
Visual Instruction Inversion:
Image Editing via Visual Prompting

— Supplementary Material —

Anonymous Author(s)
Affiliation
Address
email

This document provides additional information complementing the main paper. First, we compare1

to Textual Inversion in Sec. A. Then, in Sec. B, we provide additional qualitative comparisons to2

Imagic [3] and Null-text Inversion [5]. Finally, in Sec. C, we provide the implementation details of3

our method, along with results obtained using a variant of our approach - instruction concatenation.4

This variant allows users to add extra information into the learned instruction.5

<cat-toy> <watercolor-portraits>…

“Painting of <cat-toy> in the style of <watercolor-portraits>”

(b) Visual Instruction Inversion

Test Image Ours

Example

Before After
<ins>

<ins>

<ins>

<ins>

“Painting of <cat-toy> in the style of Monet”

🔥

🔥

(a) Textual Inversion

🔥 🔥

Figure 1: Ours vs. Textual Inversion. (a) Textual Inversion inverts a visual concept or object
(e.g., a particular <cat-toy>) into a word embedding. This optimized word embedding can then be
combined with a textual description to generate novel scenes. (b) Our Visual Instruction Inversion
learns the transformation <ins>: “before” → “after” in a given before-and-after image pair. This
learned instruction can then be applied to new test images to perform the same edit.

A Textual Inversion vs. Visual Instruction Inversion6

Textual Inversion [2, 6] is a method to invert a visual concept into a corresponding representation in7

the language space. In particular, given (i) a text-to-image pre-trained model and (ii) some images8

describing a visual concept (e.g., a particular kind of toy; Figure 1 bottom row), Textual Inversion9

learns new “words” in the embedding space of the text-to-image model to represent those visual10

concepts. Once these “words” are learned for that concept, they can be plugged into arbitrary11

textual descriptions, just like other English words, which can then be used to create the target visual12

concept in different contexts. Instead of learning the representation for an isolated visual concept, our13

approach (Visual Instruction Inversion), learns the transformation from a before-and-after image pair.14

This learned transformation is then applied to a test image to achieve similar edit “before” → “after”.15

Applicability of Textual Inversion for image editing. Given these differences with our proposed16

method, we now try to see if Textual Inversion can be used for image editing. Textual Inversion can17

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

generate a “painting of a <cat-toy> in the style of Monet” by using the learned word <cat-toy>18

from example images (Figure 1a, Row 1). However, the synthesized images often only capture the19

essence of the objects, and disregard the details of the input images. As a result, textual inversion is20

suitable for novel scene composition, but is not effective for image editing.21

On the other hand, our Visual Instruction Inversion does not learn novel token representations for22

objects or concepts. Instead, we learn the edit instruction from before-and-after pairs, which can be23

applied to any test image to obtain corresponding edits. This allows us to achieve fine-grained control24

over the resulting images. For example, by providing a photo of <cat-toy>, one before and one in25

a specific impressionist style, we learn the transformation from before to impressionist, denoted as26

<ins>. Once learned, this instruction can be applied to new <cat-toy> images to achieve the same27

impressionist painting style, without losing the fine details of the test image (Figure 1b, Row 1).28

One might suggest an alternative approach to image editing using Textual Inversion, which involves29

learning two tokens: one for the object and another for the style (e.g., “Painting of <cat-toy> in the30

style of <watercolor-portraits>”). Figure 1a (Row 2) shows the results of this approach. As31

can be seen, Textual Inversion still often introduces significant changes that deviate from the original32

input image. Thus, Textual Inversion is not suitable for accurate image editing.33

B Additional Qualitative Comparisons34

In the attached HTML file (index.html), we provide additional comprehensive qualitative compar-35

isons for our method versus InstructPix2Pix [1] and SDEdit [4].36

We also present qualitative comparisons with other state-of-the-art text-conditioned image editing37

methods, Imagic [3] and Null-text Inversion [5] (Figure 2). These methods can generate outputs based38

on given text prompts, such as “A watercolor painting of a cat” (Row 3). However, the outputs often39

do not match the given reference. The text prompts can also be ambiguous and result in unsatisfactory40

outputs, as illustrated by the case of “A character in a Pixar movie” (Row 1).41

Another challenge is the inconsistency of text-conditioned models, where the same text prompt42

can produce different outputs for different test images. For example, the text prompt “A frozen43

waterfall” (Row 6) generates different water colors (blue vs. white) when applied to different test44

images (Before-and-after pair is from [5]). Our method is more consistent in this case, as the learned45

instruction might have learned the water color.46

C Implementation Details47

C.1 Optimization settings48

We use the pretrained clip-vit-large-patch14 as the CLIP Encoder in our approach. For49

instruction initialization [7], we set the caption length for after image to 10 tokens. However, this50

specific caption length does not affect the optimization algorithm. We can optimize initialization51

instructions of varying lengths (up to 77 tokens). It takes roughly 7 minutes to optimize for one edit,52

and 4 seconds to apply the learned instruction to new images.53

Specifically, during the optimization process, we freeze the tokens representing the start of text54

(<|startoftext|>), end of text (<|endoftext|>), and all padding tokens after end of text55

(<|endoftext|>). We only update the tokens inside the text prompt, called <ins> (between56

<|startoftext|> and <|endoftext|>) (Figure 3a).57

C.2 Instruction Concatenation58

We only optimize a fixed number of tokens, so we have the flexibility to concatenate additional59

information to the learned instruction during inference (Figure 3b). This allows us to achieve more60

fine-grained control over the resulting images. Figure 4 shows qualitative results of this approach.61

Users can input extra information to combine or guide the learned instruction according to their62

preferences.63

In the first example, we transform “cat” → “watercolor cat”. We demonstrate how concatenating extra64

information to the learned instruction enables both image editing (changing to a watercolor style) and65

2

“A character in a Pixar movie”

“A woman with a marionette-like face”

“A watercolor painting of a cat”

“A still from a western”

“A vase of tulips”

“A frozen waterfall”

“A chocolate cake”

Before After Test Ours Imagic Null-text𝜂 = 0.6 0.8

Example

Figure 2: Additional qualitative comparisons to Imagic [3] and Null-text Inversion [5]. Imagic and
Null-text Inversion fail to match the reference image as they perform edits based on ambiguous text
prompts (Row 1-4); or exhibit inconsistency in producing outputs for the same prompt across test
images (Row 6). In contrast, our method produces visually closer edited images to the before-and-
after pair while demonstrating improved consistency by using the learned instructions.

[pad]

“Turn it into a brown cake”

<|start|> <|end|>

Tokenizer

[pad]<|start|>

“burning candle”

<ins>

Tokenizer

<|end|> Test Image <ins> <ins>
+

“burning candle”

<ins>
+

“with orange slices”(b) Instruction Concatenation(a) Instruction Optimization

After

Before

<ins> 🔥

Figure 3: Implementation details. (a) Instruction Optimization: We only optimize a part of the
instruction embedding, called <ins>. (b) Instruction Concatenation: During test time, we can add
extra information into the learned instruction <ins> to further guide the edit.

domain translation (e.g., “cat” → “tiger”). The painting style is consistent with the before-and-after66

images, while the domain translation corresponds to the additional information provided by the user.67

3

Test ImageBefore After

<ins> + “… husky” + “… pit bull” + “… tiger” + “… monkey” + “… squirrel”

“Turn it into a
watercolor painting”

Instruction + “… husky” + “… pit bull” + “… tiger” + “… monkey” + “… squirrel”

Instruction InstructPix2PixTest Image

<ins> +“…, female”
+ “..., female

with sunflowers”
+ “…, female
with roses”+ “…, Asian”

+ “…, female
with a gun”

Test ImageBefore After

“Turn it into a still
from a western”

Instruction Test Image

Ours

InstructPix2Pix

+“…, female”
+ “..., female

with sunflowers”
+ “…, female
with roses”+ “…, Asian”

+ “…, female
with a gun”Instruction

Vi
su

al
 P

ro
m

pt
in

g
Te

xt
-c

on
di

tio
ne

d
Vi

su
al

 P
ro

m
pt

in
g

Te
xt

-c
on

di
tio

ne
d

Ours

Figure 4: Instruction concatenation. We can concatenate extra information into the learned
instruction <ins> to navigate the edit. (Zoom in for details).

Applying InstructPix2Pix [1] often does not yield satisfactory results, as the painting style differs68

from the reference image.69

In the second example, we further illustrate how concatenating extra information can help guide70

the learned instruction. We initially learned a male character transformation from a cartoon image.71

However, applying this learned instruction to a new female test image results in a male bias in the72

output. By adding extra information, we can navigate the edit to overcome this bias. We can also73

add extra details such as sunflowers or guns to adjust the learned instruction accordingly. These74

modifications ensure consistent outputs that are aligned with the original learned instruction. Applying75

InstructPix2Pix, again, tends to produce more varied outputs that are inconsistent with the user’s76

intention.77

Photo Attribution78

• Elsa (Human): reddit.com/r/Frozen79

• Disney characters: princess.disney.com80

• Toy Story characters: toystory.disney.com81

• Toonify faces: toonify.photos82

• Girl with a Pearl Earring: wikipedia/girl-with-a-pearl-earring83

• Mona Lisa: wikipedia/mona-lisa84

• The Princesse de Broglie: wikipedia/Princesse-de-Broglie85

• Self-portrait in a Straw Hat: wikipedia/self-portrait-in-a-straw-hat86

• <cat-toy> and <watercolor-portraits> concept: huggingface.co/sd-concepts-library87

• Gnochi cat, waterfall, and cake images are from Imagic [3] and Null-text Inversion [5].88

4

https://www.reddit.com/r/Frozen/comments/j4afdf/elsa_anna_kristoff_in_real_life/
https://princess.disney.com/
https://toystory.disney.com/
https://toonify.photos/
https://en.wikipedia.org/wiki/Girl_with_a_Pearl_Earring
https://en.wikipedia.org/wiki/Mona_Lisa
https://en.wikipedia.org/wiki/The_Princesse_de_Broglie
https://en.wikipedia.org/wiki/%C3%89lisabeth_Vig%C3%A9e_Le_Brun
https://huggingface.co/sd-concepts-library

References89

[1] Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow image editing90

instructions. In arXiv, 2023.91

[2] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel Cohen-92

Or. An image is worth one word: Personalizing text-to-image generation using textual inversion. In arXiv,93

2022.94

[3] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and Michal95

Irani. Imagic: Text-based real image editing with diffusion models. In Conference on Computer Vision and96

Pattern Recognition 2023, 2023.97

[4] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit:98

Guided image synthesis and editing with stochastic differential equations. In arXiv, 2022.99

[5] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for editing100

real images using guided diffusion models. In arXiv, 2022.101

[6] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dream-102

booth: Fine tuning text-to-image diffusion models for subject-driven generation. In arXiv, 2022.103

[7] Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Hard104

prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery. In arXiv, 2023.105

5

	Textual Inversion vs. Visual Instruction Inversion
	Additional Qualitative Comparisons
	Implementation Details
	Optimization settings
	Instruction Concatenation

