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ABSTRACT

Terrestrial carbon fluxes provide vital information about our biosphere’s health
and its capacity to absorb anthropogenic CO2 emissions. The importance of
predicting carbon fluxes has led to the emerging field of data-driven carbon flux
modelling (DDCFM), which uses statistical techniques to predict carbon fluxes
from biophysical data. However, the field lacks a standardized dataset to promote
comparisons between models. To address this gap, we present CarbonSense, the
first machine learning-ready dataset for DDCFM. CarbonSense integrates measured
carbon fluxes, meteorological predictors, and satellite imagery from 385 locations
across the globe, offering comprehensive coverage and facilitating robust model
training. Additionally, we provide a baseline model using a current state-of-the-
art DDCFM approach and a novel transformer based model. Our experiments
illustrate the potential gains that multimodal deep learning techniques can bring to
this domain. By providing these resources, we aim to lower the barrier to entry for
other deep learning researchers to develop new models and drive new advances in
carbon flux modelling.

1 INTRODUCTION

The biosphere plays a critical role in regulating Earth’s climate. Since the mid-20th century, terrestrial
ecosystems have absorbed up to a third of anthropogenic carbon emissions [1]. However, climate
change introduces uncertainty about the future resilience and capacity of these ecosystems. Under-
standing how the carbon dynamics of our biosphere are changing in response to both climate change
and increasing anthropogenic pressures will give crucial insight into the health of our ecosystems and
their ability to sequester carbon in the future.

Carbon fluxes describe the movement of carbon into and out of these ecosystems resulting from
processes like photosynthesis and cellular respiration. They play a key role in assessing an ecosystem’s
health, but measuring them requires long-term field sensor deployment to cover an area of only 100-
1000m2 [2]. This bottleneck has given rise to the field of data-driven carbon flux modelling (DDCFM)
where researchers use biophysical predictors such as meteorological and geospatial data to model
carbon fluxes. By training on data from a variety of field sites in varying ecosystems, these models
can be used to predict carbon fluxes regionally or globally [3, 4].

DDCFM presents a fascinating topic for deep learning researchers with real-world impact, yet it
remains underexplored. As a result, the current state-of-the-art (SOTA) uses off-the-shelf solutions
like random forests [5–7], gradient boosting [4], or ensembles of similar methods [8, 9]. These
methods produce satisfactory results, but they fail to capitalize on the multimodal nature of the
biophysical data. Recently, multimodal deep learning has exploded in popularity [10, 11] and may
offer a more appropriate framework for DDCFM through effective data integration and advanced
neural architectures. Such advances could significantly enhance the quality of information available
to decision-makers, thereby improving our ability to address climate change.
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We wish to lower the barriers to entry into this area and encourage more work on DDCFM from the
deep learning community. Data preparation for DDCFM is currently performed ad-hoc by research
teams, leading to inconsistency and lack of standardization. The absence of standardized datasets
and benchmarks hinders reproducibility and comparability of research findings. Our work addresses
these gaps with the following contributions:

• We provide an overview of DDCFM for deep learning researchers (Section 2)
• We publish a multimodal machine learning-ready (ML-ready) dataset for DDCFM with over

20 million hourly observations from 385 sites (Section 3)
• We provide a baseline model based on current SOTA practices in DDCFM, and compare it

with a multimodal deep learning model which achieves improved performance (Section 4)

We will discuss our experiments in section 5 and provide guidelines for reporting results in this
domain.

2 DATA-DRIVEN CARBON FLUX MODELLING

The application of machine learning techniques to model carbon fluxes was present as early as 2003
[12] where researchers used early neural networks for regional flux upscaling. Global upscaling
models were first seen in 2011 [13], facilitated by the global research network FLUXNET which
pooled carbon flux data from research teams around the world. Subsequent releases of FLUXNET
increased the data quality and number of sites [14]. Recent models such as those developed by
FLUXCOM [3][4] use a combination of meteorological data and geospatial data to improve model
conditioning. Targeted modelling of specific regions such as subtropical wetlands [9] or arctic and
boreal areas [7][8][5] allow researchers to develop a better understanding of the carbon cycle at these
sites without concern for global generalization.

At its core, DDCFM is a regression problem. The target (carbon flux) depends on many factors
including ecosystem composition, meteorological conditions, local topography and geology, and
disturbances (fires, animal activity, etc). Meteorological data is relatively easy to obtain, but the other
predictors are challenging to measure and represent, especially at a global scale. Remote sensing and
semantic data are commonly employed as a proxy for the other predictors.

2.1 MEASURING FLUXES

Figure 1: Simplified EC station. Sensors measure
atmospheric gas concentrations across eddies.

The most common technique for measuring
fluxes at ecosystem scale is eddy covariance
(EC) [15]. This is a micrometeorological tech-
nique where researchers erect a tower (typically
above canopy height) and mount sensors that
measure atmospheric gas concentrations across
small turbulent vortices (eddies). A simplified
EC station is depicted in Figure 1. CO2 and
water vapour are the most widely measured, but
some towers also measure methane (CH4) [5, 6]
or nitrous oxide (N2O) [16]. Our work focuses
on CO2 due to the prevalance of standardized
data collections.

Carbon fluxes are expressed as mass / area / time (ex g ·m−2 · hr−1). Gross primary productivity
(GPP) refers to the total carbon uptake by plants through photosynthesis. Ecosystem respiration
(RECO) is the total carbon returned to the atmosphere through both plant and microbial respiration.
Net ecosystem exchange (NEE) is the small difference between the two large component fluxes, GPP
and RECO; a carbon sink will have a negative NEE as more carbon is being consumed through GPP
than released through RECO. NEE is the flux that is directly measured by EC stations and is the main
focus of our experiments, but GPP and RECO (which are derived from NEE) are also provided in our
dataset.
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2.2 FLUX PREDICTORS

Meteorological Data DDCFM meteorological data comes from EC stations. In addition to carbon
fluxes, EC stations measure local environmental and atmospheric conditions such as radiation, air
temperature and relative humidity, precipitation, soil moisture and temperature, etc. The exact number
and type of variables depends on the site, but regional networks maintain a minimum mandatory set
for researchers wishing to submit their data [14]. For trained models looking to predict fluxes at the
global scale, meteorological data can be obtained from publicly available reanalysis products such as
ERA5 [17] which provides the variables on a 0.25-0.5 degree grid.

Geospatial Data Satellite imagery of the area surrounding an EC station can give useful information
about the land cover and ecosystem makeup. The most common products for DDCFM are based on
Moderate Resolution Imaging Spectroradiometer (MODIS) data [18]. This satellite pair ("Aqua" and
"Terra") produce new imagery for Earth’s surface every 1-2 days and have 36 spectral bands with
resolutions varying between 250m and 1km. The MCD43A4 product is particularly common - it
fuses MODIS data in a 16-day sliding window to produce a single image each day. This helps to
address cloud coverage and produces images which remove angle effects from directional reflectance
[19]. Each image therefore appears as it would from directly overhead at solar noon. MCD43A2 is
also widely used, and contains categorical values for each pixel indicating snow and water cover [20].
The terms "geospatial data", "satellite data" and "remote sensing data" are often used interchangeably
in this domain, but it should be noted that not all geospatial data comes from satellites.

Semantic Data Some models ingest semantic data such as land cover ("Croplands", "Evergreen
needleleaf forest", "Snow and ice", etc). Land cover classifications follow standardized schemes such
as the International Geosphere-Biosphere Programme (IGBP). Land cover classification is performed
by domain experts, but some MODIS products coarsely approximate this information on a global
grid [21], allowing this data to also be used for global inference.

3 THE CARBONSENSE DATASET

We present the first ML-ready dataset for DDCFM, CarbonSense. CarbonSense consists of EC
station data and corresponding MODIS geospatial data for 385 sites across the globe, totalling over 27
million hourly observations. This section provides a brief overview of the dataset structure, processing
pipeline, and usage guidelines. A more comprehensive guide is given in the supplementary material.
For a detailed list of the 385 locations and their respective ecosystem types, see Appendix A.

3.1 DATA COLLECTION

All meteorological data was aggregated from major EC data networks, including FLUXNET 2015
[14], the Integrated Carbon Observation System (ICOS) 2023 release [22], ICOS Warm Winter
release [23], and Ameriflux 2023 release [24]. These source datasets were chosen due to their use of
the ONEFlux processing pipeline [14], ensuring standardized coding and units. A map of EC sites
and their source networks is shown in Figure 2. North America and Europe are over-represented in
this site list due greater data accessibility, and we discuss the implications of this in Section 3.3.

Geospatial data in CarbonSense are sourced from MODIS products. Specifically, we utilize the seven
spectral bands from the MCD43A4 product [19], as well as the water and snow cover bands from
MCD43A2 [20]. Following the guidelines from [18], we extract images in a 4km by 4km square
centered on each EC station. Given a spatial resolution of 500m per pixel, this yields an 8x8 pixel
image with 9 channels for every site-day.

3.2 DATA PIPELINE

The first stage in the pipeline is EC data fusion. Many sites had overlapping data from different
source networks. For example, the site Degero in Sweden (SE-Deg) had data from 2001-2020 in the
ICOS Warm Winter release, and data from 2019-2022 in the ICOS 2023 release. Data were fused
with overlapping values taken from the more recent release as in previous DDCFM work [4]. Any
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Figure 2: Global map of eddy covariance sites used in CarbonSense, with corresponding source
networks. Some sites were present in multiple networks.

sites which report half-hourly data were downsampled to hourly at this stage, and daily and monthly
recordings were discarded.

Once fused, we extracted the relevant time blocks for each EC station along with its geographic
location. This metadata was used to obtain the appropriate MODIS data for each site. Data was
pulled procedurally from Google Earth Engine [25].

Meteorological data was pruned to remove unwanted variables. Some, like soil moisture and
temperature, were either unavailable for most sites or were heavily gap-filled. We removed these
variables to reduce the risk of compounding errors on the underlying pipeline gapfilling techniques.
A full list of variables at this stage is given in Table 6.

As a final stage in the pipeline, we apply a min-max normalization on predictor variables. We map
cyclic variables (those with a cyclic range such as wind direction) to the range [−1, 1) and acyclic
variables to the range [−0.5, 0.5). This normalization procedure is conducive to our Fourier encoding
method discussed in Section 4.1.

We offer CarbonSense as a finished dataset but also provide the raw data. The full pipeline code is
available so that researchers can run and modify it freely. Our pipeline can be configured to include
other variables or to have different "leniency" for gap-filled values. For example, those who wish to
use CarbonSense with strictly observed values may do so at the cost of a smaller number of samples.
A diagram of the entire pipeline is shown in Figure 3.

Figure 3: Data pipeline used to create CarbonSense from EC and MODIS data.
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3.3 USING THE DATASET

Site Sampling The biased geographic and ecological distribution of sites remains a challenge in
DDCFM, and CarbonSense is no different. Given the significant overrepresentation of certain regions
(North America, Europe) and ecosystems (evergreen needleleaf forests, grasslands), we maintain a
partitioned structure where each site has its own directory containing EC data, geospatial data, and
metadata. Researchers are encouraged to select sites for training and testing based on their experiment
objectives such as high performance on particular ecosystems, or out-of-distribution generalization.
Our experiments in section 5 are an example of the latter.

Dataloader We supply an example PyTorch dataloader for CarbonSense specifically tailored to
our model. Using the dataloader requires specifying which carbon flux to use as the target (ex NEE,
GPP, RECO), which sites to include in each dataloader instance, and the context window length for
multi-timestep training.

Licensing CarbonSense is available under the CC-BY-4.0 license, meaning it can be shared,
transformed, and used for any purpose given proper attribution. This is an extension of the same
license for all three source networks, and MODIS data is provided under public domain. We feel that
permissive licensing is essential in order to foster greater scientific interest in DDCFM.

4 THE ECOPERCEIVER ARCHITECTURE

In this section we present EcoPerceiver, a multimodal architecture for DDCFM. The SOTA for
DDCFM are tabular methods, and we felt it would be appropriate to include a baseline model which
demonstrates how deep learning concepts can be leveraged for this unique problem domain.

EcoPerceiver is based on the Perceiver architecture [26], which cross attends a variable number of
inputs onto a compact latent space, allowing for extreme input flexibility. Missing inputs are common
in DDCFM due to coverage gaps, outlier values, or failing sensors. Rather than rely on gapfilling
techniques, we chose this architecture for its robustness to missing inputs.

We also wanted a model which could ingest data from a varying time window. To our knowledge,
this is the first DDCFM model to treat carbon dynamics as non-Markovian with respect to predictors.
We feel this more accurately reflects biological processes, since a plant’s rate of photosynthesis may
also depend on conditions hours or days into the past. Our ablation experiments in Appendix B.7
explore this idea further.

Figure 4: Overview of EcoPerceiver architecture.

4.1 DATA INGESTION

Small fluctuations in meteorological variables have the potential to influence ecological processes.
For this reason, it is important that the model is sensitive to small changes in input values. We take
inspiration from NeRF’s Fourier encoding [27] which maps continuous values to higher dimensional
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space with high frequency sinusoids. Each variable x is therefore encoded as:

f (x;K) =
[
. . . , sin(2kπx) , cos(2kπx) , . . .

∣∣∣ k ∈ [0,K)
]
, (1)

where K is a hyperparameter indicating the maximum sampling frequency. Higher values of K allow
the model to better discern between small differences in input. With our normalization scheme, cyclic
variables at values of −1 and 1 will produce identical vectors under this transform as intended. Each
input is given a learned embedding specific to the underlying variable. This is then concatenated with
the Fourier encoding to produce a final input vector of length Hi = 2K + lemb for each input. Figure
5 depicts this encoding procedure.

Figure 5: Fourier input encoding for EcoPerceiver.
Spectral inputs are similarly processed, but with a
linear projection instead of Fourier encoding.

Geospatial data is similarly processed, except
that each spectral band is flattened and mapped
into a vector of length 2K via linear transforma-
tion instead of Fourier encoding. Each band is
then concatenated with an embedding to pro-
duce a vector of length Hi. We then stack
the encoded data to create a matrix of shape
(T, Vt, Hi) where Vt is the total number of vari-
ables (tabular values + spectral bands) and T is
the context window length.

To account for missing values and timesteps
without geospatial data, EcoPerceiver takes a
modality mask indicating which values to ig-
nore in the cross attentive layers. This modality
mask doubles as a dropout mechanism which
reduces over-reliance on a small subset of vari-
ables (observational dropout).

4.2 WINDOWED CROSS ATTENTION

We build on Perceiver’s core concept of cross-attending data onto a compact latent space for process-
ing. EcoPerceiver uses a latent space of size (T,Hl) where Hl is the latent hidden dimension. Each
token extracts input data via cross-attention from its respective timestep’s observations. Intuitively,
each token may represent the ecosystem’s "state" at a particular time, and ingests observations from
that timestep.

This operation would be inefficient with vanilla cross attention, as each token would use at most 1
T

observations with an attention mask removing the rest. We take inspiration from SWin Transformer
[28] and instead push the context window dimension (T ) into the batch dimension for both input and
latent space. The resulting Windowed Cross Attention (WCA) has a runtime of O(T · Vt ·Ha) where
Ha is the projection dimension.

In keeping with Perceiver, each WCA operation is followed by a self-attention operation in the latent
space. We pass a causal mask to the self attention so each timestep is conditioned only on past and
present observations. We refer to this as Causal Self Attention (CSA). This constitutes a full WCA
block as shown in Figure 6.

WCA blocks are repeated N times, repeatedly cross attending inputs onto the latent space with self
attention in between. We then apply a series of M CSA operations and use the final timestep’s token
as input to a linear layer. The output of this is the estimate of the desired carbon flux.

5 EXPERIMENTS

In this section, we present a series of experiments using CarbonSense. Our primary analysis includes
two models: an EcoPerceiver model as introduced in 4, and an XGBoost model [29] implemented
to mimic current SOTA approaches in DDCFM [4]. We demonstrate the power of tailored deep
architectures for DDCFM and establish a robust baseline that will support and inspire future research
efforts. We also present guidelines for running similar experiments and presenting results. Further
model comparisons are explored in Appendix B.6 alongside ablation studies and qualitative analysis.
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Figure 6: Windowed Cross Attention (WCA) block. Encoded inputs are cross-attended onto the
latent space with a modality mask to indicate missing values. The time dimension is pushed into the
batch dimension, so this operation is performed B · T times per batch. Causal self attention proceeds
as normal.

5.1 DATA SPLITTING

EC stations were randomly divided into train and test sets based on their IGBP ecosystem classification
(IGBP type). We mostly refer to IGBP types by their acronyms for brevity, but a list of IGBP types
with expanded names is found in Appendix A.

Table 1: Train / test split distri-
bution by IGBP type

IGBP Train Test

WET 42 5
DNF 0 1
WSA 8 2
EBF 10 3
ENF 80 5
DBF 42 5
CRO 44 5
MF 10 3
GRA 59 5
OSH 25 5
CVM 1 1
CSH 5 2
SAV 11 3
SNO 0 1
WAT 1 1

Despite the imbalance of IGBP types in CarbonSense, we wanted the
test set to be as balanced as possible. The number of sites in the test
set were determined with min(5, ⌈0.2 ∗ num_sites⌉). This provided
between 1 and 5 sites per IGBP type as shown in Table 1. As a
consequence, SNO and DNF provide information about zero-shot
generalization, and CVM and WAT about one-shot generalization.

The main focus of this research is on models trained across different
ecosystem types, as opposed to other research studying DDCFM
within a single type (ex [5, 8, 9]). However, the partitioned nature
of CarbonSense makes it flexible for different modelling objectives,
such as individual ecosystems. We give an example of this in Ap-
pendix B.8.

5.2 MODEL CONFIGURATIONS

EcoPerceiver experiments were each run on 4 A100 GPUs using
dataset parallelization. The train sites were further divided into train
and validation splits at a 0.8 / 0.2 ratio respectively. We used the
AdamW optimizer [30] with a learning rate of 8e-5 and a batch size of 4096. A single warm-up
epoch was performed followed by a cosine annealing learning rate schedule over 20 epochs, but all
experiments converged between 6 and 13 epochs.

XGBoost experiments were run on CPU nodes. We designed our XGBoost experiments to resemble
[4] as closely as possible. This allows us to compare EcoPerceiver’s relative performance against a
stand-in for the SOTA. Appendix B provides a detailed description of XGBoost data preprocessing,
hyperparameters for all models, ablation studies, and more.
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5.3 METRICS

The most commonly used performance metric in DDCFM (and any form of hydrologic modelling) is
the Nash-Sutcliffe Modelling Efficiency (NSE) [31], described with the following equation:

NSE(x) = 1−
∑

i(yi − xi)
2∑

i(yi − ȳ)2
(2)

where a value of 1 represents perfect correlation between x and y. A value of 0 represents the same
performance as guessing the mean of y, and negative values indicate that the mean of y is a better
predictor than x. NSE is more challenging to use directly as a loss function since it would require the
dataloader to also provide the mean of the data for a given site or ecosystem type. We therefore use
mean squared error (MSE) as a loss function and report its root (RMSE) as well as NSE in our results.
Data balance in results reporting is also a concern. At first glance, the data appears very imbalanced
with respect to ecosystem prevalence. CarbonSense contains 64 grasslands (GRA) sites, but only 1
deciduous needleleaf forest (DNF). While this is an extreme gap, ecosystems are more diverse than
IGBP types can capture; grasslands in central North America will differ significantly from those in
Europe or Asia. Still, it is prudent to separate results by IGBP type to give a better picture of model
performance.

5.4 RESULTS

We ran 10 experiments with each model using different seeds to get an accurate picture of performance.
Table 2 shows the mean performance on the test set for each model over every IGBP type, and we
give an example of model output visualization in Figure 7.

Table 2: NSE and RMSE by model and IGBP type, aggregate mean across 10 seeds. Bold numbers
indicate better performance. Pairwise t-test results are given for NSE values with 9 degrees of
freedom.

XGBoost EcoPerceiver t-test (NSE)

IGBP NSE RMSE NSE RMSE t-statistic p-value

CRO 0.8066 3.2381 0.8482 2.8677 13.4689 0.0000
CSH 0.7510 1.5224 0.7670 1.4709 1.9947 0.0772
CVM 0.5277 5.5157 0.5763 5.2236 9.6586 0.0000
DBF 0.7250 4.0959 0.7547 3.8678 10.5993 0.0000
DNF 0.2803 4.0974 0.4336 3.6322 8.6338 0.0000
EBF 0.7966 4.6050 0.8220 4.3070 8.1990 0.0000
ENF 0.7765 2.8141 0.7694 2.8579 -2.3853 0.0409
GRA 0.7461 3.2487 0.7967 2.9059 13.7609 0.0000
MF 0.7559 3.8633 0.7717 3.7361 8.3540 0.0000
OSH 0.5451 1.8796 0.6060 1.7475 3.9356 0.0034
SAV 0.5802 1.6514 0.7368 1.3070 28.0814 0.0000
SNO -0.0370 1.4291 0.2898 1.1816 16.3974 0.0000
WAT -11.0524 3.1838 -14.4010 3.5802 -2.4809 0.0349
WET 0.4530 2.2073 0.4137 2.2830 -2.1005 0.0651
WSA 0.6132 2.5153 0.6267 2.4706 2.6798 0.0252

EcoPerceiver outperformed the XGBoost baseline across most IGBP types. XGBoost performed
better in permanent wetlands (WET), water bodies (WAT), and evergreen needleleaf forests (ENF) by
a slim margin. These are the three key ecosystems of the boreal biome, indicating XGBoost retains
an advantage in that region. WAT is particularly far out of distribution (EC stations are mounted
above lakes) and both models did worse than predicting the mean, indicating this could be an issue
with data quantity.

Besides WAT, EcoPerceiver did substantially better on zero- and one-shot tests. High predictive
power on out-of-distribution sites like this is especially important for researchers wishing to run
inference on global data, where each grid cell is likely to be quite different from any of the training
sites.
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Our results also underline the importance of using NSE as the main metric for evaluation. Consider
the models’ performance on open savannas (SAV). XGBoost had an RMSE of 1.6514 versus EcoPer-
ceiver’s 1.3070. The magnitude of difference is small, and both values are significantly lower than the
RMSE of many other IGBP types. But XGBoost had an NSE of 0.5802 while EcoPerceiver achieved
0.7368 which is a significant improvement. Different ecosystems have different variances in their
carbon fluxes, and NSE accounts for this by dividing the performance by the variance of the target.

Figure 7: Example NEE measurements and model predictions from an Australian cropland site.
Qualitative analysis of model outputs is important in DDCFM, and is discussed in Appendix B.9.

6 CONCLUSION

Our work establishes a foothold for deep learning in the field of DDCFM. We provide an open
source ML-ready dataset, CarbonSense, using EC station data and geospatial data from a variety
of ecosystems. DDCFM is inherently a multimodal task, and our baseline model EcoPerceiver
demonstrates that recent advances in multimodal deep learning can unlock substantial performance
gains in this domain. We implore more deep learning researchers to help develop this field further,
because the potential of artificial intelligence to improve our world can only be realized if we actively
apply it to solve pressing social and environmental issues.

Future Work Our work leaves much to be explored in both dataset and model development.
CarbonSense can be expanded as more EC station data is incorporated into regional network releases.
Additional geospatial data could be added in the form of global soil products or higher resolution
satellite imagery. Future models may work to address the shortcomings of EcoPerceiver in the boreal
ecosystems, or incorporate more sophisticated fusion techniques like the use of convolutional layers
in image ingestion.

Limitations Data diversity remains the biggest challenge in this domain. CarbonSense has a data
imbalance in not only ecosystem types, but geographic location. Africa, Central Asia, and South
America are all underrepresented. While these areas contain many EC stations, most do not have
readily available data in ONEFlux format, presenting a barrier to their inclusion in CarbonSense.
Researchers should be aware of the consequences of developing models with imbalanced data,
including poor performance in underrepresented areas.
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Appendices
A EDDY COVARIANCE SITE DETAILS

Here we provide an exhaustive list of EC sites used in CarbonSense along with their most recent
publication. As per Ameriflux’s data policy, each site has an individual citation with DOI; other
networks simply required citation of the unified release. It would be impractical to have each site’s
full description in these tables, but the first two letters of each code represent the country where the
site is located (ex. "DE" for Germany).

We also enumerate all meteorological predictors and targets in Table 6, and provide a temporal
distribution of EC data by year in Figure 8.

Table 3: EC Sites

Croplands (CRO)
BE-Lon [22] CA-ER1 [32] CA-MA1 [33] CA-MA2 [34] CH-Oe2 [23] CZ-KrP [23]
DE-Geb [22] DE-Kli [22] DE-RuS [22] DE-Seh [14] DK-Fou [14] DK-Vng [22]
FI-Jok [14] FI-Qvd [23] FR-Aur [22] FR-EM2 [22] FR-Gri [22] FR-Lam [22]
IT-BCi [23] IT-CA2 [14] US-A74 [35] US-ARM [36] US-Bi1 [37] US-Bi2 [38]

US-CF1 [39] US-CF2 [40] US-CF3 [41] US-CF4 [42] US-CRT [43] US-CS1 [44]
US-CS3 [45] US-CS4 [46] US-DFC [47] US-DS3 [48] US-Lin [49] US-Mo1 [50]
US-Mo3 [51] US-Ne1 [52] US-RGA [53] US-RGB [54] US-RGo [55] US-Ro1 [56]
US-Ro2 [57] US-Ro5 [58] US-Ro6 [59] US-Tw2 [60] US-Tw3 [61] US-Twt [14]
US-xSL [62]

Closed Shrublands (CSH)
BE-Maa [22] IT-Noe [14] US-KS2 [63] US-Rls [64] US-Rms [65] US-Rwe [66]
US-Rwf [67]

Cropland/Natural Vegetation Mosaics (CVM)
US-HWB [68] US-xDS [69]

Deciduous Broadleaf Forests (DBF)
AU-Lox [14] BE-Lcr [22] CA-Cbo [70] CA-Oas [14] CA-TPD [71] CZ-Lnz [22]
CZ-Stn [23] DE-Hai [22] DE-Hzd [23] DE-Lnf [14] DK-Sor [22] FR-Fon [22]
FR-Hes [22] IT-BFt [22] IT-CA1 [14] IT-CA3 [14] IT-Col [14] IT-Isp [14]
IT-PT1 [14] IT-Ro1 [14] IT-Ro2 [14] JP-MBF [14] MX-Tes [72] PA-SPn [14]
US-Bar [73] US-Ha1 [74] US-MMS [75] US-MOz [76] US-Oho [77] US-Rpf [78]

US-UMB [79] US-UMd [80] US-WCr [14] US-Wi1 [81] US-Wi3 [82] US-Wi8 [83]
US-xBL [84] US-xBR [85] US-xGR [86] US-xHA [87] US-xML [88] US-xSC [89]
US-xSE [90] US-xST [91] US-xTR [92] US-xUK [93] ZM-Mon [14]

Deciduous Needleleaf Forests (DNF)
BR-CST [94]

Evergreen Broadleaf Forests (EBF)
AU-Cum [14] AU-Rob [14] AU-Wac [14] AU-Whr [14] AU-Wom [14] BR-Sa3 [14]
CN-Din [14] FR-Pue [22] GF-Guy [22] GH-Ank [14] IT-Cp2 [22] IT-Cpz [14]
MY-PSO [14]
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Table 4: EC Sites (cont’d)

Evergreen Needleleaf Forests (ENF)
AR-Vir [14] CA-Ca1 [95] CA-Ca2 [96] CA-LP1 [97] CA-Man [14] CA-NS1 [98]

CA-NS2 [99] CA-NS3 [100] CA-NS4 [101] CA-NS5 [102] CA-Obs [14] CA-Qfo [103]
CA-SF1 [104] CA-SF2 [105] CA-TP1 [106] CA-TP2 [14] CA-TP3 [107] CA-TP4 [14]
CH-Dav [22] CN-Qia [14] CZ-BK1 [22] CZ-RAJ [23] DE-Lkb [14] DE-Msr [22]
DE-Obe [23] DE-RuW [22] DE-Tha [22] DK-Gds [22] FI-Hyy [22] FI-Ken [22]
FI-Let [22] FI-Sod [14] FI-Var [22] FR-Bil [22] FR-FBn [23] FR-LBr [14]
IL-Yat [23] IT-La2 [14] IT-Lav [23] IT-Ren [22] IT-SR2 [22] IT-SRo [14]

NL-Loo [14] RU-Fy2 [23] RU-Fyo [23] SE-Htm [22] SE-Nor [22] SE-Ros [23]
SE-Svb [22] US-BZS [108] US-Blo [14] US-CS2 [109] US-Fmf [110] US-Fuf [111]

US-GBT [14] US-GLE [112] US-HB2 [113] US-HB3 [114] US-Ho2 [115] US-KS1 [116]
US-Me1 [117] US-Me2 [118] US-Me3 [119] US-Me4 [14] US-Me5 [14] US-Me6 [120]
US-NC1 [121] US-NC3 [122] US-NR1 [123] US-Prr [14] US-Vcm [124] US-Vcp [125]
US-Wi0 [126] US-Wi2 [14] US-Wi4 [127] US-Wi5 [128] US-Wi9 [129] US-xAB [130]
US-xBN [131] US-xDJ [132] US-xJE [133] US-xRM [134] US-xSB [135] US-xTA [136]
US-xYE [137]

Grasslands (GRA)
AT-Neu [14] AU-DaP [14] AU-Emr [14] AU-Rig [14] AU-Stp [14] AU-TTE [14]
AU-Ync [14] BE-Dor [23] CA-MA3 [138] CH-Aws [23] CH-Cha [23] CH-Fru [23]
CH-Oe1 [14] CN-Cng [14] CN-Dan [14] CN-Du2 [14] CN-Du3 [14] CN-HaM [14]
CN-Sw2 [14] CZ-BK2 [14] DE-Gri [22] DE-RuR [22] DK-Eng [14] FR-Mej [22]
FR-Tou [22] GL-ZaH [22] IT-MBo [23] IT-Niv [22] IT-Tor [22] NL-Hor [14]
PA-SPs [14] RU-Ha1 [14] SE-Deg [22] US-A32 [139] US-AR1 [140] US-AR2 [141]

US-ARb [142] US-ARc [143] US-BRG [144] US-Cop [145] US-Goo [14] US-Hn2 [146]
US-IB2 [14] US-KFS [147] US-KLS [148] US-Kon [149] US-Mo2 [150] US-NGC [151]

US-ONA [152] US-Ro4 [153] US-SRG [154] US-Seg [155] US-Sne [156] US-Snf [157]
US-Var [158] US-Wkg [159] US-xAE [160] US-xCL [161] US-xCP [162] US-xDC [163]

US-xKA [164] US-xKZ [165] US-xNG [166] US-xWD [167]

Mixed Forests (MF)
AR-SLu [14] BE-Bra [22] BE-Vie [22] CA-Gro [168] CD-Ygb [22] CH-Lae [23]
CN-Cha [14] DE-Har [22] DE-HoH [22] JP-SMF [14] US-Syv [169] US-xDL [170]

US-xUN [171]

Open Shrublands (OSH)
CA-NS6 [172] CA-NS7 [24] CA-SF3 [14] ES-Agu [23] ES-Amo [14] ES-LJu [23]
ES-LgS [14] ES-Ln2 [14] GL-Dsk [22] IT-Lsn [22] RU-Cok [14] US-EML [173]
US-Fcr [174] US-Hn3 [175] US-ICh [176] US-ICt [177] US-Jo1 [178] US-Jo2 [179]
US-Rws [180] US-SRC [181] US-Ses [182] US-Sta [14] US-Whs [183] US-Wi6 [184]
US-Wi7 [185] US-xHE [186] US-xJR [187] US-xMB [188] US-xNQ [189] US-xSR [190]

Savannas (SAV)
AU-ASM [14] AU-Cpr [14] AU-DaS [14] AU-Dry [14] AU-GWW [14] CG-Tch [14]
ES-Abr [23] ES-LM1 [23] ES-LM2 [23] SD-Dem [14] SN-Dhr [14] US-LS2 [191]

US-Wjs [192] US-xSJ [193]

Snow and Ice (SNO)
US-NGB [194]

23



Published as a conference paper at ICLR 2025

Table 5: EC Sites (cont’d)

Water Bodies (WAT)
US-Pnp [195] US-UM3 [196]

Permanent Wetlands (WET)
AR-TF1 [197] AU-Fog [14] CA-ARB [198] CA-ARF [199] CA-CF1 [200] CA-DB2 [201]
CA-DBB [202] CN-Ha2 [14] CZ-wet [22] DE-Akm [23] DE-SfN [14] DE-Spw [14]

DE-Zrk [14] DK-Skj [22] FI-Lom [14] FI-Sii [22] FR-LGt [22] GL-NuF [22]
GL-ZaF [14] IE-Cra [23] PE-QFR [203] RU-Che [14] SE-Sto [22] SJ-Adv [14]

UK-AMo [22] US-ALQ [204] US-Atq [14] US-BZB [205] US-BZF [206] US-BZo [207]
US-EDN [208] US-HB1 [209] US-ICs [210] US-Ivo [14] US-KS3 [211] US-Los [14]
US-Myb [212] US-NC4 [213] US-ORv [214] US-OWC [215] US-Srr [216] US-StJ [217]
US-Tw1 [218] US-Tw4 [219] US-Tw5 [220] US-WPT [221] US-xBA [222]

Woody Savannas (WSA)
AU-Ade [14] AU-Gin [14] AU-How [14] AU-RDF [14] BR-Npw [223] ES-Cnd [23]

Table 6: Meteorological Variables in CarbonSense

Code Description Units
Predictors
TA_F Air temperature deg C
PA_F Atmospheric pressure kPa
P_F Precipitation mm
RH Relative humidity %
VPD_F Vapor pressure deficit hPa
WS_F Wind speed m s−1

USTAR Wind shear m s−1

WD Wind direction decimal degrees
NETRAD Net radiation W m−2

SW_IN_F Incoming shortwave radiation W m−2

SW_OUT Outgoing shortwave radiation W m−2

SW_DIF Incoming diffuse shortwave radiation W m−2

LW_IN_F Incoming longwave radiation W m−2

LW_OUT Outgoing longwave radiation W m−2

PPFD_IN Incoming photosynthetic photon flux density µmol Photon m−2 s−1

PPFD_OUT Outgoing photosynthetic photon flux density µmol Photon m−2 s−1

PPFD_DIF Incoming diffuse photosynthetic photon flux density µmol Photon m−2 s−1

CO2_F_MDS CO2 atmospheric concentration µmol CO2 mol−1

G_F_MDS Soil heat flux W m−2

LE_F_MDS Latent heat flux W m−2

H_F_MDS Sensible heat flux W m−2

Targets

NEE_VUT_REF Net Ecosystem Exchange (variable USTAR) µmol CO2 m−2 s−1

GPP_DT_VUT_REF Gross Primary Production (daytime partitioning) µmol CO2 m−2 s−1

GPP_NT_VUT_REF Gross Primary Production (nighttime partitioning) µmol CO2 m−2 s−1

RECO_DT_VUT_REF Ecosystem Respiration (daytime partitioning) µmol CO2 m−2 s−1

RECO_NT_VUT_REF Ecosystem Respiration (nighttime partitioning) µmol CO2 m−2 s−1
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Figure 8: Temporal distribution of CarbonSense data. Data collected before 2000 does not have any
MODIS data.
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B EXPERIMENT DETAILS

B.1 DATASET CONFIGURATION

As part of the CarbonSense pipeline, we filter out poorly gapfilled values. Each variable in the EC
data has a corresponding "quality check" (QC) flag indicating if it was directly measured, gap filled
during the ONEFlux pipeline (with varying gap fill quality levels), or simply taken from ERA5
reanalysis products. The tolerance level can be configured during the CarbonSense normalization
process, and we discuss this further in the supplementary material.

We chose to use a maximum QC flag of 1, indicating all values in the dataset were either directly
measured, or gap filled with high confidence. We found this had the best trade-off of data quality and
quantity, as setting the maximum QC flag to 0 (only directly measured values) reduced the dataset
size by 55%, while including medium-confidence values only increased it by 9%.

The data split was randomized within each ecosystem type. We held out 20% or 5 sites for each type,
whichever is lower. The remaining sites were divided 80/20 between training and validation sets for
EcoPerceiver, while our XGBoost model used all the training data for a cross-validation procedure.

B.2 ECOPERCEIVER CONFIGURATION

Hyperparameter tuning for EcoPerceiver was performed with our train and validation splits, and
comprised the bulk of the experiment efforts. Where possible, we started with our best guesses and
ran a pseudo-random search based on intuition. A true random search of the parameter space would
have been extremely sparse given the available compute resources.

We set our latent hidden size to 128, our input embedding size to 16, and the number of Fourier
encoding frequencies to 12. This gave a total input hidden size of 40. Our context window is 32,
meaning our model sees the previous 32 hours of observations. We use 8 WCA blocks followed by
4 CSA blocks. We set our observational dropout at 0.3 and use causal masking in all self-attention
blocks. In keeping with [26], we employ weight sharing between all WCA blocks. With these
hyperparameters our model weighs in at a very reasonable 988,633 parameters.

Heavier configurations were considered, but performance gains were minimal (see ablation studies)
and the compute tradeoff made it impractical for anyone without multi-GPU cluster access to use the
model. This is especially true for increasing the context window or latent hidden dimension.

B.3 XGBOOST CONFIGURATION

Table 7: XGBoost Hyperparameters

Parameter Value
learning_rate 0.1
alpha 0.1
gamma 0.4
lambda 0.0
max_depth 9
min_child_weight 9
n_estimators 150
subsample 0.7
scale_pos_weight 0.5
colsample_bytree 0.7
colsample_bylevel 0.8

Hyperparameters were found by random search. We used
the same train/test split as the EcoPerceiver experiment;
the train set was used in a 5-fold cross validation frame-
work with 50 iterations. Once hyperparameters were
found, we retrained XGBoost on all training data before
running inference on the test set. Table 7 details the pa-
rameterization of our final model.

Since XGBoost is a tabular algorithm, we prepared geospa-
tial data in a similar fashion to XBASE [4]; each spectral
band represents a single input value to the model. The
value is obtained by taking a weighted average of pixels
based on Euclidean distance from the center of the image.
Missing pixels were removed from this process, and the
weights of the remaining pixels were increased to accom-
modate for this. The code for this procedure is provided
with CarbonSense.

B.4 REPRODUCIBILITY AND RELIABILITY

Both EcoPerceiver and XGBoost were trained with re-
producibility in mind. Once optimal hyperparameters were found, we performed 10 experiments
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with each model in order to obtain a reliable measure of performance (inspired by [224]). Set
seeds were provided to all frameworks utilizing RNG, and distributed dataloader workers were also
seed-controlled to ensure full reproducibility of our results.

The seeds for our experiments were simple integer values (0, 10, 20, ... , 90) and were provided for
the final training runs after hyperparameters had already been chosen.

B.5 DETAILED RESULTS

Figure 9: NSE scores of EcoPerceiver and XGBoost across different IGBP types. Each chart
represents 10 experiments with different seeds. Whiskers indicate approximately 1.5 x interquartile
range.

Figure 10: RMSE scores of EcoPerceiver and XGBoost across different IGBP types. Each chart
represents 10 experiments with different seeds. Whiskers indicate approximately 1.5 x interquartile
range.
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Here we take a closer look at the performance of our models across different IGBP types. Figure
11a and Figure 11b show box plots of our models’ test set performance using NSE and RMSE
respectively, across all seeds. Note that the y-axis changes between each plot. We do this because the
variance in model performance across different seeds was generally small, and charting all box plots
on the same axis made the chart unreadable.

As discussed in Section 5, EcoPerceiver performs better than the XGBoost model in 12 out of 15
IGBP types. In 1 of the 3 that XGBoost wins, both models do substantially worse than simply
guessing the mean, which makes the results for WAT challenging to interpret. The other 2, ENF and
WET, are not significantly better than EcoPerceiver’s performance and have mean NSE advantages of
+0071 and +0.0393 respectively in favour of XGBoost. This could be explained by the nature of
data splitting; once hyperparameters were obtained for XGBoost, it was able to train on the entirety
of the train split, while EcoPerceiver still had to reserve 20% of the split for validation testing to
measure convergence. Both ENF and WET had significant train set prevalence, so these represent
IGBP types where XGBoost was most able to take advantage of additional data.

Imperfect hyperparameter selection could also account for the lack of consistent performance. While
XGBoost is lightweight enough for a virtually exhaustive parameter search with cross validation,
deep models have significantly higher experiment overhead. Due to compute limitations, we were
limited in how thoroughly we could explore model configurations for EcoPerceiver.

B.6 ADDITIONAL MODEL COMPARISONS

Our primary experiments with EcoPerceivercompare its performance with an XGBoost baseline, as
this is the model we found performed the best out of the tabular architectures. Here we show the
comparative performance of these models against additional baselines including a vanilla transformer,
a random forest, and a simple linear regression model. The NSE and RMSE scores are shown in
Tables 8 and 9 respectively. We kept these results partitioned by IGBP type to demonstrate the
consistency of the results. Note that since linear regression models are deterministic, this model was
not trained with multiple seeds to find an average performance.

These results further reinforce the idea that XGBoost remains a competitive baseline for DDCFM
with non-deep learning methods. EcoPerceiver still demonstrates superior performance in the vast
majority of IGBP types, but the vanilla transformer model notably wins out in WAT. This suggests
that even without all the innovations of EcoPerceiver, deep learning models are highly effective at
multimodal modelling in the context of DDCFM.

Table 8: NSE scores for all models.
IGBP Linear Model Random Forest XGBoost Transformer EcoPerceiver

CRO 0.6315 0.7292 0.8066 0.8126 0.8482
CSH 0.5072 0.7107 0.7510 0.7381 0.7670
CVM 0.4282 0.5179 0.5277 0.4809 0.5763
DBF 0.5333 0.6875 0.7250 0.7318 0.7547
DNF 0.2178 0.2975 0.2803 0.2745 0.4336
EBF 0.6381 0.7938 0.7966 0.7464 0.8220
ENF 0.5934 0.7375 0.7765 0.7154 0.7694
GRA 0.6264 0.7258 0.7461 0.6803 0.7967
MF 0.6043 0.7250 0.7559 0.7316 0.7717
OSH 0.0585 0.4113 0.5451 0.5050 0.6060
SAV 0.1632 0.4174 0.5802 0.5288 0.7368
SNO -0.6223 -0.0130 -0.0370 -0.1229 0.2898
WAT -32.6151 -27.8940 -11.0524 -9.6845 -14.4010
WET 0.0976 0.2508 0.4530 0.4138 0.4137
WSA 0.4946 0.5575 0.6132 0.5560 0.6267
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Table 9: RMSE scores for all models.
IGBP Linear Model Random Forest XGBoost Transformer EcoPerceiver

CRO 4.4698 3.8319 3.2381 3.1873 2.8677
CSH 2.1417 1.6411 1.5224 1.5613 1.4709
CVM 6.0688 5.5726 5.5157 5.7824 5.2236
DBF 5.3360 4.3661 4.0959 4.0451 3.8678
DNF 4.2721 4.0485 4.0974 4.1143 3.6322
EBF 6.1426 4.6365 4.6050 5.1420 4.3070
ENF 3.7959 3.0497 2.8141 3.1755 2.8579
GRA 3.9406 3.3759 3.2487 3.6451 2.9059
MF 4.9190 4.1002 3.8633 4.0511 3.7361
OSH 2.7043 2.1384 1.8796 1.9609 1.7475
SAV 2.3315 1.9455 1.6514 1.7497 1.3070
SNO 1.7876 1.4126 1.4291 1.4873 1.1816
WAT 5.3247 4.9366 3.1838 3.0019 3.5802
WET 2.8352 2.5834 2.2073 2.2851 2.2830
WSA 2.8752 2.6903 2.5153 2.6952 2.4706

B.7 ABLATION STUDIES

Here we present ablation studies on EcoPerceiver. While we seek to provide a broad view of the
impacts of our architectural decisions, note that running all these tests with a large number of seeds
was computationally infeasible for us. Instead we ran each ablation test with a single seed (“00”) and
plotted performance below. The boxplots in this section therefore represent scores across different
IGBP types.

To improve interpretability, the single WAT site was removed from the test set for these ablation
studies. As discussed in Section 5.4, this is a one-shot EC station with ecosystem dynamics far out of
distribution compared to other biomes. Model performance on this one site was exceedingly poor and
variable, with NSE scores ranging from -3.0 to -20.2. Therefore, when running a single experiment
per model, it would have a massively outsized and unpredictable effect on model scores.

B.7.1 ARCHITECTURAL CHARACTERISTICS

Figure 11 shows a broad comparison of various architectural configurations on performance. We
break down statistics for each architecture in Table 10. Each of these models was meant to interrogate
the decisions we made when constructing the final EcoPerceiver. A summary of each model follows:

• Ours: This is the final version of EcoPerceiver, run with a single seed.

• No Causal Masking: A model where latent tokens are allowed to self-attend non-causally.

• No Observational Dropout: A model where all observations are kept during training, rather
than randomly masking a portion of them during windowed cross-attention.

• No Fourier Encoding: A model with no Fourier encoding. This means the final input vector
for cross-attention is of length Hi = lemb + 1.

• Gapfilled Data: This ablation used our final model architecture, but used a version of
CarbonSense where we keep the gapfilled values from the underlying ONEFlux pipeline
rather than handling missing data within the model.

• No Image Data: This ablation also uses our final model, but does not pass in any image
data during training or inference. It operates entirely on tabular data.

• Vanilla Transformer: A model without WCA or CSA. It is a transformer encoder as
described in [225]. Each forward pass ingests the tabular and image data (tokenized as in
our final model) for a single timestep. Regression is performed via linear probing on the
latent space after 6 encoder layers. This is the best approximation of a vanilla transformer
encoder in the context of our multimodal dataset, and it is the model used in the model
comparison in Appendix B.6.
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(a)

(b)

Figure 11: Boxplots of NSE (a) and RMSE (b) scores for ablation studies.

Our model performs better than all other ablation models broadly. The largest jump in performance is
between the vanilla transformer and all other architectures. This indicates that WCA has a substantial
effect on the ability of the model to predict carbon fluxes. It is unclear whether this benefit comes from
the way WCA processes information and maps it to the latent space, or whether this is a reflection
of the non-Markovian nature of ecosystem dynamics. Since the vanilla transformer only consumes
data from the timestep for which it is predicting fluxes, it is not capturing the context window of
observations, and designing a vanilla transformer to ingest a full context window would result in an
intractable amount of processing for the forward pass.

The model without image data also underperformed, suggesting that satellite imagery provides
substantial information with respect to carbon flux prediction. Additionally, the gapfilled data
experiment shows that EcoPerceiver is able to process missing data in-model effectively. The
remaining ablations (fourier encoding, observational dropout, causal masking) demonstrate that
these architectural considerations may provide a modest benefit, though the results are far closer.

30



Published as a conference paper at ICLR 2025

Table 10: NSE and RMSE by model ablation. t_mean and t_std represent truncated means and
standard deviations to account for the outlier biome ("WAT").

NSE RMSE

Model t_mean t_std median iqr t_mean t_std median iqr

Vanilla Transformer 0.557 0.249 0.556 0.284 2.709 1.165 2.648 1.603
No Image Data 0.635 0.186 0.689 0.215 2.515 1.134 2.478 1.582
Gapfilled Data 0.635 0.199 0.717 0.259 2.474 1.077 2.376 1.492
No Fourier Encoding 0.624 0.254 0.715 0.257 2.456 1.043 2.481 1.098
No Obs. Dropout 0.634 0.196 0.710 0.345 2.468 1.091 2.339 1.105
No Causal Masking 0.654 0.171 0.744 0.318 2.428 1.077 2.252 0.836
Ours 0.669 0.166 0.753 0.251 2.382 1.055 2.313 1.284

In particular, the causal masking performed roughly equivalently to our final model. However, we
decided to keep the causal masking in the final model anyway as it did not affect wall time, and
contributed to the model’s ecological validity.

B.7.2 CONTEXT WINDOW LENGTH

We conducted further experiments to test the assumption that DDCFM benefits from ingesting data
in a temporal context window. The results are shown in Figure 12. There is a clear performance
advantage going from a context window of 8 hours to 16, and a small advantage going from 16 to 32.
Anecdotally, this reflects our findings from early hyperparameter tuning experiments. Going from 32
to 64 did not meaningfully improve performance, but it did significantly increase our wall time and
memory usage. We therefore used a context window of 32 for our main experiments.

Figure 12: Effects of context window length on NSE (left) and RMSE (right) of test site inference for
EcoPerceiver.
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B.8 ECOSYSTEM-SPECIFIC DDCFM

Table 11: EcoPerceiver performance on
DBF sites when trained on only DBF
data vs trained on all sites

Only DBF All Sites

NSE RMSE NSE RMSE

0.7405 3.9782 0.7532 3.8806

DDCFM is not always performed at the global scale; many
research teams have studied it in the context of specific
regions and ecosystem types [5, 6, 9, 12]. This use case
is one of the reasons for CarbonSense’s partitioned struc-
ture. As a proof of concept, we ran a single experiment
with EcoPerceiver where we use the same parameters and
train/test split as our main experiment, but only include
the DBF sites. We then compared the test set performance
against our main model. Table 11 shows the results - our
model trained on multiple ecosystem types had notably
better performance despite a similar convergence time.

As with the ablation studies, we did not have the compute resources to do 10 seeds for every
experiment variation - but it shows the flexibility of CarbonSense for different research scenarios. It
also provides preliminary evidence that DDCFM with multimodal models may benefit from adding
more training data even if it is relatively out of distribution.

B.9 QUALITATIVE ANALYSIS

While error metrics are useful for assessing the aggregate performance of the model, we encourage
researchers to inspect the model outputs in comparison to the observed data. As an example, consider
Figures 13 and 14 below. Both of these were randomly selected 4-day stretches of data from their
respective sites. Both models appear able to model GF-Guy very well, but not CA-LP1, and this may
be counterintuitive at first glance. But there’s quite a bit going on here.

GF-Guy is an evergreen broadleaf forest in the tropics. This is not highly prevalent type in Carbon-
Sense, but its carbon fluxes appear quite stable from day to day. We found that ecosystems with this
interseasonal stability tend to be more easily modelled in our experiments, though this is not an easy
metric to quantify. It should be noted that the y-axis has a much larger scale, so while the models
appear close to the ground truth, they often have an error in excess of 5 µmol CO2 m−2. This again
highlights the importance of using NSE as an error metric - RMSE will unfairly punish highly active
ecosystems like this due to higher natural variance in carbon fluxes.

CA-LP1 is an evergreen needleleaf forest in the temperate region, which is one of the best represented
ecosystems in CarbonSense, yet both models struggle with it (despite low absolute error), especially
in the winter. Reading into this site reveals it is a pine beetle-attacked forest [97]; disturbances like
these can be challenging to model as we discussed in 2. This gives future work in DDCFM a vector
for potential improvement.
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Figure 13: Hourly data and model results for GF-Guy, an evergreen broadleaf forest station in French
Guiana.

Figure 14: Hourly data and model results for CA-LP1, a pine beetle-attacked evergreen needleleaf
forest in northern British Columbia.
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