CarbonSense Data Card

CarbonSense	Dataset Summary
This doc: <u>GitHub Link</u>	This data card describes CarbonSense, a multimodal dataset for carbon flux modelling.
Dataset: Zenodo Link	CarbonSense integrates biophysical data collected from field observation towers with
Data Pipeline Code: <u>GitHub Link</u>	satellite imagery of the surrounding geography. The primary use for CarbonSense is to use the
Data Card Author: Matthew Fortier	data to predict a carbon flux value for that area at a given time, indicating how much carbon is
Correspondence: matthew.fortier@mila.quebec	being absorbed or released by the surrounding ecosystem.

Dataset Authors

Author		Affiliation(s)	Funding
Matthew Fortier	(Owner)	Mila Quebec Al Institute Polytechnique Montréal	IVADO AI, Biodiversity and Climate Change
Mats L. Richter	(Contributor)	ServiceNow	Initiative [<u>link]</u>
Oliver Sonnentag	(Contributor)	Université de Montréal	
Chris Pal	(Contributor)	Mila Quebec Al Institute Polytechnique Montréal	

Dataset Snapshot		
Data modality	Multimodal (tabular, image)	
Size of dataset	12.4 GB	
Number of instances	26,973,576	
Number of fields per instance	36 [30 predictors + 5 targets + index]	

Motivations & Use				
Key Domain Applications Machine Learning, Deep Learning, Multimodal Learning, Carbon Dynamics, Climate Change	Motivating Factors Providing a shared dataset for deep learning research into carbon flux modelling.	Intended Use Safe for research use. Production use should be approached with caution due to data imbalances.	License CarbonSense is provided under Creative Commons 4.0 license, meaning anyone is free to remix, adapt, and redistribute given proper attribution, even commercially.	
Citation @misc{fortier2024carbonsense, title={CarbonSense: A Multimodal Dataset and Baseline for Carbon Flux Modelling}, author={Matthew Fortier and Mats L. Richter and Oliver Sonnentag and Chris Pal}, year={2024}, eprint={2406.04940}, archivePrefix={arXiv}, primaryClass={cs.LG} }		Access and MaintenanceCarbonSense is open access and can be downloaded from Zenodo here.Zenodo is a CERN-funded initiative with a robust longevity plan. The data will be available and versioned for at least 20 years.		

Dataset Structure			
Overview	Dataset is divided into geographic sites (385 total). Each site will have one or more observation windows (ex: 2005-01-01_2016-12-31). Each observation window will have four resources: metadata, predictors, images, and targets.		
Directory Structure	{site}/{window}/{resource}		
Example File Path	ile Path CA-LP1/2007-01-01_2020-12-13/targets.csv		
Resources			
meta.json	Contains site metadata such as ecosystem type and geographic location		
predictors.csv	Meteorological and environmental variables at hourly intervals - also referred to as eddy covariance (EC) data		
targets.csv	Carbon fluxes at hourly intervals		
modis.pkl	Satellite data of surrounding area at daily intervals - also referred to as MODIS data		

D	E.L.	Description	T	
Resource	Field	Description	Туре	Null ratio
predictors.csv	timestamp	Pandas datetime object used for indexing	string	0.000
	DOY	Day of year	float	0.000
	TOD	Time of day	float	0.000
	TA_F	Air temperature	float	0.115
	SW_IN_F	Incoming shortwave radiation	float	0.123
	LW_IN_F	Incoming longwave radiation	float	0.387
	VPD_F	Vapor pressure deficit	float	0.147
	PA_F	Air pressure	float	0.264
	P_F	Precipitation	float	0.263
	WS_F	Wind speed	float	0.193
	WD	Wind direction	float	0.190
	RH	Relative humidity	float	0.166
	USTAR	Wind friction velocity	float	0.228
	NETRAD	Net radiation	float	0.241
	PPFD_IN	Incoming photosynthetic photon flux density	float	0.262
	PPFD_OUT	Outgoing photosynthetic photon flux density	float	0.584
	SW_OUT	Outgoing shortwave radiation	float	0.351
	LW_OUT	Outgoing longwave radiation	float	0.431
	CO2_F_MDS	CO2 concentration	float	0.185
	G_F_MDS	Soil heat flux	float	0.371
	LE_F_MDS	Latent heat flux	float	0.178
	H_F_MDS	Sensible heat flux	float	0.159

targets.csv	timestamp	Pandas datetime object used for indexing	string	0.000
	NEE_VUT_REF	Net ecosystem exchange	float	0.230
	GPP_DT_VUT_REF	Gross primary production, daytime partition	float	0.040
	GPP_NT_VUT_REF	Gross primary production, nighttime partition	float	0.039
	RECO_DT_VUT_REF	Ecosystem respiration, daytime partition	float	0.040
	RECO_NT_VUT_REF	Ecosystem respiration, nighttime partition	float	0.039
meta.json	SITE_ID	Eddy covariance (EC) station site identifier	string	0.000
	LOCATION_LAT	EC station latitude	float	0.000
	LOCATION_LON	EC station longitude	float	0.000
	LOCATION_ELEV	EC station elevation above sea level	float	0.136
	IGBP	IGBP land cover type (ecosystem class)	string	0.000
	SOURCES	Source datasets used for this site, comma-separated	string	0.000
	TIME	Temporal window covered by data	list	0.000
modis.pkl	TIMESTAMP*	Pandas datetime object used as key value for indexing images	string	N/A
	dim0**	MCD43A4 Band 1	array	N/A
	dim1**	MCD43A4 Band 2	array	N/A
	dim2**	MCD43A4 Band 3	array	N/A
	dim3**	MCD43A4 Band 4	array	N/A
	dim4**	MCD43A4 Band 5	array	N/A
	dim5**	MCD43A4 Band 6	array	N/A
	dim6**	MCD43A4 Band 7	array	N/A

	dim7**	MCD43A2 Band 1	array	N/A
	dim8**	MCD43A2 Band 2	array	N/A
* The modis.pkl resource contains a dictionary of key-value pairs. The keys are timestamps corresponding to satellite observations, typically once per day. As such, there are no inherently null values; if a satellite image is not present at a given time, there will simply be no key for it				

** The values of the dictionary are 9-channel satellite images of the associated EC station.

Data Collection & Processing

Eddy Covariance Data

Overview	Collection
Eddy covariance (EC) data is the tabular data used in CarbonSense. It is made up of environmental and meteorological predictors, as well as carbon flux targets.	 Raw data was aggregated from existing datasets: FLUXNET 2015 Ameriflux ICOS 2023 ICOS WW These regional flux networks release data at various intervals; ICOS releases updated datasets multiple times per year, FLUXNET still has not released a second version since 2020. The criteria for inclusion are data sources which use the ONEFlux processing pipeline; this ensures consistent variables and units across EC stations. Collection Cadence: Static Collection Date: 2024-03-01

Processing

•

- Hourly data extracted from releases. Half-hourly data downsampled to hourly
 - Relevant columns extracted (all columns in *predictors.csv* and *targets.csv* above)
 - Corresponding quality check columns also kept
- Sentinel missing values deleted
- Data from source collections fused and partitioned by EC station
 - Stations present in multiple sources are combined, favouring values from more recent release in the event of collisions
 - Each station will have one or more subdirectories of contiguous data coverage. Separating by contiguity makes data easier to handle for time series modelling. Example:

- CZ-BK1/
 - 2004-01-01_2020-12-31/
 meta.json
 modis.pkl
 predictors.csv
 targets.csv
 2022-01-01_2022-12-31/
 meta.json
 modis.pkl
 predictors.csv
 targets.csv
- EC station geography and temporal coverage extracted, used as metadata for satellite data collection
- Min-max normalization procedure
 - Min/max values were determined for each variable
 - Examples
 - Day of year [0, 366]
 - Air temperature [-80, 80] (degrees celsius)
 - Wind speed [0, 100] (meters per second)
 - These were chosen by objective bounds, or by generous feasible bounds based on historical extremes (for example, highest recorded wind speed is 103 m/s)
 - Variables were mapped from min-max values to [-1, 1) for cyclic variables, and [-0.5, 0.5) for acyclic variables
 - Cyclic variables are like wind direction and time of day, where the maximum and minimum values are identical
 - This distinction makes it easy for models to understand the variables under Fourier feature encoding, which our baseline model uses
 - Our data pipeline allows for compiling CarbonSense without these distinctions via config file
- Data filtering

0

- Quality check flags are used to identify gap-filled data points
- Data with a quality check greater than or equal to 2 ("moderate confidence gapfilling") are discarded
 - The threshold for this procedure can be controlled with the pipeline config file
 - Quality check flags are then removed
- Data are then split into *predictors.csv* and *targets.csv* files, with all carbon flux values going into *targets.csv*. Timestamp variable remains in both files for indexing purposes.
- Site metadata are placed in individual *meta.json* files and stored alongside predictors and targets.

Satellite Data		
Overview	Collection	
CarbonSense uses Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data products. The <u>MCD43A4</u> and <u>MCD43A2</u> are the only products in use in v1.0.0 of the	Satellite data was acquired through Google Earth Engine (GEE). A <u>notebook</u> in the GitHub repository is used to access GEE through Google Colab.	
dataset.	Collection Cadence: Static Collection Date: 2024-03-01	

Processing

- Metadata generated from EC data pipeline is used to specify location / time of satellite data to GEE
- 7 reflectance bands are used from MCD43A4; the rest are discarded
- 2 bands (water and snow cover) are used from MCD43A2; the rest are discarded
- MCD43A4 data is cleaned and normalized
 - Reflectance values in MCD43A4 range from 0 to 10,000 with a fill value of 32767
 - We map [0, 10000) -> [0, 1.0) and change fill values from (32767) -> (-1)
 - This makes it relatively easy for ingestion by neural network
- MCD43A2 data is cleaned
 - Both bands contain categorical data
 - Snow cover band
 - 1 = snow, 0 = no snow
 - 255 = fill value -> we remap to -1
 - Water cover band
 - Shallow ocean, shallow inland water, ephemeral water, deep inland water, moderate or continental ocean, deep ocean -> mapped to 1 ('water')
 - Land, ocean coastlines and lake shorelines -> mapped to 0 ('no water')
 - 255 = fill value -> we remap to 0 (treated as 'no water' for simplicity, this is essentially just median gap filling as the vast majority of pixels are 'no water')
- MCD43A2 is stacked on top of MCD43A4 so that band 8 is snow, and band 9 is water
- Images with > 50% fill values are discarded
- Images are placed in dictionaries with the image timestamp being the key. These dictionaries are written as binary files labelled *modis.pkl* alongside EC data files.