
A Proof for Proposition474

Proof. of Proposition 1 In order to ensure SE(3) equivariance in the encoder architecture, we define475

an additional function to derive the relative distance matrix of two coordinate systems, cx and cy .476

Let cx = (x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn) be the coordinates of system cx, and let cy =477

(x′
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′
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′
1), (x

′
2, y

′
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′
2), . . . , (x

′
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′
n, z

′
n) be the coordinates of system cy . Define a function D(cx, cy) =478

(d11, d12, d13), (d21, d22, d23), . . . , (dn1, dn2, dn3) where dij =
√

(xi − x′
j)

2 + (yi − y′
j)

2 + (zi − z′j)
2 for479

i, j = 1, 2, . . . , n. Since most popular SE(3) frameworks [32, 4, 34] utilize the relative distance to represent480

coordinates, we replace all coordinates with this matrix representation.481

The deviation between using accurate ligand coordinates and inaccurate ligand coordinates can be written as482

s(x̃m, xp)−s(xm, xp). If we applied the Taylor expansion of the first order, the deviation becomes proportionate483

to the distance perturbation.484

s(x̃m, xp)− s(xm, xp)

= fθ (D (cm + δ, cm + δ) , hm)⊤ g (D (Cp, Cp) , hp)− fθ (D (cm, cm) , hm)⊤ g (D (Cp, Cp) , hp)

≈ ∂fθ
∂D(cm, cm)

(D(cm, cm), hm) · (D (cm + δ, cm + δ)−D (cm, cm))

(8)

If the RDkit simulated conformation of the ligand is close enough to the protein-induced conformation, we485

can find the optimal Rotation R and translation t to fit the two conformations in 3D space that satisfies486

(cn + δ)R⊤ + t = cn, which further means D (cm + δ, cm + δ)−D (cm, cm)) = 0. Therefore, the deviation487

will be relatively small.488

lim
δ→0

{s(x̃m, xp)− s(xm, xp)} = 0 (9)

However, when we applied the first-order Taylor expansion to the deviation of the Single-Tower model, we find489

out that the deviation is not proportional.490

kγ (hp, hm, D (cp, cp) , D (cm + δ, cm + δ) , D (cm + δ, cp))

− kγ (hp, hm, D (cp, cp) , D (cm, cm) , D (cm, cp))

≈ ∂kγ
∂D (cm + δ, cm + δ)

(·) (̇D (cm + δ, cm + δ)−D (cm, cm)))

+
∂kγ

∂D (cm, cp)
(·) (̇D (cm + δ, cp)−D (cm, cp)))

(10)

Though D (cm + δ, cm + δ)−D (cm, cm)) = 0 can be quite small if highly accurate conformation is ap-491

proximated by the simulation, the protein-molecule relative term D (cm + δ, cp)−D (cm, cp)) have to be492

approximated by an additional molecule docking process. As a result, the supervised-learning based methods493

have to rely on molecule docking software to get the optimal rotation R and translation t.494

This mathematical derivation proves that our framework is more robust and will enjoy the advantages of495

introducing large amounts of noisy data for training.496

B Implementation details497

B.1 Implementation of HomoAug498

We propose a novel method called Homo-Aug, which utilizes the concept of homologous proteins in biology for499

data augmentation. Our core idea is to combine ligands from the PDBbind database with homologous proteins500

corresponding to their protein pockets, thereby generating new training data. Homologous sequences play a501

fundamental role in the domain of proteins, representing proteins that share a common ancestry in terms of502

evolutionary relationships. These homologous proteins exhibit certain resemblances in terms of their sequence,503

structure, and interactions with ligands. By incorporating homologous proteins alongside ligands, we introduce504

the noise of protein evolution, which can augment data while mitigates the risk of significant alterations in the505

binding properties of proteins and ligands.For our study, we opted to utilize the AlphaFold protein structure506

database [16, 40] as our search library for homologous proteins. This database leverages the AlphaFold2 [16]507

algorithm, enabling the prediction of protein structures for those lacking structural information but possessing508

sequence data. To ensure the reliability and integrity of the database, we implemented a series of stringent509

filtering operations.Specifically, we retained only instances exhibiting high structural confidence, as indicated510

by residues with plDDT values exceeding 0.7 accounting for more than 90% of the protein structure. This511

filtering criterion ensured that our database comprised instances with robust structural predictions.Furthermore,512

13



to enhance the diversity of our database, we employed the MMseqs [12] algorithm to cluster the data using a513

50% identity threshold. This clustering process remove the very similar protein , promoting greater variation514

within the database.Through these rigorous filtering and clustering operations, we obtained a comprehensive515

homologous retrieval database comprising 8,449,772 protein sequences, each paired with its corresponding516

reliable protein structure. Utilizing the provided database, we have expanded and enriched the instances sourced517

from the PDBBind database. Our approach involved several steps to ensure the quality and diversity of the data.518

Initially, instances containing non-standard residues or pockets with multiple chains were excluded from the519

dataset. This step was undertaken due to the inherent difficulty in searching for homologous protein complexes.520

Next, for each protein’s pocket-containing chain, we employed the Jackhmmer [14] Algorithm to conduct a521

search for homologous proteins. The top 200 homologous proteins identified in the Jackhmmer search results522

were retained for each instance, thereby augmenting the dataset and enhancing its diversity.To ensure ligand523

binding within the pocket of the homologous protein, we performed structure alignment between the homologous524

proteins and the original proteins using the TMalign [48] algorithm. This alignment process aimed to identify525

similarities between the overall protein structure and the pocket region. In order to ensure the quality of the newly526

generated protein-ligand pairs, we retained only those that exhibited a sufficient degree of structural similarity.527

Specifically, we imposed the condition that the TMscore should be equal to or greater than 0.4, indicating a528

significant structural similarity, and the alignment rate of the pocket region should be equal to or greater than529

40%, denoting a substantial alignment of residues within the pocket region.Finally, we extracted the atoms of the530

homologous proteins located within a 6Å radius of the ligand, defining this extracted region as the new pocket.531

This step allowed us to precisely delineate the pocket for ligand binding and subsequent analysis.532

By employing the data augmentation method described earlier, we have achieved significant success in obtaining533

758,107 novel pocket-ligand pairs. This approach has resulted in the expansion of 51% of the original instances534

sourced from the PDBbind database. The implementation of the Homo-Aug method allows us to effectively535

harness the concept of homologous proteins and utilize it to augment our training data. Through a comprehensive536

set of filtering and alignment operations, we have successfully enhanced the diversity of the data. This537

augmentation process significantly broadens the foundation for the field of drug virtual screening, offering a538

more comprehensive and varied dataset for subsequent analyses and investigations.539

B.2 Implementation of Fine-grained Atom Interaction540

Besides aligning the representations of the global features from entire pockets and molecules, we also explore541

the usage of fine-grained features in our contrastive learning framework. When pretraining the 3D encoder, we542

also take the interactions between atoms into account. Specifically, we found out that in the complex structure,543

one single protein atom is only able to form strong interactions with a limited number of atoms from the binding544

molecule, and vice versa. From this biological intuition, we are able to propose an additional loss term that545

makes use of the fine-grained representation.546

To define our training objective, we denote the atom-level representation of a molecule i as [m1
i ,m

2
i , · · · ,mN

i ]547

and the atom-level representation of a pocket j as [p1j , p
2
j , · · · , pMj ]. To measure the alignment between the548

representations, we first employ a similarity metric as cosine similarity. Given an embedding mu
i in mi, we549

compute its similarity with all tokens in pj and select the top K most similar tokens based on the similarity550

scores. We denote the set of indices of the selected tokens in pj as Tpj .551

Similarly, for each token embedding pvj , we find its K most similar tokens in mi and represent the corresponding552

set of indices as Tmi .553

Next, we defined the loss term as follows:554

Ltopk-topk =
∑

v∈Tmi

∑
u∈Tpj

s
(
mu

i , p
v
j

)
(11)

By optimizing this topk-topk loss term, we encourage the model to focus on the most informative atom alignments,555

facilitating better representation on the fine-grained level. When implemented we add the topk-topk loss term556

as an auxiliary loss to the global-level contrastive learning objective as in Eq. 5. We also conduct experiments557

by extracting atom-level representations from different layers of the encoder to compare the difference. The558

experiment result for atom-level interaction is shown in section C.2.559

B.3 Evaluation Metrics560

There are several evaluation metrics we use in this paper for benchmarking virtual screening tasks. Here are the561

detailed explanations.562

563

BEDROC incorporates exponential weights that assign greater importance to early rankings. In the context of564

virtual screening, the commonly used variant is BEDROC85, where the top 2% of ranked candidates contribute565
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to 80% of the BEDROC score (cite). The formal definition is:566

BEDROCα =

∑NTBt
i=1 e−αri/N

Rα(
1−e−α

eα/N−1
)

× Rαsinh(α/2)
cosh(α/2)− cosh(α/2− αRα)

+
1

1− eα(1−Rα)
. (12)

Enrichment Factor(EF) is also a widely used metric, which is calculated as567

EFα =
NTBα

NTBt × α
, (13)

where NTBα is the number of true binders in the top α% and NTBt is the total number of binders in the entire568

screening pool.569

570

We also adopted ROC enrichment metric (RE), which is calculated as a ratio of the true positive rate to the571

false positive rate (FPR) at a given FPR threshold:572

RE(x%) =
TP × n

P × FPx%

, (14)

where n is the total number of compounds, TP is the number of compounds that are correctly identified as active,573

P is the total number of active compounds, and FPx% is the number of false positives predicted at a specified574

rate (e.g. 0.5%, 1%, etc.).575

B.4 Encoder Pre-training576

Our pre-training of the molecule and pocket encoders is based on the methodology proposed by UniMol [53].577

Similar to BERT [5], we utilize a masked token prediction task. In the context of molecule or pocket data, this578

task involves predicting masked atom types. To augment the complexity of the pre-training task and extract579

valuable insights from 3D coordinates, we introduce an additional task called position denoising. Specifically,580

we add random uniform noise within the range of [−1Å, 1Å] to 15% of the atom coordinates. Two tasks are581

incorporated to restore the original positions. Firstly, the model needs to predict the original distance between582

two corrupted atoms. Secondly, the model needs to estimate the original coordinates of a corrupted atom using583

the SE(3)-Equivariance coordinate system.584

B.5 Contrastive Learning Training Details585

We train our model using the Adam optimizer with a learning rate of 0.001. The other hyper-parameters are set586

to their default values. We have a batch size of 192, and we use 4 NVIDIA A100 GPU cards for acceleration. We587

train our model for a maximum of 200 epochs. To avoid overfitting, we use the CASF-2016 dataset as a validation588

set and select the epoch checkpoint with the best BEDROC85. For more detailed training configurations, please589

refer to the code.590

For the model used for human evaluation(DrugCLIP-L), we use dot product as the distance metric. For other591

models we use cosine similarity.592

C Additional Experiments593

C.1 Evaluation on Target Fishing594

Since DrugCLIP has the ability to learn the matching between proteins and molecules, it could be also used for595

target fishing, another important task in drug discovery, which entails the identification of the target from a pool596

of candidate targets that have the potential to bind to a specific molecule. We establish a benchmark using the597

CASF-2016 dataset. For each molecule, we test whether the model can correctly find its corresponding pocket598

from all other pockets. As shown in Table 6, DrugCLIP exhibits superior accuracy in the top 1 to 5 predictions599

as compared to docking software, i.e. Glide, and Vina. Conversely, DrugBA performs much poorer, with results600

comparable to random guessing.601

Note: In this benchmark, we are unable to use the CASF-2016 dataset as both the test set and the validation set.602

Therefore, we split our training set in a 9 to 1 ratio and allocate the latter portion as the validation set.603

C.2 Global and Local interactions604

As shown n Table 7, using atom embeddings from the last transformer layer yields worse performance. However,605

marginal improvement is observed when utilizing embeddings from the second last layer. Selecting the appropri-606

ate transformer layer is crucial for obtaining effective atom embeddings and enhancing model performance, and607

should be considered as future work.608
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Table 6: Result of Target Fishing Task on CASF-2016 dataset
Accuracy

@1 @2 @3 @4 @5
Vina [39] 3.38 5.26 7.52 9.02 10.15
Glide [11] 14.98 22.85 30.34 35.58 39.33

DrugBA 0.37 0.74 1.11 2.22 2.22

DrugCLIP 24.07 42.96 51.11 59.26 62.59

Table 7: Performance Comparison on DUD-E and LIT-PCBA Datasets by adding atom-level interac-
tions

DUD-E
AUROC % BEDROC % EF@1%

Global only 80.93 50.52 31.89
with last 78.87 44.72 28.65
with second 82.79 50.57 32.45

C.3 GPCR609

In this section, we demonstrate the ability of our model to pair all known human GPCR proteins with 31,422610

human metabolites using AlphaFold2 predicted models. We aim to identify unrevealed GPCR ligands to611

facilitate functional studies, as certain GPCR proteins may have unexpected functions. For example, hOF17-4,612

an olfactory receptor, locates on sperms and contributes to egg localization. To achieve this, we utilized Fpocket613

for ligand-binding pocket detection on GPCR protein surfaces and obtained 17,702 pockets. Evaluating more than614

5×108 pocket-ligand pairs would typically take around one CPU year with cutting-edge active-learning-assisted615

docking; however, our model can rank these pairs within minutes.616

We manually evaluated top-ranked pairs and predicted their binding poses using commercialized docking617

software GLIDE in the Schrodinger Suite. Our findings revealed several particularly interesting pairs, including618

three kidney-enriched olfactory GPCRs, OR2T5, OR2T11, and OR4C3, which were predicted to bind known619

metabolic wastes. The kidney-expressed olfactory system has long been known to influence urine production.620

Additionally, the presence of olfactory G protein, Golf ,and olfactory-related adenylate cyclase AC3 was621

detected in the distal convoluted tubule. When olfactory signaling was blocked via AC3 knock-out, creatinines622

accumulated in the blood, indicating defective renal function.623

Our model identified OR2T5 paired with 2-nonenal, OR2T11 paired with p-cresol, and OR4C3 paired with624

D-lactic acid. Docking poses revealed potential hydrophobic interactions, hydrogen bonds, and π − π inter-625

actions between pockets and ligands. As previous studies reported, 2-nonenal is a uremic toxin; p-cresol is an626

intermediate of tyrosine metabolism; and D-lactic acid is a widely distributed waste product. These molecules627

are highly toxic and require timely cleaning/recycling by either the excretory system or cellular processes. Our628

findings suggest that olfactory receptors in the kidney can sense metabolic wastes and regulate the excretion629

process as a feedback loop. Visualizations are shown in Figure 6,7,8.630

D Limitations631

The major limitation of our paper lies pertains to its interpretability. Although our model demonstrates enhanced632

effectiveness and efficiency, it falls short in terms of interpretability compared to traditional docking methods.633

These conventional approaches offer visualizations that elucidate the binding mechanism between a pocket and634

a molecule, providing clear explanations.635

E Negative societal impacts636

While our method has the potential to greatly expedite the drug discovery process, which is undoubtedly637

advantageous, it is important to consider the potential implications it may have on drug auditing and clinic trials.638

The increased speed and efficiency may inadvertently create additional pressures and challenges for regulatory639

bodies responsible for ensuring the safety and efficacy of new drugs.640
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(a) (b)

Figure 6: Visualization of the docking pose of OR2T5 and 2-nonenal complex. The 2D interac-
tion pattern is generated with LigPlot+. Interactions between OR2T5 and 2-nonenal are mainly
hydrophobic interactions.

(a) (b)

Figure 7: Visualization of the docking pose of OR2T11 and p-cresol complex. The 2D interaction
pattern is generated with LigPlot+. Tyr192 of OR2T11 and O1 of p-cresol form a hydrogen bond.
Tyr256 could have potential π − π interaction with p-cresol.
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Table 8: Results of Human Expert Evaluation.

5kdt 6g2o 1n5x 7ksi 8etr

Glide [11] 2 2 4 7 4

DrugCLIP 8 8 6 3 6

(a) (b)

Figure 8: Visualization of the docking pose of OR4C3 and D-lactic acid complex. The 2D interaction
pattern is generated with LigPlot+. Ser16 and Asp82 interact with D-lactic acid via hydrogen bonds.
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