

eight layers and and two pre-training phases pro- 1360

duced the best performance on this in distribution 1361

validation dataset. 1362
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Dataset 4o o1 SENTRA
RAID-OOD 79.5 90.0 91.1
M4GT-OOD 65.4 91.1 92.9
MAGE-OOD 75.1 78.4 92.9
MAGE-OOLLM 72.1 75.3 93.8

Table 10: AUROC scores for OpenAI models and SENTRA. Best score per dataset is bolded.
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