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A FURTHER REMARKS

A.1 FAIRNESS METRICS

In order to inspect the fairness properties of a FR system based on a similarity scoring function s, one
generally looks at differentials in performance amongst several subgroups/segments of the population.
Such subgroups are distinguishable by a sensitive attribute (e.g. gender, race, age class, ...). For a given
(discrete) sensitive attribute that can take M > 1 different values, in A = {0, 1, . . . ,M − 1} say, we
enrich the probability space and now consider a random vector (X,Y,A) where A ∈ A indicates the
subgroup to which the individual indexed by Y belongs to. For every fixed value a ∈ A, we can further
define the FAR/FRR related to subgroup a: FARa(t) = P{s(X,X ′) > t | Y ̸= Y ′, A = A′ = a}
and FRRa(t) = P{s(X,X ′) ≤ t | Y = Y ′, A = A′ = a} for all t ∈ R, where by (X ′, Y ′, A′) is
meant an independent copy of the random triplet (X,Y,A). Ideally, a fair model/function s would
exhibit nearly constant FARa(t) values when a varies, for all t (and the same property for the
FRRa(t) values). A FR fairness metric quantifies how much a model s is far from this property.

In the following, we list several popular FR fairness metrics. All of them are used by the U.S. National
Institute of Standards and Technology (NIST) in their FRVT report (Grother, 2022). Those fairness
metrics attempt to quantify the differentials in (FARa(t))a∈A and (FRRa(t))a∈A. Each fairness
metric has two versions : one for the differentials in terms of FAR, the other for the differentials in
terms of FRR.

Max-min ratio. This metric has also been introduced by Conti et al. (2022). Its advantage is to be
very interpretable but it is sensitive to low values in the denominator.

FARmax
min (t) =

maxa∈A FARa(t)

mina∈A FARa(t)
,

FRRmax
min (t) =

maxa∈A FRRa(t)

mina∈A FRRa(t)
.

Max-geomean ratio. This metric replaces the previous minimum by the geometric mean FAR†(t)
of the values (FARa(t))a∈A, in order to be less sensitive to low values in the denominator.

FARmax
geomean(t) =

maxa∈A FARa(t)

FAR†(t)
,

FRRmax
geomean(t) =

maxa∈A FRRa(t)

FRR†(t)
.

Log-geomean sum. It is a sum of normalized logarithms.

FARlog
geomean(t) =

∑
a∈A

∣∣∣∣log10 FARa(t)

FAR†(t)

∣∣∣∣ ,
FRRlog

geomean(t) =
∑
a∈A

∣∣∣∣log10 FRRa(t)

FRR†(t)

∣∣∣∣ .
Gini coefficient. The Gini coefficient is a measure of inequality in a population. It ranges from a
minimum value of zero, when all individuals are equal, to a theoretical maximum of one in an infinite
population in which every individual except one has a size of zero. In this case, the mean FAR⋄(t)
that is used is the arithmetic mean of the values (FARa(t))a∈A.

FARGini(t) =
|A|
|A| − 1

∑
a∈A

∑
b∈A |FARa(t)− FARb(t)|
2 |A|2 FAR⋄(t)

,

FRRGini(t) =
|A|
|A| − 1

∑
a∈A

∑
b∈A |FRRa(t)− FRRb(t)|
2 |A|2 FRR⋄(t)

.

Note that it is common to plot those fairness metrics not as functions of the threshold t but as
functions of the level of FAR associated to the threshold (as for the ROC curve), meaning that the
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threshold t is set so that it achieves a FAR(t) = α ∈ (0, 1) (for the global/total population, and
not for some specific subgroup). In this sense, one would replace the threshold t in each fairness
metric by FAR−1(α). For instance, the strict definition of the max-min fairness metric is, for any
α ∈ (0, 1):

FARmax
min (α) =

maxa∈A FARa ◦ FAR−1(α)

mina∈A FARa ◦ FAR−1(α)
,

FRRmax
min (α) =

maxa∈A FRRa ◦ FAR−1(α)

mina∈A FRRa ◦ FAR−1(α)
.

For the sake of clarity, we listed the fairness metrics without the pseudo-inverse FAR−1. However,
the theoretical results within this paper take into account those strict definitions.
Remark 2. Conti et al. (2022) argue that the choice of a threshold t achieving a global FAR(t) = α
is not entirely relevant since it depends on the relative proportions of each sensitive attribute value a
within the evaluation dataset together with the relative proportion of intra-group negative pairs. They
propose instead a threshold t such that each group a satisfies FARa(t) ≤ α, for the max-min fairness
metrics FARmax

min (t) and FRRmax
min (t). Since we are dealing with a unique evaluation dataset, we do

not use such a threshold choice, to be consistent with the other three fairness metrics (max-geomean,
log-geomean and Gini) which employ a threshold t such that FAR(t) = α.

Other fairness metrics exist in the literature such as the maximum difference in the values
(FARa(t))a∈A used by Alasadi et al. (2019) and Dhar et al. (2021). They have the disadvan-
tage of not being normalized and are thus not interpretable, especially when comparing their values
at different levels α.

A.2 U-STATISTICS

In the following, we recall the definition of a generalized U -statistic and show that empirical versions
F̂ARn(t), F̂RRn(t) of the unknown metrics FAR(t), FRR(t) are such U -statistics.
Definition 1. (GENERALIZED U -STATISTIC) Let K ≥ 1 and (d1, . . . , dK) ∈ N∗K . Let
(X

(k)
1 , . . . , X

(k)
nk ), 1 ≤ k ≤ K, be K independent samples of i.i.d. random variables, taking

their values in some space Xk with distribution Fk(dx) respectively. The generalized (or K-sample)
U -statistic of degree (d1, . . . , dK) with kernel H : X d1

1 × · · · × X
dK

K → R, square integrable with
respect to the probability distribution µ = F⊗d1

1 ⊗ · · · ⊗ F⊗dK

K , is defined as

Un(H) =
1∏K

k=1

(
nk

dk

) ∑
I1

. . .
∑
IK

H(X
(1)
I1

;X
(2)
I2

; . . . ;X
(K)
IK

), (12)

where the symbol
∑

Ik
refers to summation over all nk!/(dk!(nk − dk)!) subsets

X
(k)
Ik

= (X
(k)
i1

, . . . , X
(k)
idk

) related to a set Ik of dk indexes 1 ≤ i1 < . . . < idk
≤ nk. It is

said symmetric when H is permutation symmetric in each set of dk arguments X(k)
Ik

.

Recall that F̂ARn(t), F̂RRn(t) are defined, for all t ∈ R, as:

F̂ARn(t) =
2

K(K − 1)

∑
k<l

1

nknl

nk∑
i=1

nl∑
j=1

I{s(X(k)
i , X

(l)
j ) > t}, (13)

F̂RRn(t) =
1

K

K∑
k=1

2

nk(nk − 1)

∑
1≤i<j≤nk

I{s(X(k)
i , X

(k)
j ) ≤ t}. (14)

Observe that, for a fixed similarity scoring function s, the quantity in Equation 14 can be viewed as
an average of K independent (mono-sample) non-degenerate U -statistics of degree 2 based on the
samples X(k)

1 , . . . , X
(k)
nk , 1 ≤ k ≤ K, with symmetric kernel given by:

gt(x, x
′) = I {s(x, x′) ≤ t} for all (x, x′) ∈ X 2.
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Considering (2) now, it is a K-sample U -statistic of degree (1, 1, . . . , 1) with kernel given by:

ht(x1, . . . , xK) =
2

K(K − 1))

∑
k<l

(1− gt(xk, xl)) for all (x1, . . . , xK) ∈ XK .

A.3 MORPH SPLIT

In 4, we explain that the MORPH dataset is split in two parts (only for Fig.1).

The split was made such that each part has the same number of images (n = 27.338) and the same
identities. We discarded all identities having only one image in the original MORPH dataset, which
led to remove 400 images. Then, for identities having an even number of images, we randomly chose
half of them to end up in one split, and the other half in the other split. For identities having an odd
number of images, we do the same but we give an extra image to one dataset: for the next identity
having an odd number of images, the extra image is given to the other dataset and we repeat the
process.

B ADDITIONAL EXPERIMENTS

B.1 COVERAGE OF THE CONFIDENCE BANDS
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Figure 6: Estimated coverage of our confi-
dence band method for the ROC curve eval-
uated at FAR = 10−5 (orange). The blue
dashed line represents the theoretical target.

In order to evaluate the soundness of any method
to build confidence bands, it is common practice
to compute the estimated coverage of the bands.
Specifying the confidence level 1−αCI (also called
the nominal coverage) for our bands should lead to
bands having truly a probability equal to 1 − αCI

to contain the true quantity ROC(α). To confirm
whether this is the case, one may use Nd synthetic
datasets. On each dataset separately, the confidence
bands are computed and the estimated coverage is
the proportion of those Nd confidence bands which
contains the true ROC curve. Note that this true
ROC curve is impossible to know with real data but
may be computed/approximated with synthetic data.
Ideally, the estimated coverage should be close to
the nominal coverage. In this case, the method for
building the confidence intervals is said to achieve
nominal coverage.

Synthetic data. Since our method to build confidence bands directly acts on embeddings f(xi) ∈ Rp

for a trained encoder f , defining the similarity s (Equation 1), the simplest way to create synthetic
datasets is to generate synthetic embeddings. It turns out that a natural statistical model for FR
embeddings is the mixture of von Mises-Fisher (vMF) distributions, where each component of the
mixture is associated to one identity of the dataset (see e.g. Hasnat et al. (2017) or Conti et al.
(2022)). In details, the embeddings sharing a same identity are modelled as realizations of one
vMF distribution, a gaussian in dimension p projected onto the unit hypersphere of dimension p,
characterized by its centroid (its mean vector) and its concentration parameter (the inverse of the
variance). We have randomly drawn K = 103 centroids on a hypersphere of dimension p = 128
using the Marsaglia method (Marsaglia, 1972). The concentration parameter of each vMF distribution
is drawn uniformly in [100, 800]. Those centroids and concentration parameters fully define our K
synthetic identities. A synthetic dataset is generated by sampling nk = 10 points from the vMF
distribution (Kim, 2021) associated to identity k, for each identity k within the K identities. We
obtain a synthetic dataset of n =

∑K
k=1 nk = 104 embeddings. The process is repeated to generate

Nd = 200 synthetic datasets, sharing the same K identities (i.e. the centroids and concentration
parameters are shared by all datasets).

Protocol. For each dataset, we use our recentered bootstrap method (with B = 200 bootstrap
samples) to compute confidence intervals, at a given nominal coverage 1− αCI , for the ROC curve
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evaluated at a FAR level equal to α = 10−5. This process results in Nd confidence intervals.
To approximate the ground-truth ROC value which those confidence intervals should contain, we
concatenate all Nd datasets into one dataset of Nd × n = 2× 106 embeddings and find its empirical
ROC curve R̂OCn(α), still evaluated at a FAR level equal to α = 10−5. The estimated coverage is
the proportion of the Nd confidence intervals which contains this ground-truth ROC. The result is
displayed in Figure 6, for several values of nominal coverage. We list the values displayed on Fig.6
in Table 1. The recentered bootstrap nearly achieves perfect nominal coverage, which supports the
soundness of the confidence bands presented within the paper. In other words, the width of each
confidence interval is nearly equal to the theoretical target. Theorem 1 claims that this fact is true
when the number of evaluation data goes to infinity. In the present case, we demonstrate that the
result holds even in the non asymptotic regime.

Table 1: Estimated coverage of the ROC curve evaluated at
FAR = 10−5, using the recentered bootstrap, for several nomi-
nal coverage values.

Nominal coverage Estimated coverage
0.95 0.96
0.90 0.90
0.85 0.87
0.80 0.82
0.75 0.78
0.70 0.72
0.65 0.67
0.60 0.62
0.55 0.57
0.50 0.51
0.45 0.49
0.40 0.42
0.35 0.37
0.30 0.32
0.25 0.26
0.20 0.23
0.15 0.18
0.10 0.11
0.05 0.04

Naive bootstrap. We now compute the estimated coverage of the ROC curve, when using the naive
bootstrap (Bertail et al., 2008), as a baseline for our method. Computing confidence bands, at nominal
coverage 1− αCI = 95%, for the ROC curve on one of the Nd datasets leads to Fig. 7 (using the
naive bootstrap) and Fig. 8 (using the recentered bootstrap). As seen with real data in Fig.3, the naive
bootstrap underestimates the ROC curve, and thus the confidence bands. In Fig.7-8, the ground-truth
ROC curve (not the empirical one) is depicted in dashed lines. Note that the confidence band from
the naive bootstrap does not contain the ground-truth ROC for many FAR values. This leads to
an estimated coverage for the naive bootstrap that is experimentally equal to zero, no matter what
is the confidence level/nominal coverage. For a real comparison between the naive and recentered
bootstraps, we choose a FAR value for which the naive bootstrap has chances of being accurate.
In this sense, we do not consider the ROC evaluated at FAR = 10−5, as in Fig.6, but rather at
FAR = 10−1, where the ground-truth ROC seems to be contained within the bands of the naive
bootstrap (see Fig. 7). We employ the same protocol to compute the estimated coverage as for Fig. 6.
The results are presented in Fig. 9 for the naive and the recentered bootstraps in particular, with
nominal coverage values leading to a non-zero estimated coverage for the naive bootstrap. We list the
values displayed on Fig.9 in Table 2. Note that the naive bootstrap (Bertail et al., 2008) is far from
achieving nominal coverage. This underlines the necessity of the recentering step in the bootstrap
methodology.

Gaussian approximation. In order to provide a more meaningful baseline than the naive bootstrap
(Bertail et al., 2008), we design in the following another confidence band method. This method
is significantly close to the recentered bootstrap, as there is no such method in the literature for
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Figure 7: Confidence bands obtained by the
naive bootstrap for the ROC curve on one of
the Nd synthetic datasets. The ground-truth
ROC curve is depicted in dashed lines.
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Figure 8: Confidence bands obtained by the
recentered bootstrap for the ROC curve on one
of the Nd synthetic datasets. The ground-truth
ROC curve is depicted in dashed lines.
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Figure 9: Estimated coverage of three confidence band methods for the ROC curve evaluated at
FAR = 10−1. The blue dashed line represents the theoretical target. Three methods to build a
confidence interval are depicted: the recentered bootstrap (orange), the naive bootstrap (green) and a
gaussian approximation of the recentered bootstrap (red).

Table 2: Estimated coverage of the ROC curve evaluated at FAR = 10−1, using three confidence
band methods, for several nominal coverage values. For each nominal coverage, the best method is
displayed in bold, the second best one is underlined.

Estimated coverage
Nominal coverage Recentered bootstrap Naive bootstrap Gaussian approximation

0.95 0.92 0.55 0.92
0.90 0.91 0.54 0.92
0.85 0.90 0.50 0.91
0.80 0.83 0.45 0.89
0.75 0.77 0.40 0.83
0.70 0.74 0.34 0.77
0.65 0.68 0.30 0.76
0.60 0.62 0.30 0.70
0.55 0.53 0.30 0.67
0.50 0.48 0.28 0.62
0.45 0.44 0.23 0.59
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similarity scoring tasks. The process is almost the same than for Algorithm 2 (recentered bootstrap)
where one forms bootstrap samples, then computes a bootstrap version R̂OC

∗
n. Using the recentering

R̃OCn, one gets recentered bootstrap versions of the ROC curve, defined as R̂OCn(α) + ϵ̂
(2)
n (α)

where ϵ̂
(2)
n (α) = R̂OC

∗
n(α)− R̃OCn(α) (see 3.2). Algorithm 2 then defines the confidence bands

as the αCI

2 -th and 1−αCI

2 -th quantiles of those recentered bootstrap versions of the ROC. Instead
of considering those quantiles, a simple idea would be to model R̂OCn(α) + ϵ̂

(2)
n (α) as a gaussian

random variable. As for Algorithm 2 where one simulates B realizations of ϵ̂
(2)
n (α), the same

process is applied here to estimate the parameters (mean and variance) of the gaussian distribution of
R̂OCn(α)+ ϵ̂

(2)
n (α). Once the parameters estimated, this gaussian approximation allows us to define

the bounds of the confidence interval as the αCI

2 -th and 1−αCI

2 -th quantiles of the corresponding
gaussian law. Note that this approximation relies a lot on the recentering which we present within the
paper. The estimated coverage of the ROC curve using this gaussian approximation is displayed in
Fig. 9 and Table 2. This baseline outperforms significantly the naive bootstrap (Bertail et al., 2008),
while being slightly less accurate than our recentered bootstrap. A disadvantage of this method,
compared to the recentered bootstrap, is that the confidence intervals are too wide, as seen in Fig. 9
(the estimated coverage in red is most of the time higher than the nominal coverage). Having too
wide confidence intervals has its flaws, as one could claim that two models are indistinguishable in
terms of performance (ROC) whereas they are not. Confidence bands must be precise, proven valid,
in order to be meaningful.

B.2 COMPARISON OF THE UNCERTAINTY OF FAIRNESS METRICS

In this section, we compute the normalized uncertainty (Eq. 11) for the considered FR fairness metrics,
as for Fig.5. In Fig. 10 and 11, we display those uncertainty metrics computed on the MORPH
dataset, with the gender label as the sensitive attribute, for two distinct models (CurricularFace and
CosFace).

In Fig. 12 and 13, we display those uncertainty metrics computed on the MORPH dataset, with
the age label as the sensitive attribute, for two distinct models (CurricularFace and CosFace). The
discrete age labels provided by the MORPH dataset are age group labels: ’<20’, ’20-29’, ’30-39’,
’40-49’, ’50+’.

Lastly, we change the evaluation dataset and the backbone of the pre-trained model. We use as
encoder the trained3 model ArcFace (Deng et al., 2019a) whose CNN architecture is a ResNet100
(Han et al., 2017). It has been trained on the MS1M-RetinaFace dataset, introduced by (Deng et al.,
2019b) in the ICCV 2019 Lightweight Face Recognition Challenge. We choose the dataset RFW
(Wang et al., 2019) as evaluation dataset. It is composed of 40k face images from 11k distinct
identities. This dataset is also provided with ground-truth race labels (the four available labels are:
African, Asian, Caucasian, Indian) and is widely used for fairness evaluation since it is equally
distributed among the race subgroups, in terms of images and identities. The official RFW protocol
only considers a few matching pairs among all the possible pairs given the whole RFW dataset. The
number of images is typically not enough to get good estimates of our fairness metrics at low FAR.
To overcome this, we consider all possible same-race matching pairs among the whole RFW dataset.
In Fig.14, we use ArcFace with ResNet100 backbone evaluated on RFW with the sensitive attribute
being the race label.

B.3 OTHER FAIRNESS METRICS FOR FIGURE 4

In Fig. 4, we provide a use-case of model selection depending on a strict fairness constraint. The
uncertainty of the fairness metric FRRmax

min can be high for some models as it can be low. A strict
fairness constraint may forbid some models, given their high fairness uncertainty.

We illustrated this use-case with the fairness metric FRRmax
min . In this section, we provide the

equivalent of Fig. 4, but for all FRR fairness metrics, for completeness. Those equivalents are
displayed in Fig. 16 (FRRmax

geomean), Fig. 17 (FRRlog
geomean) and Fig. 18 (FRRGini). As for Fig. 4, the

3https://github.com/deepinsight/insightface/tree/master/recognition/
arcface_torch.
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Figure 10: Normalized uncertainty of several
fairness metrics (FAR fairness in solid lines,
FRR fairness in dashed lines). The dataset is
MORPH, the sensitive attribute is the gender
label and the encoder f is CurricularFace.
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Figure 11: Normalized uncertainty of several
fairness metrics (FAR fairness in solid lines,
FRR fairness in dashed lines). The dataset is
MORPH, the sensitive attribute is the gender
label and the encoder f is CosFace.
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Figure 12: Normalized uncertainty of several
fairness metrics (FAR fairness in solid lines,
FRR fairness in dashed lines). The dataset is
MORPH, the sensitive attribute is the age label
and the encoder f is CurricularFace.
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Figure 13: Normalized uncertainty of several
fairness metrics (FAR fairness in solid lines,
FRR fairness in dashed lines). The dataset is
MORPH, the sensitive attribute is the age label
and the encoder f is CosFace.
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Figure 14: Normalized uncertainty of several fairness metrics (FAR fairness in solid lines, FRR
fairness in dashed lines). The dataset is RFW, the sensitive attribute is the race label and the encoder
f is ArcFace with ResNet backbone.
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Figure 15: Confidence bands at 95% confi-
dence level for the FRRmax

min fairness metric,
for two models (ArcFace, AdaCos). The em-
pirical fairness metrics are depicted as solid
lines.
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Figure 16: Confidence bands at 95% confi-
dence level for the FRRmax

geomean fairness met-
ric, for two models (ArcFace, AdaCos). The
empirical fairness metrics are depicted as solid
lines.
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Figure 17: Confidence bands at 95% confi-
dence level for the FRRlog

geomean fairness met-
ric, for two models (ArcFace, AdaCos). The
empirical fairness metrics are depicted as solid
lines.
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Figure 18: Confidence bands at 95% confi-
dence level for the FRRGini fairness metric,
for two models (ArcFace, AdaCos). The em-
pirical fairness metrics are depicted as solid
lines.

evaluation dataset is MORPH, the sensitive attribute is the gender label and the number of bootstrap
samples given to Algorithm 2 is B = 200.

Note that the conclusions from Fig. 4 are unchanged when considering other fairness metrics. Indeed,
the fairness metrics of AdaCos and ArcFace all exhibit exactly the same behaviour : both empirical
fairness metrics intersect at the same FAR level for all fairness metrics, and the upper bounds of
both fairness metrics also intersect at the same FAR levels for all fairness metrics. This striking fact
highlights the fact that all fairness metrics measure the same performance differentials. However, one
significant difference between those metrics is their uncertainty: the width of the confidence bands
can be high, relatively to the value of the empirical fairness, making the fairness metric not so robust.
The comparison of the uncertainty between fairness metrics is displayed in Fig. 5 and in Section B.2.

B.4 FAIRNESS METRICS ON RFW DATASET

For comprehensiveness, we give the confidence bands for all eight considered fairness metrics, listed
in section A.1 (see Figures 19, 20, 21, 22). This is the result of Algorithm 2 applied to each fairness
metric. We chose the RFW dataset (Wang et al., 2019), as it is balanced in race labels. We already
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Figure 19: Confidence bands at 95% confi-
dence level for the FARmax

min and FRRmax
min fair-

ness metrics. B = 100 bootstrap samples are
used. The empirical fairness metrics are de-
picted as solid lines.
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Figure 20: Confidence bands at 95%
confidence level for the FARmax

geomean and
FRRmax

geomean fairness metrics. B = 100 boot-
strap samples are used. The empirical fairness
metrics are depicted as solid lines.
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Figure 21: Confidence bands at 95%
confidence level for the FARlog

geomean and
FRRlog

geomean fairness metrics. B = 100 boot-
strap samples are used. The empirical fairness
metrics are depicted as solid lines.
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Figure 22: Confidence bands at 95% confi-
dence level for the FARGini and FRRGini fair-
ness metrics. B = 100 bootstrap samples are
used. The empirical fairness metrics are de-
picted as solid lines.

used the gender and age labels within the paper. The model is ArcFace and we evaluate its fairness at
each FARtotal = α ∈ [0, 1] level.

C PSEUDO-CODE

C.1 PSEUDO-CODE FOR THE NAIVE BOOTSTRAP

Algorithm 1 provides a pseudo-code for the naive bootstrap of R̂OCn(α), described in section 3.2.
The idea is to sample with replacement nk images among the images of identity k (the i.i.d. variables
X

(k)∗
1 , . . . , X

(k)∗
nk with distribution F̂k) for each identity k = 1, . . . ,K. With those new data, one

is able to compute F̂AR
∗
n(t) and F̂RR

∗
n(t) from Eq. 8 and 9, and thus a bootstrap version R̂OC

∗
n(α)

of the ROC curve.

By repeating this process B times, one is able to better estimate the variability of R̂OCn(α). At
each step b, for b = 1, . . . , B, one creates a bootstrap sample X(b) of image data and ends up with

a bootstrap version R̂OC
∗
n,(b)(α) of the empirical R̂OCn(α). Accumulating those values for many

steps b and for all α ∈ (0, 1) gives the bundle of light-blue ROC curves in Fig. 2. As explained
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in section 3.2, those curves are not centered around the empirical R̂OCn, but around its V-statistic
counterpart given by R̃OCn(α) = F̃RRn ◦ (F̂ARn)

−1(α).

Algorithm 1 Naive bootstrap of R̂OCn(α)

Input: K ≥ 1, images (X(1)
1 , . . . , X

(K)
nK ), encoder f

Require: α ∈ (0, 1), B ≥ 1

Output: B naive bootstrap versions R̂OC
∗
n(α) =

(
R̂OC

∗
n,(b)(α)

)
1≤b≤B

of the empirical ROC

R̂OC
∗
n(α)← ∅

for b← 1, . . . , B do
X(b) ← ∅
for k ← 1, . . . ,K do

X
(k)
(b) ← sample with replacement nk images among (X

(k)
1 , . . . , X

(k)
nk )

X(b) ← X(b) ∪X
(k)
(b)

end for
R̂OC

∗
n,(b)(α)← F̂RR

∗
n ◦ (F̂AR

∗
n)

−1(α) for bootstrap sample X(b)

R̂OC
∗
n(α)← R̂OC

∗
n(α) ∪ R̂OC

∗
n,(b)(α)

end for
return R̂OC

∗
n(α)

Naive bootstrap of fairness metrics. Let us take the fairness metric FRRmax
min (α) as an example. It

is defined in section 2.2 as:

FRRmax
min (t) =

maxa∈A FRRa(t)

mina∈A FRRa(t)
with t such that FAR(t) = α.

Its empirical version can be defined (see D.3), with the notations F̂RRn,a(t) and F̂ARn(t) (defined
in Equations 21 and 2), as:

F̂RR
max

min,n(α) =
maxa∈A F̂RRn,a ◦ (F̂ARn)

−1(α)

mina∈A F̂RRn,a ◦ (F̂ARn)−1(α)
.

To define the naive bootstrap of the quantity FRRmax
min (α), it is necessary to first define the naive

bootstrap of the quantity F̂RRn,a(t) (and F̂ARn,a(t) if we consider FAR fairness metrics). The
procedure is completely similar to the bootstrap of F̂RRn(t) and F̂ARn(t), presented in section 3.2.

The bootstrap paradigm suggests to recompute the quantities F̂RRn,a(t) and F̂ARn,a(t) from inde-
pendent sequences of i.i.d. variables X(k)∗

1 , . . . , X
(k)∗
nk with distribution

F̂k =
1

nk

nk∑
i=1

δ
X

(k)
i

, (15)

conditioned upon the original dataset D = {X(k)
1 , . . . , X

(k)
nk : k = 1, . . . , K}. In practice of

course, the resampling scheme would be applied B ≥ 1 times in order to compute Monte-Carlo
approximations of the distributions of

F̂RR
∗
n,a(t) =

1

Ka

K∑
k=1
ak=a

2

nk(nk − 1)

∑
1≤i<j≤nk

I{s(X(k)∗
i , X

(k)∗
j ) ≤ t}, (16)

F̂AR
∗
n,a(t) =

2

Ka(Ka − 1)

∑
k<l

ak=al=a

1

nknl

nk∑
i=1

nl∑
j=1

I{s(X(k)∗
i , X

(l)∗
j ) > t}. (17)
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Those boostrap versions of F̂RRn,a(t) and F̂ARn,a(t) allow to define a bootstrap version of each
fairness metric. In our running example, the fairness metric FRRmax

min (α), one may compute its
bootstrap version

F̂RR
max∗
min,n(α) =

maxa∈A F̂RR
∗
n,a ◦ (F̂AR

∗
n)

−1(α)

mina∈A F̂RR
∗
n,a ◦ (F̂AR

∗
n)

−1(α)
. (18)

The naive bootstrap for the fairness metric FRRmax
min (α) follows exactly the same algorithm as

Algorithm 1, except that the variable R̂OC
∗
n(α) is now the bootstrap fairness metric F̂RR

max∗
min,n(α)

and the line R̂OC
∗
n,(b)(α)← F̂RR

∗
n ◦ (F̂AR

∗
n)

−1(α) becomes

F̂RR
max∗
min,n,(b)(α)←

maxa∈A F̂RR
∗
n,a ◦ (F̂AR

∗
n)

−1(α)

mina∈A F̂RR
∗
n,a ◦ (F̂AR

∗
n)

−1(α)
.

C.2 PSEUDO-CODE FOR THE COMPUTATION OF A CONFIDENCE INTERVAL

Algorithm 2 provides a pseudo-code for the computation of a confidence interval for R̂OCn(α)
at level 1 − αCI . It requires the output of Algorithm 1 which gives B naive bootstrap versions(
R̂OC

∗
n,(b)(α)

)
1≤b≤B

of the empirical ROC. As explained in section 3.2, the recentered bootstrap

for R̂OCn(α) consists in taking each naive boostrap version R̂OC
∗
n,(b)(α), computing its distance to

the V-statistic counterpart R̃OCn(α) = F̃RRn ◦ (F̂ARn)
−1(α), and then shifting it by R̂OCn(α).

This is exactly what Algorithm 2 does, but the shift is done after computation of the quantiles (for
the confidence interval). For each naive bootstrap version R̂OC

∗
n,(b)(α), we compute the gap with

respect to the V-statistic R̃OCn(α), and accumulate, for all bootstrap steps b, those distances into the
variable gap. Then, a confidence interval at level 1− αCI is computed, giving one lower bound l and
one upper bound u, defining the confidence interval. Eventually, this confidence interval is shifted by
R̂OCn(α) as mentioned earlier.

Algorithm 2 Confidence interval for R̂OCn(α)

Input: K ≥ 1, images (X(1)
1 , . . . , X

(K)
nK ), encoder f

Require: α ∈ (0, 1), B ≥ 1, αCI ∈ (0, 1)

R̂OC
∗
n(α) =

(
R̂OC

∗
n,(b)(α)

)
1≤b≤B

from Algorithm 1

Output: l and u, bounds for the confidence interval of R̂OCn(α) at level 1− αCI

R̃OCn(α)← F̃RRn ◦ (F̂ARn)
−1(α) for original data (X

(1)
1 , . . . , X

(K)
nK )

gap← ∅
for b← 1, . . . , B do

gap(b) ← R̂OC
∗
n,(b)(α)− R̃OCn(α)

gap← gap ∪ gap(b)
end for
l← αCI

2
-th quantile of gap

u← (1− αCI

2
)-th quantile of gap

R̂OCn(α)← F̂RRn ◦ (F̂ARn)
−1(α) for original data (X

(1)
1 , . . . , X

(K)
nK )

l← R̂OCn(α) + l

u← R̂OCn(α) + u
return l, u

Confidence interval for fairness metrics. Let us take the fairness metric FRRmax
min (α) as an

example. It is defined in section 2.2 as:

FRRmax
min (t) =

maxa∈A FRRa(t)

mina∈A FRRa(t)
with t such that FAR(t) = α.
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Its empirical version can be defined (see D.3), with the notations F̂RRn,a(t) and F̂ARn(t) (defined
in Equations 21 and 2), as:

F̂RR
max

min,n(α) =
maxa∈A F̂RRn,a ◦ (F̂ARn)

−1(α)

mina∈A F̂RRn,a ◦ (F̂ARn)−1(α)
.

To achieve the computation of a confidence interval, the method to do it for the ROC curve, presented
above, uses the V-statistic counterpart. In the same way as for F̂RRn(t) (see section 3.2), we can
define the V-statistic counterpart for F̂RRn,a(t) as

F̃RRn,a(t) :=
1

Ka

K∑
k=1
ak=a

1

n2
k

∑
1≤i,j≤nk

I{s(X(k)
i , X

(k)
j ) ≤ t}. (19)

As for the ROC curve, this allows us to define the V-statistic counterpart of the fairness metric
FRRmax

min (α) as

F̃RR
max

min,n(α) =
maxa∈A F̃RRn,a ◦ (F̂ARn)

−1(α)

mina∈A F̃RRn,a ◦ (F̂ARn)−1(α)
. (20)

The computation of a confidence interval for the quantity FRRmax
min (α) follows exactly the same

algorithm as Algorithm 2. We require the output F̂RR
max∗
min,n,(b)(α), instead of R̂OC

∗
n,(b)(α), for

b = 1, . . . , B, of Algorithm 1 applied to FRRmax
min (α). For the V-statistic, the line R̃OCn(α) ←

F̃RRn ◦ (F̂ARn)
−1(α) becomes

F̃RR
max

min,n(α)←
maxa∈A F̃RRn,a ◦ (F̂ARn)

−1(α)

mina∈A F̃RRn,a ◦ (F̂ARn)−1(α)
,

hence the gap now measures the distance between F̂RR
max∗
min,n,(b)(α) and F̃RR

max

min,n(α). For the

empirical part, the line R̂OCn(α)← F̂RRn ◦ (F̂ARn)
−1(α) becomes

F̂RR
max

min,n(α)←
maxa∈A F̂RRn,a ◦ (F̂ARn)

−1(α)

mina∈A F̂RRn,a ◦ (F̂ARn)−1(α)
,

as well as for the ending lines shifting bounds of the confidence interval.

C.3 PSEUDO-CODE FOR THE COMPUTATION OF THE UNCERTAINTY

Algorithm 3 provides a pseudo-code for the computation of the normalized uncertainty (Eq. 11)
for the ROC curve. It requires the output of Algorithm 1 which gives B naive bootstrap versions(
R̂OC

∗
n,(b)(α)

)
1≤b≤B

of the empirical ROC. As explained in section 3.2, the standard deviation
of each of those B boostrapped values (minus the V-statistic counterpart) is computed and then
divided by R̂OCn(α). The algorithm is quite similar to the one used to compute confidence intervals
(Algorithm 2).

Uncertainty of fairness metrics. The extension to those quantities is completely similar to the
extension detailed for Algorithm 2. The computation of the normalized uncertainty for all fairness
metrics is provided in Figure 5 and allows to compare the uncertainty of each fairness metric to
exhibit their relative robustness.

D TECHNICAL DETAILS

D.1 A NOTE ON THE PSEUDO-INVERSE OF THE FAR QUANTITY

In 2.2, we introduced the FAR metric, defined as:

FAR(t) = P{s(X,X ′) > t | Z = −1},
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Algorithm 3 Uncertainty of R̂OCn(α)

Input: K ≥ 1, images (X(1)
1 , . . . , X

(K)
nK ), encoder f

Require: α ∈ (0, 1), B ≥ 1

R̂OC
∗
n(α) =

(
R̂OC

∗
n,(b)(α)

)
1≤b≤B

from Algorithm 1

Output: U , normalized uncertainty of R̂OCn(α)

R̃OCn(α)← F̃RRn ◦ (F̂ARn)
−1(α) for original data (X

(1)
1 , . . . , X

(K)
nK )

gap← ∅
for b← 1, . . . , B do

gap(b) ← R̂OC
∗
n,(b)(α)− R̃OCn(α)

gap← gap ∪ gap(b)
end for
U ← standard deviation of gap
R̂OCn(α)← F̂RRn ◦ (F̂ARn)

−1(α) for original data (X
(1)
1 , . . . , X

(K)
nK )

U ← U/R̂OCn(α)
return U

and the ROC curve as ROC: α ∈ (0, 1) 7→ FRR ◦ FAR−1(α).

The pseudo-inverse of any cumulative distribution function (cdf) κ(t) on R is defined as

κ−1(α) = inf{t ∈ R : κ(t) ≥ α}, for α ∈ (0, 1).

Note that the quantity FAR(t) is not a cdf, so that its pseudo-inverse is not well defined. However,
the opposite of FAR(t), the True Rejection Rate (TRR), is a proper cdf:

TRR(t) = 1− FAR(t) = P{s(X,X ′) ≤ t | Z = −1}.

As such, the pseudo-inverse TRR−1(α) is well defined for the TRR quantity. This allows to define
the pseudo-inverse for FAR. Indeed, for any α ∈ (0, 1) satisfying FAR(t) = α, one would get the
following TRR

TRR(t) = 1− α.

The threshold t of interest is found using the pseudo-inverse of TRR (see Hiesh & Turnbull (1996)):

FAR−1(α) : = TRR−1(1− α) = (1− FAR)−1(1− α).

This definition is extended to other quantities within the paper, all being the opposite of one cdf.

D.2 PROOF OF PROPOSITION 1 - CONSISTENCY OF THE EMPIRICAL SIMILARITY ROC CURVE

In the multi-sample asymptotic framework 2.1, by virtue of the U -statistic’s version of the Strong
Law of Large Numbers (see Serfling (1980) or Lee (1990)), we almost-surely have:

F̂ARn(t)→ FAR(t) and F̂RRn(t)→ FRR(t) as n→ +∞,

for all t ∈ R. Applying next the argument of Lemma 21.2 in van der Vaart (1998), we deduce that,
for all α ∈ (0, 1), we have with probability one:

(F̂ARn)
−1(α)→ FAR−1(α) as n→ +∞.

We thus obtain the pointwise consistency of the empirical similarity ROC curve, the uniform version
being immediately obtained by a classic Dini’s argument, given the monotone nature of (empirical)
ROC curves.

Notice incidentally that a bound of order OP(1/
√
n) could be established by means of the same

linearization techniques (i.e. Hoeffding decomposition) as those used in Vogel et al. (2018).
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D.3 DEFINITIONS OF F̂ARn,a(t), F̂RRn,a(t) AND EMPIRICAL FAIRNESS METRICS

Without specifying any particular subgroup a (i.e. considering the global poulation), we have already
explained in section 3.1 that F̂ARn(t) and F̂RRn(t) (defined in Equations 2 and 3) are natural
empirical versions of FAR(t) and FRR(t). We extend here their definitions to one specific subgroup
a ∈ A. For this purpose, we first define ak ∈ A the (sensitive) attribute label associated with identity
k, that is the subgroup to which all images of identity k belong to. We also define Ka the number of
identities which belong to subgroup a ∈ A, within the evaluation dataset. For any a ∈ A, we then
define the natural empirical versions of FARa(t) and FRRa(t):

F̂RRn,a(t) =
1

Ka

K∑
k=1
ak=a

2

nk(nk − 1)

∑
1≤i<j≤nk

I{s(X(k)
i , X

(k)
j ) ≤ t}, (21)

F̂ARn,a(t) =
2

Ka(Ka − 1)

∑
k<l

ak=al=a

1

nknl

nk∑
i=1

nl∑
j=1

I{s(X(k)
i , X

(l)
j ) > t}. (22)

Note that they are still U-statistics, as for F̂ARn(t) and F̂RRn(t).

The empirical versions of the fairness metrics listed in section A.1 can then be expressed in terms of
F̂ARn,a(t), F̂RRn,a(t) and F̂ARn(t). Let us take the fairness metric FRRmax

min (α) as an example. It
is defined in section A.1 as:

FRRmax
min (α) =

maxa∈A FRRa ◦ FAR−1(α)

mina∈A FRRa ◦ FAR−1(α)
.

Its empirical version is simply defined as:

F̂RR
max

min,n(α) =
maxa∈A F̂RRn,a ◦ (F̂ARn)

−1(α)

mina∈A F̂RRn,a ◦ (F̂ARn)−1(α)
.

D.4 ASSUMPTIONS FOR NEXT RESULTS

The following results hold under the classic (mild) assumptions below.

As in D.1, we still define TRR as the cdf associated to the FAR quantity.
Assumption 1. The univariate distributions TRR and FRR have densities h and g respectively and
the slope of the ROC curve is bounded: supα∈[0,1]{g(TRR−1(α))/h(TRR−1(α))} <∞.

Assumption 2. The cdf TRR is twice differentiable on [0, 1] and ∀α ∈ [0, 1], h(α) > 0 and there
exists γ > 0 such that supα∈[0,1]{α(1− α) · d log(h ◦ TRR−1(α))/dα} ≤ γ <∞.

D.5 ASYMPTOTIC VALIDITY OF THE NAIVE AND RECENTERED BOOTSTRAPS

The result below also states the asymptotic validity of the naive bootstrap, described in 3.2.
Theorem 2. Suppose that Assumptions 1-2 are satisfied. Then, for all α ∈ (0, 1), we almost-surely
have:

sup
v∈R

∣∣∣P∗
{√

n|R̂OC
∗
n(α)− R̂OCn(α)| ≤ v | D

}
− P

{√
n|R̂OCn(α)− ROC(α)| ≤ v

}∣∣∣→ 0,

(23)
as n→ +∞.

The proof is the same as that of Theorem 3.

The result below states the asymptotic validity of the recentered bootstrap for the ROC curve,
described in 3.2. As explained within the proof, the result holds when replacing the ROC curve
by fairness metrics. Indeed, one can define the bootstrap fairness metrics, as well as the V -statistic
version of those metrics, in the same way than for the ROC curve.
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Theorem 3. Suppose that Assumptions 1-2 are satisfied. Then, for all α ∈ (0, 1), we almost-surely
have:

sup
v∈R

∣∣∣P∗
{√

n|R̂OC
∗
n(α)− R̃OCn(α)| ≤ v | D

}
− P

{√
n|R̂OCn(α)− ROC(α)| ≤ v

}∣∣∣→ 0,

(24)
as n→ +∞.

Proof. The asymptotic validity of the naive bootstrap procedure for non-degenerate (generalized,
multivariate) U -statistics is proved in Bickel & Freedman (1981) (see section 3 therein, refer also
to Theorem 3 in Janssen (1997) and to Theorem 3.3 in Shao & Tu (1995)). The proof is based on
their asymptotic Gaussianity as well as that of the related V -statistics in the asymptotic framework
2.1 (refer to e.g. Lee (1990)), which holds true under the assumptions stipulated, combined with
a coupling argument. Hence, with probability one, the absolute deviation between the bootstrap
approximation

P∗
{√

n
(
F̂AR

∗
n(t1)− F̂ARn(t1)

)
≤ u,

√
n
(
F̂RR

∗
n(t2)− F̃RRn(t2)

)
≤ v | D

}
and the root distribution

P
{√

n
(
F̂ARn(t1)− FAR(t1)

)
≤ u,

√
n
(
F̂RRn(t2)− FRR(t2)

)
≤ v

}
converges to 0, uniformly in (u, v) ∈ R2, as n→∞. As noticed in Janssen (1997), the bootstrapped
FRR statistic F̂RR

∗
n(t2) can be recentered either by the V -statistic version F̃RRn(t2) or else by the

original U -statistic F̂RRn(t2) due to the non-degeneracy property.

In addition, under the hypotheses stipulated, the asymptotic normality of the bivariate random vectors

√
n
(
(F̂ARn)

−1(α)− FAR−1(α), F̂RRn(t)− FRR(t)
)

can be classically deduced from that of the random vectors

√
n
(
F̂ARn(t1)− FAR(t1), F̂RRn(t2)− FRR(t2)

)
by means of classic (linearization) arguments for empirical quantiles (see e.g. Chapter 21 in van der
Vaart (1998)). A Central Limit Theorem for

√
n(R̂OCn(α)− ROC(α)) can be easily deduced and

exactly the same argument as the one developed in Bickel & Freedman (1981) can then be used to
prove (24).

In a similar fashion, the asymptotic validity of the naive/recentered bootstrap applied to Hadamard
differentiable functionals of the random vector (F̂ARn,a(t), F̂RRn,a(t

′))a∈A, such as the fairness
metrics considered here, results from the asymptotic normality property combined with Theorem
23.9 in van der Vaart (1998).

D.6 CONSISTENCY OF THE COVERAGE PROVIDED BY THE CONFIDENCE INTERVALS

It results from Theorem 3.

Corollary 1. Let α ∈ (0, 1) and αCI ∈ (0, 1). Under the assumptions of Theorem 3, we have:

P{l(n,B)
αCI

(α) ≤ ROC(α) ≤ u(n,B)
αCI

(α)} → 1− αCI ,

as n and B both tend to +∞.

Proof. The consistency of the probability coverages of the Monte Carlo confidence intervals based
on B ≥ 1 bootstrap replicates and described in subsection 3.2 immediately results from Theorem 3,
combined with the Strong Law of Large Numbers.
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D.7 BOOTSTRAP AND NORMALIZED UNCERTAINTY OF FAIRNESS METRICS

We have illustrated all results with the use case of the ROC curve but those results hold for the
fairness metrics listed in A.1. One only has to replace the ROC-related quantities by their fairness
counterparts:

• ROC(α): the true fairness metrics have been defined in A.1.

• R̂OCn(α): the empirical fairness metrics are defined in D.3. Their definition is very similar
to R̂OCn(α) in the sense that one has to replace the FAR, FRR quantities by their empirical
versions (plug-in).

• R̂OC
∗
n(α): the bootstrap fairness metrics are nothing but the empirical fairness metrics,

computed with a bootstrap sample, instead of the original dataset (exactly like the ROC
curve).

• R̃OCn(α): the V -statistic version of fairness metrics is simply obtained by replacing
FARa(t) with its empirical version F̂ARn,a(t) (see D.3) and FRRa(t) with its V -statistic
version, exactly as for the ROC curve.

Bootstrap and confidence intervals. As explained within the proof of Theorem 3, the
naive/recentered bootstrap validity holds for fairness metrics when replacing the ROC-related quanti-
ties with the fairness quantities listed above. The consistence of the confidence intervals (Corollary 1)
directly results from Theorem 3.

Normalized uncertainty. In 3.2, we defined a scalar uncertainty measure for the ROC curve as:

U [R̂OCn(α)] =

√
Var[ϵ̂

(2)
n (α) | D]

R̂OCn(α)
, (25)

with ϵ̂
(2)
n (α) = R̂OC

∗
n(α)− R̃OCn(α). Replacing R̂OC

∗
n(α), R̃OCn(α) by their fairness counter-

parts (see above) allows to get a fairness version of ϵ̂(2)n (α). Then, to get the normalized uncertainty of
a fairness measure, one only has to compute the (root of) variance of this fairness version of ϵ̂(2)n (α),
and then to normalize by the corresponding empirical fairness measure. As explained within the
proof of Theorem 3, the naive/recentered bootstrap validity holds for fairness metrics when replacing
the ROC-related quantities with the fairness quantities listed above. Thus, the normalized uncertainty
is as pertinent to fairness metrics than it is to the ROC curve.

Note that we give the methodology (bootstrap, confidence intervals, normalized uncertainty) step by
step, for one fairness metric, in the pseudo-code C.
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