
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Serial section microscopy image inpainting guided by axial
optical flow
Anonymous Authors

ABSTRACT
Volume electron microscopy (vEM) is becoming a prominent tech-
nique in three-dimensional (3D) cellular visualization. vEM collects
a series of two-dimensional (2D) images and reconstructs ultra-
structures at the nanometer scale by rational axial interpolation
between neighboring sections. However, section damage inevitably
occurs in the sample preparation and imaging process, suffering
from manual operational errors or occasional mechanical failures.
The damaged regions present blurry and contaminated structure
information, even local blank holes. Despite significant progress
in single-image inpainting, it is still a great challenge to recover
missing biological structures, that satisfy 3D structural continuity
among sections. In this paper, we propose an optical flow-based
serial section inpainting architecture to effectively combine the
3D structure information from neighboring sections and 2D image
features from surrounding regions. We design a two-stage reference
generation strategy to predict a rational and detailed intermediate
state image from coarse to fine. Then, a GAN-based inpainting
network is adopted to integrate all reference information and guide
the restoration of missing structures, while ensuring consistent
distribution of pixel values across the 2D image. Extensive experi-
mental results well demonstrate the superiority of our method over
existing inpainting tools.

CCS CONCEPTS
• Computing methodologies→ Reconstruction.

KEYWORDS
Serial sectioning images; Image inpainting; Optical flow; Generative
adversarial networks

1 INTRODUCTION
Volume electron microscopy (vEM) plays a critical role in under-
standing biological structures across scales, revealing biological
complexity from the arrangement of organelles within cells, through
the tissues composed of cellular communities, to the structural
components of organisms [5]. vEM builds connections between
two-dimensional (2D) imaging series and three-dimensional (3D)
ultra-structures at the nanometer scale, according to high-precision
2D section alignment among an image stack and subsequent ratio-
nal axial interpolation between neighboring sections. Analyzing
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the reconstructed volume, vEM enables researchers to compre-
hensively interpret the intricate topology of organelles within the
crowded environments of a cell. However, section damage often
occurs during the preparation and imaging process inevitably, pre-
venting researchers from obtaining consistently high-resolution
volumes [22]. It is largely due to manual operational errors and
mechanical precision limitations, resulting in information missing
in local regions and further reducing the resolution of reconstructed
biological structures.

(A) (B) (C)

Figure 1: Some common examples of damaged sections
caused by (A) uneven staining, (B) imperfect serial sectioning,
and (C) suboptimal microscope settings.

The existence of section damage runs through the entire data ac-
quisition process, involving heavy-metal staining, serial sectioning,
and imaging. Different processes suffer specific image degrada-
tion patterns, but they all lead to invalid structural information
(shown in Figure 1). Uneven staining caused by imperfect sample
preparation greatly reduces the overall signal-to-noise ratio, and
accompanying cloud-like sediments cover most of the biological
structural areas. The blurred image greatly affects the contrast and
pixel intensities of the reconstructed volume. Low-precision section-
ing technique possibly generates sections with varying thicknesses,
and even "erases" some regions of abundant structural informa-
tion. The loss of section content undermines the foundation of
high-resolution detailed structure reconstruction. Moreover, the
erroneous or unstable microscope settings, such as probe dwelling
time, electron beam, and so on, similarly lead to discontinuous or
missing structures in a circular region. Under the collective influ-
ence of inevitable section damages, the reconstructed 3D volume
may experience an inconsistent resolution or visualization scale
across different across-sectional regions, severely interfering with
the subsequent analysis andmodeling. Although the above damages
introduce a relatively large range of unreliable structural signals,
abundant biological information remains in the section images. To
achieve higher resolution and present clearer structures, missing
information restoration in the damaged areas is becoming an urgent
demand in vEM reconstruction.

Benefiting from coherent 3D attributes in serial sections, many
works explore the utilization of information from neighbor sec-
tions to restore the damaged areas. CCPGAN [31] first proposes
to "copy" the most relevant patches from both the damaged im-
age and its neighboring image in the feature domain to recover

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the missing regions. It relies heavily on the search for structurally
similar regions, limiting its application scope to the repetition struc-
ture restoration with high-quality neighbor sections. Huang et al.
[11] utilizes the interpolation result between two neighboring sec-
tions to guide the restoration of missing contents. The introduction
of interpolation between sections preserves the axial continuity
of biological structures and extends the application range. How-
ever, the blurred interpolation patches neglect the 2D structural
consistency between the recovered content and undamaged parts.
ACCP-GAN [23] designs amissing structure detectionmodule to au-
tomatically determine the inpainted regions with arbitrary shapes.
Transformer-based network enables the ability to capture structural
similarity across input image stacks. Deng et al. [6] introduces a
unified image inpainting framework to restore the artifacts caused
by different image degradation. The interpolation result simply
estimated between neighboring sections cannot provide clear and
acceptable guidance for the subsequent inpainting module. In se-
rial section inpainting, the 3D structural continuity and 2D image
structural consistency are both the keys to rational and seamless
restoration. Unfortunately, the axial trends of biological structures
are non-trivial, without realistic ground truth images. The reference
of interpolation results between neighboring sections is inevitably
inconsistent with the damaged section, especially around the edge
of missing areas. This raises a great challenge to bridge the gap
between the reference image derived from 3D structural continuity
and the damaged section of realistic 2D biological structures.

Here, we propose a GAN-based vEM section inpainting network
called FlowInpaint, which estimates an intermediate state between
neighboring sections to guide the restoration of damaged regions.
Firstly, two neighboring images of the damaged section are fed into
an initial reference module to derive a plausible intermediate state
that satisfies the axial continuity of biological structures. Compared
to raw neighboring images, this intermediate state exhibits more
similar structures to those of the damaged section, thus significantly
reducing the complexity of subsequent optical flow estimation.
Then, the damaged section and the intermediate state are jointly
input into the refined reference module, aiming to generate credible
reference structures for the damaged regions. Finally, the GAN-
based guided inpainting module employs a Unet-like architecture
to extract multi-scale 2D image features from the reference image
and raw neighbor sections. The abundant 2D structural features
guide the rational restoration of missing structures, adhering to
the 2D structural consistency around the missing areas. Moreover,
a discriminator is used to ensure uniform pixel and noise value
distribution, providing seamless and clear structure recovery in the
inpainting regions. In summary, our main contributions are:

• We propose a novel vEM image inpainting framework called
FlowInpaint to recover damaged regions in serial sections,
considering both 3D structural continuity and 2D image
structural consistency.

• We design a two-stage reference image generation strategy
to estimate plausible biological structures in the inpainted
regions from coarse to fine. The initial reference is interpo-
lated between neighboring sections to preserve the axial 3D
continuity. The subsequent refined reference module warps
it to fit the realistic structures in the undamaged areas.

• We adopt a GAN-based image inpainting sub-network to
generate final seamless results. This sub-network makes
full use of multi-scale 2D image features from the reference
and ensures the structural consistency around the damaged
regions.

• We have conducted comprehensive experiments based on
the CREMI datasets to demonstrate the superiority of Flow-
Inpaint in serial section inpainting over existing methods.
Extensive ablation and analysis results further indicate the
stability of FlowInpaint in different imaging environments.

2 RELATEDWORK
Video frame interpolation and image inpainting are the key tech-
niques to exploring 3D structural continuity and 2D image struc-
tural consistency respectively.

2.1 Video Frame Interpolation
Video frame interpolation (VFI) aims to synthesize one or several
frames in the middle of two adjacent frames of the original video.
Traditional methods construct a series of explicit functions, such as
polynomial functions [14], B-spline functions [2], and so on, to fit
the changes of pixel values under the same plane coordinates. How-
ever, the biological structures perform elastic transformation in the
axial direction, making the correspondences of plane coordinates
unable to directly reflect the correspondences of structures.

With the development of deep learning, several convolutional
neural networks (CNN) based VFI methods are presented to cap-
ture structural changes in-between the original frames. Long et
al. [16] first attempt to use encoder-decoder architecture for the
direct intermediate frame generation. Niklaus et al. [17] propose
spatially-adaptive interpolation kernels to expand the receptive
field without the excessive introduction of parameters. Cheng et al.
[4] propose deformable separable convolution (DSepConv) to learn
deformable offsets and masks, which can further extract features
beyond the receptive field. These methods effectively restore the
overall contour structures but exhibit a limited ability to recover
more detailed or subtle structures. To trace the plausible motion
of detailed structures, optical flow-based approaches estimate dis-
placement for each pixel under the anti-folding constraints. Liu et
al. [15] predict the 3D voxel flow to warp the input frames based
on a trilinear sampling. DAIN [1] estimates the intermediate flow
as a weighted combination of bidirectional flow and then warps the
input frames using the adaptive warping layer. The above methods
successfully estimate accurate and acceptable motion states of two
input frames even under large displacement. However, in the serial
section image inpainting, the missing information areas greatly in-
fluence the estimation of optical flow, making it difficult to estimate
a reasonable deformation field directly from neighboring sections
to the damaged area.

2.2 Image Inpainting
Existing image inpainting approaches can be classified into sequential-
based algorithms and deep-learning based algorithms. Sequential-
based algorithms [7] search the best-matching patches of dam-
aged areas from the surrounding areas or given image database
and "paste" them into the appropriate positions. By performing
patch-wise computations, sequential-based approaches effectively
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Figure 2: The pipeline of FlowInpaint. Our model consists of the following three modules: (A) an initial reference module, (B) a
refined reference module, and (C) a guided inpainting module. The initial reference module estimates a intermediate state
image 𝐼 𝑖𝑛𝑡𝑒𝑟

𝑖
between two neighboring images 𝐼𝑖+1 and 𝐼𝑖−1. Then the refined reference module utilizes a multi-scale architecture

to gradually predict the optical flow
→
𝑓 (𝑖𝑛𝑡𝑒𝑟𝑖 , 𝑖) from the reference 𝐼 𝑖𝑛𝑡𝑒𝑟

𝑖
to damaged image 𝐼𝑖 . Finally, the guided inpainting

module aggregates the information from three reference images to fill the missing areas and generate the final inpainted result
𝐼𝑖 . In the training stage, a hybrid discriminator is adopted to ensure the consistency between inpainted content and known
regions.

transform the complex image inpainting task into a simple data-
base retrieval problem, whose key is the construction of similarity
measurement between patches.

Different from sequential-based algorithms, deep learning-based
methods have a strong ability to extract complex texture features
and establish pixel-level correspondences in the feature domain
[26]. Recently, the generative adversarial network (GAN) [9] has
emerged as a promising paradigm for clear and rational image con-
tent recovery. The introduction of discriminators effectively ensures
the consistent distribution of signal and noise values across the final
restored image. Inspired by the attention mechanism, contextual
attention [27] is proposed to depict the patch-based correlation be-
tween missing regions and background areas explicitly. Researchers
explore designing different feature extraction architectures to pro-
vide comprehensive feature descriptions of image patches or pixels.
AOT-GAN [29] adjusts the dilation rates of different dilated con-
volution layers to expand or shrink the receptive fields, offering
both large-range and small-range structural features. Quan et al.
[19] combine respective advantages of the convolution with small
receptive fields and large-scale attention mechanism to globally and
locally restore the missing information. Zhang et al. [32] introduce
semantic priors from specific pretext tasks to image inpainting.
Existing deep-learning based algorithms have exhibited powerful

abilities to preserve 2D structural consistency between missing and
background areas in natural image inpainting. However, in serial
section image inpainting, a reliable and high-resolution reconstruc-
tion of local structures depends crucially on the 3D axial structural
continuity. Wang et al. [25] fuse useful features of neighboring
images to reconstruct the intermediate image. Without information
from neighboring sections, the image inpainting from 2D images
alone cannot meet the requirements of downstream analysis tasks.

3 METHODOLOGY
In this section, we provide a detailed introduction to the FlowIn-
paint architecture as shown in Figure 2, which consists of three
main modules, i.e., (a) the initial reference module, (b) the refined
reference module, and (c) the guided inpainting module. The two
neighboring images 𝐼𝑖−1 and 𝐼𝑖+1 of the damaged images 𝐼𝑖 are
first input into the initial reference module to estimate an accept-
able intermediate state result 𝐼 𝑖𝑛𝑡𝑒𝑟

𝑖
. The 𝐼 𝑖𝑛𝑡𝑒𝑟

𝑖
is interpolated by

considering bidirectional optical flows between 𝐼𝑖−1 and 𝐼𝑖+1 and
exhibits more similar structures to the 𝐼𝑖 . Then the 𝐼 𝑖𝑛𝑡𝑒𝑟

𝑖
, together

with the 𝐼𝑖 and a binary mask𝑚, is fed into the refined reference
module to estimate the pixel displacement filed from 𝐼 𝑖𝑛𝑡𝑒𝑟

𝑖
to 𝐼𝑖 .

The Unet-like network helps to extend the deformation from the
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undamaged regions to the missing areas across scales. The final
reference image 𝐼𝑟𝑒 𝑓

𝑖
is acquired by warping the 𝐼 𝑖𝑛𝑡𝑒𝑟

𝑖
with the

estimated pixel displacement field. Finally, the GAN-base guided
inpainting module accepts the 𝐼𝑟𝑒 𝑓

𝑖
, 𝐼𝑖−1 and 𝐼𝑖+1 as guidance infor-

mation to restore the missing structures in 𝐼𝑖 . The discriminator
forces the 2D structural consistency around the missing regions
while the reference image provides 3D axial continuity constraints
of the internal structures.

3.1 Initial Reference Module
The initial reference module accepts two neighboring images 𝐼𝑖−1
and 𝐼𝑖+1 of damaged section 𝐼𝑖 to generate a stable intermediate
state 𝐼 𝑖𝑛𝑡𝑒𝑟

𝑖
. Classical interpolation techniques use functions to fit

the changes of pixel values of corresponding positions, unable to
trace the transformation of structures. Here, we adopt an optical
flow-based method raised by González-Ruiz et al. [8] to depict
the changes of axial structures between inputs 𝐼𝑖−1 and 𝐼𝑖+1. This

module first estimates two optical flows
→
𝑓 (𝑖 − 1, 𝑖 + 1) from 𝐼𝑖−1 to

𝐼𝑖+1 and
→
𝑓 (𝑖 + 1, 𝑖 − 1) from 𝐼𝑖+1 to 𝐼𝑖−1. Considering the structural

continuity, we assume that the biological structures are transformed
smoothly along the axial direction. Therefore, we can acquire two
candidate intermediate states by simply weighting on the estimated
optical flows as follows:

𝐼 𝑖𝑛𝑡𝑒𝑟𝑖,𝑖−1 = W(𝐼𝑖−1, 𝛼
→
𝑓 (𝑖 − 1, 𝑖 + 1)), (1)

𝐼 𝑖𝑛𝑡𝑒𝑟𝑖,𝑖+1 = W(𝐼𝑖+1, (1 − 𝛼)
→
𝑓 (𝑖 + 1, 𝑖 − 1)), (2)

whichW(𝑖, 𝑓 ) warps the image 𝑖 with a optical flow 𝑓 , and 𝛼 is a
weighting coefficient representing the transformation degree. In
this paper, we uniformly set the 𝛼 to 0.5, assuming that all sections
have the same thickness. Each candidate image exhibits the trend of
structure transformation from the source image effectively without
folding phenomenon. Finally, we fuse the two candidates to gener-
ate a bidirectional accessible state using the following weighting
strategy:

𝐼 𝑖𝑛𝑡𝑒𝑟𝑖 = 𝛼𝐼 𝑖𝑛𝑡𝑒𝑟𝑖,𝑖−1 + (1 − 𝛼)𝐼 𝑖𝑛𝑡𝑒𝑟𝑖,𝑖+1 . (3)

3.2 Refined Reference Module
The refined reference module uses the initial intermediate state
image 𝐼 𝑖𝑛𝑡𝑒𝑟

𝑖
, the damaged image 𝐼𝑖 and a binary mask𝑚 to estimate

the optical flow
→
𝑓 (𝑖𝑛𝑡𝑒𝑟𝑖 , 𝑖) from 𝐼 𝑖𝑛𝑡𝑒𝑟

𝑖
to 𝐼𝑖 . The binary mask𝑚 in-

dicates the range of missing information, where value 1 represents
valid content and value 0 marks the missing region. This module
adapts from an optical flow estimation network PWC-Net [20], orig-
inally designed for optical flow estimation between two complete
images according to multi-scale and step-wise decomposing pixel
displacement fields.

This module involves two main components: a multi-scale fea-
ture extractor and cascaded optical flow estimators. The multi-scale
feature extractor employs an Unet-like architecture to encode im-
ages 𝐼 𝑖𝑛𝑡𝑒𝑟

𝑖
and 𝐼𝑖 along with𝑚 into two corresponding pyramidal

feature sets {𝐼 𝑖𝑛𝑡𝑒𝑟
𝑖

(𝑘 ) }𝐾
𝑘=1 and {𝐼𝑖 (𝑘 ) }𝐾𝑘=1. With the increase of the

layer, the feature maps keep being abstracted and filled with more

context information. This pyramidal architecture facilitates the cap-
ture of the changes in biological structures from rough trends to
detailed warping. The cascaded optical flow estimators {E𝑘 (·)}𝐾𝑘=1
are embedded into the hierarchical feature extractor, aiming to
decompose and estimate large motions of biological structures at
different scales. Accepting the 𝑘th feature maps 𝐼𝑖 (𝑘 ) and 𝐼 𝑖𝑛𝑡𝑒𝑟𝑖

(𝑘 ) ,
the 𝑘th optical flow estimator E𝑘 (·) first measures feature corre-

lation based on the
→
𝑓 (𝑘+1) (𝑖𝑛𝑡𝑒𝑟𝑖 , 𝑖), outputted from the (𝑘 + 1)th

optical flow estimator. The feature correlation𝐶 (𝑘 ) explicitly points
out the regions or directions of the fitting target for the current
level estimator, which is calculated as follows:

𝐶 (𝑘 ) =
1
𝑁
𝐼𝑖
(𝑘 )𝑇𝑊 (𝐼 𝑖𝑛𝑡𝑒𝑟𝑖

(𝑘 )
,
→
𝑓 (𝑘+1) (𝑖𝑛𝑡𝑒𝑟𝑖 , 𝑖)), (4)

where 𝑇 is the transpose operator, 𝑁 is the length of the feature
vector 𝐼𝑖 (𝑘 ) , and 𝑈𝑝 (·) represents the ×2 upsampling. According
to the identification of low feature correlation, the estimator forces
the sub-network E𝑘 (·) to pay more attention to unregistered areas,

as shown in Figure 3(A). The optical flow
→
𝑓 (𝑘 ) (𝑖𝑛𝑡𝑒𝑟𝑖 , 𝑖) at the 𝑘th

level is estimated by integrating all extracted information:
→
𝑓 (𝑘 ) (𝑖𝑛𝑡𝑒𝑟𝑖 , 𝑖) = 𝑈𝑝 (E𝑘 (𝐶 (𝑘 ) , 𝐼𝑖

(𝑘 ) ,
→
𝑓 (𝑘+1) (𝑖𝑛𝑡𝑒𝑟𝑖 , 𝑖),𝑚𝑘 )), (5)

where the binary mask𝑚𝑘 is downsampled from𝑚 to match the
current feature size. Finally, we utilize an additional context net-

work R(·) to refine the estimated flow
→
𝑓 (1) (𝑖𝑛𝑡𝑒𝑟𝑖 , 𝑖) of the last

level before upsampling, as shown in Figure 3(B).
This context network R(·) uses a series of dilated convolution

kernels with different dilated rates to enlarge the receptive fields,
thus further smoothing the final pixel displacement field 𝐼𝑟𝑒 𝑓

𝑖
:

𝐼
𝑟𝑒 𝑓

𝑖
= W(𝐼 𝑖𝑛𝑡𝑒𝑟𝑖 ,𝑈 𝑝 (R(

→
𝑓 (1) (𝑖𝑛𝑡𝑒𝑟𝑖 , 𝑖)))). (6)

3.3 Guided Inpainting Module
The guided inpainting module integrates all guidance information
including the neighboring images 𝐼𝑖−1, 𝐼𝑖+1, and the refined refer-
ence images 𝐼𝑟𝑒 𝑓

𝑖
to recover the missing regions of damaged image

𝐼𝑖 . To ensure the consistent distribution of pixel values, we adopt a
GAN-based architecture consisting of an attention-based generator
and a patch-based discriminator, as shown in Figure 2.

The generator first constructs two multi-scale feature pyramids
{η𝑙1}

𝐿
𝑙=1 and {η

𝑙
2}
𝐿
𝑙=1 from the guidance images {𝐼𝑖−1, 𝐼𝑖+1, 𝐼𝑟𝑒 𝑓𝑖

} and
𝐼𝑖 using a series of convolution layers (shown in Figure 2). The ac-
companying binary mask �̂�, equaling 1 −𝑚, helps the network
concentrate on the location of missing information. Notably, com-
pared to the pyramidal extraction branch on the damaged image
𝐼𝑖 , we add several extra feature aggregation layers (FAL) in the
guidance image branch to extract and aggregate richer contextual
features. Inspired by the atrous spatial pyramid pooling (ASPP)
strategy [3], the FAL consists of four dilated convolutions g𝑟 (·)
(𝑟 = 1, 2, 4, 8) with different dilation rates, providing an extended
characterization of local structures at different receptive fields. A
large dilation rate enables the convolution layer to capture a wide
range of pixel information, but also easily results in low resolution
and content loss. To fully utilize the advantages of dilated convolu-
tions, the FAL aggregates the results of four dilated convolutions
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using a single convolution layer g(·):

η𝑙1 = g(g1 (η̃𝑙1) ⊕ g2 (η̃𝑙1) ⊕ g4 (η̃𝑙1) ⊕ g8 (η̃𝑙1)), (7)

where ⊕ is a concatenation operation, η̃𝑙1 represents the feature at
the 𝑙th level. For the level 𝑙 , the 𝑙th feature attention layer accepts the

⊕

⊕
Warp 128 128 96 64 32 2

2

k = 1

128 128128 96 3264 2
2

(A)

(B)
3×3 Conv(r=1) + Lrelu

3×3 Conv(r=1)

3×3 Conv(r=8) + Lrelu
3×3 Conv(r=4) + Lrelu
3×3 Conv(r=2) + Lrelu

3×3 Conv(r=16) + Lrelu

Bilinear ×2 upsampling
Cost volume calculation

⊕ Concatenation operation

Figure 3: An illustration of (A) the optical flow estimator
E𝑘 (·) on the top and (B) the context network R(·) on the
bottom. The context network R(·) refines the output flow
→
𝑓 (1) (𝑖𝑛𝑡𝑒𝑟𝑖 , 𝑖)) of the optical flow estimator E1 (·) to offer the

target flow
→
𝑓 (𝑖𝑛𝑡𝑒𝑟𝑖 , 𝑖)).

image features η𝑙1, η
𝑙
2 and the attention featureΨ

𝑙+1 from the former
level 𝑙 + 1 to generate the fused feature. The feature attention layer
consists of a feature fusion layer h(·), integrating guidance features,
and a contextual attention layer𝑎𝑡𝑡 (·), "copying" the similar patches
in the feature domain. The contextual attention mechanism has
been introduced to ensure better results in multi-scale [24]. The
contextual attention layer 𝑎𝑡𝑡 (·) [27] is used to model the patch
(3 × 3) correlation between known regions 𝐾𝑙 and missing regions
𝑅𝑙 in the fused feature at the 𝑙th level. Let 𝑘𝑙

𝑖
denotes the 𝑖th patch

in the known region and 𝑟 𝑙
𝑗
denotes the 𝑗th patch in the missing

region, the patch affinity 𝑠𝑙
𝑖, 𝑗

is measured by the cosine similarity:

𝑠𝑙𝑖, 𝑗 = ⟨
𝑘𝑙
𝑖

∥𝑘𝑙
𝑖
∥2
,
𝑟 𝑙
𝑗

∥𝑟 𝑙
𝑗
∥2

⟩, (8)

and the attention score 𝑆𝑙
𝑖, 𝑗

∈ 𝑆 is obtained by the softmax opera-
tion:

𝑆𝑙𝑖, 𝑗 =
𝑒𝑥𝑝 (𝑠𝑙

𝑖, 𝑗
)∑

𝑗 𝑒𝑥𝑝 (𝑠𝑙𝑖, 𝑗 )
. (9)

Based on the feature similarity, the unknown regions 𝑟 𝑙
𝑗
in the fused

feature at the 𝑙th level are updated by weighting the content of
known patches:

𝑟 𝑙𝑗 =
∑︁
𝑖=1

𝑆𝑙𝑖, 𝑗𝑘
𝑙
𝑖 . (10)

So the attention feature Ψ𝑙 is represented as:

Ψ𝑙 = 𝑎𝑡𝑡 (𝑈𝑝 (h(η𝑙1 ⊕ η𝑙2 ⊕ Ψ𝑙+1)), �̂�) . (11)

Finally, the attention feature Ψ2 is processed through a convolution
block 𝒅 (·) for the generation of the inpainting result 𝐼𝑖 as follows:

𝐼𝑖 = 𝐼𝑖 ⊙ (1 −𝑚) + 𝒅 (η11 ⊕ η12 ⊕ Ψ2) ⊙𝑚, (12)

where ⊙ is pixel-wise multiplication.
The convolution architecture prefers to generate blurred visual

results. To improve the perceptual quality of the inpainted image
𝐼𝑖 , we adopt PatchGAN [12] as the discriminator, to ensure the
consistent distribution of pixel values and the continuity of struc-
tures around the missing areas. The discriminator consists of a
global context discriminator network and a local context discrimi-
nator network, judging the rationality of restored information at
different scales. The outputs of the two discriminators are concate-
nated together to finally predict a value within the range of [0, 1],
representing the probability that the input image is real or fake.

3.4 Loss Function
FlowInpaint is trained in a two-stage strategy with the same ground-
truth image 𝑥 , so as the loss functions.

In the first stage, we train the refined reference network, and
the loss functionL𝐶 is defined by collecting pyramidal lossesL (𝑘 )

𝐶
across all levels as follows:

L𝐶 =

𝐾∑︁
𝑘=1

𝑤𝑘L
(𝑘 )
𝐶

. (13)

At each level 𝑘 , the loss L (𝑘 )
𝐶

calculates the difference between
the resampling ground truth 𝑥 (𝑘 ) and the warped image 𝐼𝑤𝑎𝑟𝑝

𝑖 (𝑘 )

deformed by the optical flow
→
𝑓 (𝑘 ) (𝑖𝑛𝑡𝑒𝑟𝑖 , 𝑖) on the image 𝐼 𝑖𝑛𝑡𝑒𝑟

𝑖 (𝑘 )
as

follows:

L
(𝑘 )
𝐶

= 𝜆𝑐L𝑟 (𝐼𝑤𝑎𝑟𝑝𝑖 (𝑘 )
⊙ (1 −𝑚𝑘 ), 𝑥 (𝑘 ) ⊙ (1 −𝑚𝑘 ))+

L𝑟 (𝐼𝑤𝑎𝑟𝑝𝑖 (𝑘 )
⊙𝑚𝑘 , 𝑥 (𝑘 ) ⊙𝑚𝑘 )+

L𝑠𝑠𝑖𝑚 (𝐼𝑤𝑎𝑟𝑝
𝑖 (𝑘 )

,𝑥 (𝑘 ) ) +L𝑝𝑒𝑟 (𝐼𝑤𝑎𝑟𝑝𝑖 (𝑘 )
, 𝑥 (𝑘 ) ),

(14)

where L𝑟 represents the reconstruction loss, L𝑠𝑠𝑖𝑚 represents the
structural similarity loss,L𝑝𝑒𝑟 represents the perceptual loss. All
𝑤𝑘 and 𝜆𝑐 are constant coefficients. The detailed definition of each
loss term is listed as follows:

Reconstruct loss L𝑟 is used to measure the L1 loss between
the images 𝑥 and 𝑧 at the pixel level:

L𝑟 = ∥𝑥 − 𝑧∥1 . (15)

Structural Similarity LossL𝑠𝑠𝑖𝑚 is used to calculate the dif-
ference in luminance, contrast, and structure of two images 𝑥 and
𝑧:

L𝑠𝑠𝑖𝑚 = 1 − 𝑆𝑆𝐼𝑀 (𝑥, 𝑧) = 1 − (2𝜇𝑥 𝜇𝑧 +𝐶1) (2𝜎𝑥𝑧 +𝐶2)
(𝜇2𝑥 + 𝜇2𝑧 +𝐶1) (𝜎2𝑥 + 𝜎2𝑧 +𝐶2)

, (16)

where 𝜇𝑥 and 𝜇𝑧 are the average value of image 𝑥 and 𝑧, 𝜎𝑥 and
𝜎𝑧 are the standard deviation, 𝜎𝑧 is the covariance, 𝐶1 and 𝐶2 are
constants.

Perceptual LossL𝑝𝑒𝑟 is used to compare convolutional features
between 𝑥 and 𝑧 and focuses on the perceived quality of the images
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Mask Method CREMIA CREMIB CREMIC

PSNR↑ SSIM↑ FSIM↑ FID↓ PSNR↑ SSIM↑ FSIM↑ FID ↓ PSNR↑ SSIM↑ FSIM↑ FID↓

10%

PEN-Net 29.094 0.913 0.957 9.881 29.612 0.906 0.950 18.195 28.315 0.903 0.957 7.918
AOT-GAN 30.454 0.920 0.968 6.909 30.595 0.908 0.967 15.550 29.311 0.905 0.963 11.749
CCPGAN 30.982 0.940 0.976 4.511 29.397 0.903 0.972 9.295 28.319 0.901 0.967 7.793

SSF-Restoration 34.430 0.971 0.980 5.738 32.993 0.950 0.969 13.356 32.611 0.959 0.973 7.526
Ours 36.132 0.984 0.986 1.989 35.952 0.973 0.983 4.328 35.026 0.979 0.983 2.350

30%

PEN-Net 23.529 0.680 0.906 16.468 24.469 0.678 0.900 33.903 22.888 0.660 0.899 22.388
AOT-GAN 25.661 0.754 0.925 17.454 26.268 0.742 0.920 32.273 24.719 0.719 0.912 29.747
CCPGAN 25.487 0.799 0.928 11.273 24.689 0.708 0.922 20.806 23.069 0.694 0.908 19.340

SSF-Restoration 29.435 0.902 0.938 25.056 28.127 0.838 0.915 45.266 27.636 0.870 0.923 28.179
Ours 31.091 0.951 0.957 5.389 30.753 0.910 0.949 11.656 30.754 0.944 0.949 6.157

50%

PEN-Net 21.371 0.445 0.860 35.200 22.234 0.451 0.856 53.639 20.705 0.412 0.843 46.644
AOT-GAN 22.512 0.546 0.823 25.513 23.136 0.516 0.822 41.317 21.537 0.484 0.798 36.471
CCPGAN 23.164 0.662 0.885 16.323 22.338 0.513 0.876 29.839 20.832 0.502 0.856 30.363

SSF-Restoration 27.031 0.832 0.898 47.570 25.946 0.736 0.866 74.264 25.353 0.782 0.874 49.629
Ours 29.783 0.917 0.928 7.655 28.405 0.854 0.917 14.714 28.745 0.910 0.917 8.564

Table 1: Quantitative comparisons on existing image inpainting methods. ↑means higher is better. ↓means lower is better.

which is more fit for the human perception of image quality [13] :

L𝑝𝑒𝑟 =
∑︁
𝑖

∥𝑝𝑖 (𝑥) − 𝑝𝑖 (𝑧)∥1, (17)

where 𝑝𝑖 (·) represents the 𝑖th feature layer of the pre-trained
VGG16 model.

In the second stage, we train the guided inpainting network with
the loss function L𝐺 of the generator and the loss function L𝐷 of
the discriminator as follows:

L𝐺 = L𝑟 (𝐼𝑖 ⊙ (1 − �̂�), 𝑥 ⊙ (1 − �̂�))+
𝜆𝑟L𝑟 (𝐼𝑖 ⊙ �̂�, 𝑥 ⊙ �̂�) + 𝜆𝑎𝑑𝑣L𝐺_𝑎𝑑𝑣 (𝐼𝑖 , 𝑥),

(18)

L𝐷 = 𝜆𝑎𝑑𝑣L𝐷_𝑎𝑑𝑣 (𝐼𝑖 , 𝑥), (19)

where L𝐺_𝑎𝑑𝑣 and L𝐷_𝑎𝑑𝑣 are adversarial loss, 𝜆𝑟 and 𝜆𝑎𝑑𝑣 are
weighting coefficients.

Adversarial LossL𝐺_𝑎𝑑𝑣 andL𝐷_𝑎𝑑𝑣 are used for optimizing
generator and discriminator. The input image consists of two re-
gions: the initial known region and the generated inpainting region.
To distinguish the generated patches in the missing region from
the real patches in the context, we use the discriminator that is
constructed based on PatchGAN [12]. The adversarial loss for the
generator is:

L𝐺_𝑎𝑑𝑣 = −E𝑧∼𝑝𝑧 [𝐷 (𝑧)] . (20)

The hinge version of adversarial loss for the discriminator is:

L𝐷_𝑎𝑑𝑣 = E𝑧∼𝑝𝑧 [𝑚𝑎𝑥 (0, 1 + 𝐷 (𝑧))]+E𝑥∼𝑝𝑑𝑎𝑡𝑎 [𝑚𝑎𝑥 (0, 1 − 𝐷 (𝑥))] .
(21)

4 EXPERIMENTS
FlowInpaint is comparedwith two single-image inpaintingmethods:
GAN-based Unet-like network PEN-Net [28], multiple contextual
feature fusion framework AOT-GAN [29], and two consecutive-
image inpainting methods: feature "copying and pasting" archi-
tecture CCPGAN [31], frame interpolation based pipeline SSF-
Restoration [11].

4.1 Dataset
To comprehensively evaluate the network performance, we gener-
ate synthetic data based on the commonly used datasets, CREMI1.
It contains three image stacks, CREMIA, CREMIB, and CREMIC.
Each stack has 125 consecutive images of shape 1250 × 1250 that
are taken from the brain of an adult Drosophila melanogaster. This
dataset is imaged by ssTEM and has the voxel spacing of 4 × 4 × 40
nm per voxel.

For the anisotropic CREMI dataset, we select raw image sets
{𝐼𝑟𝑎𝑤
𝑖−1 , 𝐼

𝑟𝑎𝑤
𝑖

, 𝐼𝑟𝑎𝑤
𝑖+1 } that contain three adjacent images spaced 40 nm

apart, while for the isotropic EPFL dataset, we decide the space
between 𝐼𝑟𝑎𝑤

𝑖
and its neighboring images {𝐼𝑟𝑎𝑤

𝑖−1 , 𝐼
𝑟𝑎𝑤
𝑖+1 } based on

specific experimental purpose. Then we randomly cut 2000 sets
of images {𝐼𝑖−1, 𝐼𝑔𝑡𝑖 , 𝐼𝑖+1} with the shape 256 × 256 from the cor-
responding positions for training, while 100 sets for testing, and
generate the simulated damaged images 𝐼𝑖 by applying the mask �̂�
on 𝐼𝑔𝑡

𝑖
as follows:

𝐼𝑖 = 𝐼
𝑔𝑡

𝑖
⊙ (1 − �̂�) + �̂�. (22)

Notably, the mask is of irregular shape to simulate the realistic
damaged regions.

4.2 Implementation Details
FlowInpaint is implemented by PyTorch [18] and all the experi-
ments are trained on the NVIDIA A100 GPU. The input images are
of 256 × 256 size. For the refined reference module, we extract two
feature pyramids with 𝐾 = 6 and train the model with a learning
rate schedule starting from 0.0001 and reducing the learning rate
by half at 0.4M, 0.6M, 0.8M, and 1M iterations. For the guided in-
painting module, we extract two multi-scale feature sets with 𝐿 = 6
and adopt the learning rate of 0.0001. Both modules are trained by
the Adam optimizer, where 𝛽1 = 0.5, 𝛽2 = 0.999. We set the weights
𝑤1 = 1, 𝑤2 = 0.64, 𝑤3 = 0.32, 𝑤4 = 0.16, 𝑤5 = 0.08, 𝑤6 = 0.04,
𝜆𝑐 = 5, 𝜆𝑟 = 6, and 𝜆𝑎𝑑𝑣 = 0.1 in the loss functions.

1Dataset available at https://cremi.org/data/
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(A)
PSNR:24.328  SSIM:0.711
FSIM: 0.912    FID:64.823

(B)
PSNR:24.539   SSIM:0.700
FSIM: 0.916   FID:51.713

PSNR:26.361   SSIM:0.795
FSIM: 0.915    FID:59.919

(D)

PSNR:25.595   SSIM:0.764
FSIM: 0.902   FID:89.639

(C)

PSNR:31.137   SSIM:0.924
FSIM: 0.948   FID:28.655

(E)

(Ⅱ) (Ⅲ)

PSNR:28.972   SSIM:0.788
FSIM: 0.917    FID:111.561

(D)

PSNR:30.821   SSIM:0.947
FSIM: 0.952   FID:19.479

(E)

PSNR:25.213   SSIM:0.688
FSIM: 0.894   FID:79.354

(C)

(B)
PSNR:24.458   SSIM:0.679
FSIM: 0.922   FID:53.346

(A)
PSNR:22.591   SSIM:0.669
FSIM: 0.916    FID:71.997

PSNR:28.269   SSIM:0.872
FSIM: 0.938    FID:49.604

(D)

PSNR:31.226   SSIM:0.947
FSIM: 0.955   FID:7.717

(E)

PSNR:24.846   SSIM:0.767
FSIM: 0.922   FID:34.000

(C)

(B)
PSNR:24.709   SSIM:0.735
FSIM: 0.906   FID:67.794

(A)
PSNR:23.735   SSIM:0.668
FSIM: 0.902    FID:35.352

(Ⅰ)

Figure 4: The inpainted results with irregular damaged areas under 30%mask on the CREMI dataset. (A) PEN-Net, (B) AOT-GAN,
(C) CCPGAN, (D) SSF-Restoration, and (E) Ours.

4.3 Evaluation Metrics
The results of FlowInpaint are quantitatively compared based on
the image quality assessment metrics: PSNR (Peak Signal-to-Noise
Ratio), SSIM (Structural Similarity Index), FSIM (Feature Similarity
Index Measure) [30], and FID (Fréchet Inception Distance) [10].
PSNR and SSIM evaluate the similarity between images based on
pixel-value information. FSIM, on the other hand, analyzes image
quality by comparing the structural similarity of images based on
their local feature maps and calculating a weighted average of the
results. FID measures the similarity between the feature distribu-
tions of the images based on the high-level perceptual features
extracted through pre-trained InceptionV3 [21].

4.4 Quantitative Evaluation
Table 1 summarizes the quantitative evaluation results on three
simulated testing data from the CREMI dataset. For CCPGAN, we
use the images 𝐼𝑖−1 as its reference image to generate inpainted
results. The single-image inpainting methods, PEN-Net and AOT-
GAN, exhibit poor quantitative performance across various metrics
when the masked area reaches or exceeds 30%. This is mainly be-
cause they only utilize similar structures in the undamaged regions
to fill in the missing information, and a large masked region means
an insufficient number of candidate patches. Compared to single-
image approaches, the consecutive-image methods, CCPGAN and
SSF-Restoration, perform better on the content-related metrics con-
sistently under different masking ratios. They search for similar
structural features from the neighboring images, not only from the
known areas of the damaged section. Naturally, the biological struc-
tures along the axial direction provide more comprehensive and
detailed contents, with most of the deformation being estimated
numerically. Meanwhile, the more images for reference, the higher
the precision for structure similarity measurement. That’s why
SSF-Restoration and FlowInpaint, using two neighboring sections,
both have a large improvement compared to CCPGAN, which only
inputs one reference image.

In image inpainting, the metrics solely measuring the difference
between the corresponding pixels may result in fake results, which

are easily judged visually. We adopt FSIM and FID two perceptual
metrics in the feature domain to quantitatively evaluate the consis-
tency between recovered contents and known areas. Benefits from
the additional perceptual losses, FlowInpaint outperforms other
methods across all datasets and masking situations. Notably, the
SSF-Restoration always performs worse FID scores under the ≥ 30%
masked situation, which indicates the less structural consistency of
inpainted content. This is largely due to its less-quality reference
image, discussed in Section 4.6.2.

4.5 Visual Comparison
Figure 4 illustrates the visual comparison results. Since there is
usually some deformation at the edges of irregular damages in the
real world, we use a rectangular mask that can fully cover the dam-
aged area based on its shape and then determine the specific size
of the recovered area. The area that needs to be recovered for each
sample in Figure 4 is approximately 30%. The generated content of
the single-image inpainting methods, PEN-Net and AOT-GAN, is
structurally unrelated to its neighboring images. Thus the single-
image inpainting methods are completely inappropriate for solving
the issue of missing section information in vEM. In Figure 4 (I), the
brightness and clarity of 𝐼𝑖+1 are slightly lower than those of 𝐼𝑖−1.
The CCPGAN’s result utilizes highly correlated image features from
𝐼𝑖−1, thus its structure looks more similar to it and cannot depict the
tissue morphology along the axial direction. The SSF-Restoration’s
result is not clear enough which may be influenced by the image
properties of 𝐼𝑖+1. By contrast, our method generates clear and rea-
sonable content. In Figure 4 (II), there are some noise points in 𝐼𝑖−1
and the significant structure change in consecutive images. The
image features learned by CCPGAN from 𝐼𝑖−1 are not consistent
with the known sectional information. Thus the factors of section
thickness and rapid variation in serial sections significantly impact
the effectiveness of CCPGAN. For SSF-Restoration, its result ex-
hibits a distinct dislocation phenomenon at the edge of the damaged
area. While our method is still the best. In Figure 4 (III), we can
see the contrast and clarity of 𝐼𝑖−1 is extremely poor which greatly
influences the results of CCPGAN and SSF-Restoration. CCPGAN
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generates completely nonsensical content while SSF-Restoration
outputs severely blurry content. However, even in structure-dense
areas, our method can still produce relatively coherent results.

4.6 Ablation Studies
We conduct ablation experiments on the CREMI dataset to verify
the effectiveness of each module in FlowInpaint.

4.6.1 Reference Image Generation. FlowInpaint adopts a two-stage
reference image generation strategy to introduce the 3D axial struc-
tural continuity into the reference image. First, we remove the
reference image generation and directly input two neighboring
images to the guided inpainting module (denoted as GuidedGAN
in Table 2). Without reference images, GuidedGAN though has
high enough numerical metrics, it prefers to generate false struc-
tures, which are obviously shown in the visual example (Figure 5).
Additionally, we replace the reference generation module with a
frame interpolation approach used in SFF-Restoration and name
it SFF+GuidedGAN. Owing to large deformation between the 𝐼𝑖+1
and 𝐼𝑖−1, SFF+GuidedGAN faces a great challenge to estimate a
rational intermediate state once. Its inpainted image has obvious
structural misplacement, indicated by a red arrow, and may result
in a wrong structure label in the following segmentation task.

PSNR:30.604 SSIM:0.939
FSIM:0.948  FID:9.324

(A)

PSNR:31.048 SSIM:0.947
FSIM:0.950  FID:8.676

(C)

PSNR:30.017 SSIM:0.938
FSIM:0.949  FID:9.746

(B)

Figure 5: The visualization of different reference images. (A)
GuidedGAN, (B) SFF+GuidedGAN, and (C) Ours.

Mask Method Metric
PSNR↑ SSIM↑ FSIM↑ FID↓

10%
GuidedGAN 35.936 0.978 0.983 3.091

SFF+GuidedGAN 34.447 0.971 0.982 3.185
Ours 35.936 0.980 0.984 2.889

30%
GuidedGAN 30.281 0.927 0.950 8.343

SFF+GuidedGAN 29.190 0.901 0.945 8.524
Ours 30.866 0.935 0.952 7.734

50%
GuidedGAN 28.244 0.877 0.920 12.043

SFF+GuidedGAN 26.829 0.823 0.913 11.867
Ours 28.978 0.894 0.921 10.311

Table 2: Ablation results on the reference image generation.
↑means higher is better. ↓means lower is better.

4.6.2 Guided Inpainting Module. FAL can fully extract extensive
contextual features from the reference information and the GAN-
based framework can significantly boost the perceptual quality of
the inpainted content. Table 3 summarizes the quantitative results
of FlowInpaint with a version of FlowInpaint without FAL (Ours-
FAL) and a version of FlowInpaint without GAN architecture (Ours-
GAN). The introduction of FAL helps to explore and aggregate
multi-scale features of multiple reference images, effectively lifting
image quality at the pixel level (∼2.0 improvement in PSNR and
∼0.08 improvement in SSIM). Meanwhile, the adoption of GAN is a
crucial key to perceptual quality.Without the help of discriminators,
the network hardly yields acceptable restored content, especially
the masking regions exceeding 30%.

Mask Method Metric
PSNR↑ SSIM↑ FSIM↑ FID↓

10%
Ours-FAL 34.029 0.968 0.981 3.227
Ours-GAN 35.507 0.977 0.982 6.294

Ours 35.936 0.980 0.984 2.889

30%
Ours-FAL 28.675 0.889 0.943 9.207
Ours-GAN 30.419 0.925 0.946 23.963

Ours 30.866 0.935 0.952 7.734

50%
Ours-FAL 26.291 0.813 0.908 12.367
Ours-GAN 28.165 0.876 0.911 42.300

Ours 28.978 0.894 0.921 10.311

Table 3: Ablation results for guided inpainting module. ↑
means higher is better. ↓means lower is better.

5 CONCLUSION
In this paper, we propose FlowInpaint, a vEM image inpainting
network to recover the missing information at the damaged regions
under the guidance of two neighboring sections. Previous single-
image inpainting methods only utilize 2D known cross-sectional
information, and consecutive-image inpainting approaches adopt
“copy-and-paste" strategy to fill similar structures from the neigh-
boring images into the damaged region. These methods neglect the
3D structure changes along the axial direction and are quite sensi-
tive to section thickness. On the contrary, FlowInpaint estimates
optical flow from neighboring sections to construct 3D structural
continuity. Meanwhile, the two-stage reference generation strategy
effectively ensures strong stability under different thicknesses of
samples. Compared to existing EM image inpainting networks, our
method simultaneously considers the complexity of guaranteeing
3D structural continuity along the axial direction and preserving
2D structural consistency around the missing regions. Comprehen-
sive experiments well demonstrate the superiority of FlowInpaint
over existing methods in serial section inpainting. Further stability
analysis reveals the applicability of FlowInpaint to different thick-
nesses of tissue sections and imaging situations, which are variable
in real-world data.
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