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ABSTRACT

We address the individualized treatment effect (ITE) estimation problem, focus-
ing on continuous, multidimensional, and time-dependent treatments for precision
medicine. The central challenge lies in modeling these complex treatment scenar-
ios while capturing dynamic patient responses and minimizing reliance on con-
trol data. We propose the Gaussian Mixture Counterfactual Generator (GMCG),
a generative model that transforms the Gaussian mixture model—traditionally a
tool for clustering and density estimation—into a new tool explicitly geared to-
ward causal inference. This approach generates robust counterfactuals by effec-
tively handling continuous and multidimensional treatment spaces. We evaluate
GMCG on synthetic crossover trial data and simulated datasets, demonstrating its
superior performance over existing methods, particularly in scenarios with limited
control data. GMCG derives its effectiveness from modeling the joint distribution
of covariates, treatments, and outcomes using a latent state vector while employing
a conditional distribution of the state vector to suppress confounding and isolate
treatment-outcome relationships.

1 INTRODUCTION

The advent of precision medicine is fundamentally reshaping clinical research, spotlighting the de-
velopment of individualized treatment strategies tailored to each patient’s distinct characteristics
(Collins & Varmus, 2015; Jameson & Longo, 2015). This evolution has heightened the demand for
sophisticated methods to estimate treatment effects, a process complicated by the intricate nature
of real-world patient data. For instance, clinicians frequently encounter the challenge of optimiz-
ing multidimensional treatment regimens—where multiple therapeutic interventions are combined
to achieve synergistic effects (Chen et al., 2019). Equally critical is the task of determining precise
dosage combinations, which often involve continuous adjustments to maximize efficacy while min-
imizing adverse outcomes (Bica et al., 2020b). Moreover, patient responses are rarely static; they
evolve over time due to physiological changes, disease progression, or external factors (Xu et al.,
2016). These complexities underscore the need for tools capable of addressing modern healthcare
applications’ dynamic, multifaceted demands, such as personalized therapy design, clinical decision
support systems, and patient outcome forecasting.

Despite notable advances, many existing approaches struggle to tackle these challenges in a unified
manner. Some methods excel at modeling interactions among multiple treatments (Wang & Blei,
2019), while others focus on refining dosage optimization (Schwab et al., 2020) or capturing tempo-
ral dynamics in patient trajectories (Schulam & Saria, 2017). For instance, methods like propensity
score matching are limited to fixed treatment categories, restricting their applicability in continuous
dosage scenarios (Nagalapatti et al., 2024). However, these solutions often operate in isolation, lack-
ing the flexibility to integrate the full spectrum of treatment variables—combinations, dosages, and
time-dependent effects—within a single framework (Bica et al., 2021). This fragmentation poses
a significant limitation, particularly in clinical scenarios where decisions must simultaneously ac-
count for these factors interplay. Additionally, traditional techniques frequently impose simplifying
assumptions, such as fixed treatment categories or static patient states, failing to reflect real-world
care’s continuous and adaptive nature. Consequently, a critical gap remains for an approach that can
cohesively address these interwoven dimensions while remaining adaptable to diverse data environ-
ments.
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To address this, we introduce the Gaussian Mixture Counterfactual Generator (GMCG), a novel
probabilistic model rooted in the foundational principles of counterfactual generation. GMCG em-
ploys a Gaussian mixture model (GMM) to capture the joint distribution of covariates, treatments,
and outcomes, generating counterfactuals through a probability-driven approach that adheres rigor-
ously to the core tenets of causal inference. By grounding its methodology in these established prin-
ciples, GMCG ensures valid and interpretable estimation of individualized treatment effects (ITE)
across complex scenarios, including those involving multidimensional treatments and continuous
dosage spaces.

This paper makes three significant contributions to the field. First, it presents GMCG as a theoretical
advancement that unifies previously disparate elements of treatment effect estimation, repurposing
GMM—originally used for clustering or density estimation—into a robust framework for causal
inference. Second, it offers a practical methodology for designing and evaluating personalized treat-
ment strategies across varied clinical settings. Third, we validate GMCG’s performance through
extensive experiments on synthetic and simulated datasets, benchmarking it against state-of-the-art
techniques. The paper is structured as follows: Section 2 reviews related work and identifies gaps in
current approaches; Section 3 details the GMCG framework, modeling treatments as observed data
and addressing the key challenge—counterfactual generation and ITE computation—with specific
methods and formulas provided in Section 4; Section 5 presents experimental results and analysis;
and Section 6 concludes with implications for causal inference, precision medicine, and future re-
search. The appendices present the GMCG EM algorithm and pseudocode, among other details,
to facilitate a deeper understanding of its implementation. Through this work, we aim to provide
researchers and practitioners with a versatile tool to meet the evolving demands of personalized
healthcare.

2 RELATED WORK

In common types of meta-learner, two distinct concepts are prevalent: the S-learner and the T-learner
(Künzel et al., 2019; Okasa, 2022). The term ’S-learner’ is derived from the notion of a single base
learner, while ’T-learner’ is an abbreviation for two base learners (Shalit et al., 2017). In a straight-
forward scenario involving a treatment group and a control group within a patient data set, the
T-learner estimates two separate base learners: one for the treatment group data and another for the
control group data. Subsequently, it computes the difference between these two base learners. Esti-
mating ITEs based on Gaussian mixture models in the paper by (Ahn & Vashist, 2024) exemplifies
a T-learner in counterfactual generation. The GMM-based counterfactual generator demonstrated
superior performance compared to the synthetic control method on simulated low-density lipopro-
tein (LDL) data (Qian et al., 2021) and showed robustness even when dealing with heavily biased
datasets.

However, the algorithm fundamentally operates as a treatment-controlled method, requiring a
learned data distribution model on control units to generate counterfactual outcomes. This reliance
poses limitations in scenarios where control data are unavailable, such as in crossover trials with no
extended control group (Zhou et al., 2024). Additionally, its application as a T-learner is confined to
data sets with a small, finite number of groups. As the number of groups increases, preparing dis-
tinct base learners, each trained on different group data becomes necessary. A significant limitation
of such a T-learner is its inability to accommodate more complex real-world data, where potential
treatments can span a multivariate, time-varying, and continuous domain.

Despite this limitation, the algorithm provides an important conceptual foundation for our work.
Specifically, it functions as a T-learner, assuming separate distribution models for treatment and
control data. Adapting the model into an S-learner framework allows us to develop a unified model
capable of counterfactual inference even for unobserved treatment types. This adaptation allows
us to generate counterfactual data even without relying on control data for training. Therefore, our
proposed method builds upon the foundational idea, extending its applicability to complex treatment
scenarios.
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3 MODEL

In this section, we outline the latent variable model known as static state analysis (SSA), originally
used in the paper by (Ahn & Vashist, 2024), and present how our new ideas are incorporated into this
model. Building on the methodologies, we introduce two key problems. The first problem involves
a brief overview of how to train the SSA model. The second problem concerns what counterfactual
predictions to generate using the trained model.

3.1 STATIC STATE ANALYSIS (SSA)

The static state analysis decomposes a longitudinal dataset {x(t)} into a time-varying observer ma-
trix W (t) and time-independent state vectors s with additive noises η(t) ∼ N (0,Ψ(t)):

x(t) = W (t)s+ η(t). (1)

The time-independent state s is referred to as a static state. In this paper, longitudinal data x(t) gen-
erally concatenate all different types of observed data, including baseline data v (e.g., demographic
and genetic information), time-dependent covariates l(t), results y(t), and treatments a(t). x(t) and
W (t) can be written as x(t) = [a(t); l(t); y(t)] and W (t) = [W (t)

a ; W
(t)
l ; W (t)

y ] for t ≥ 1.
Equation (1) is decomposed into

a(t) = W (t)
a s+ η(t)

a , (2)

l(t) = W
(t)
l s + η

(t)
l , and y(t) = W (t)

y s + η
(t)
y with x(0) ≡ v = W (t)

v s + η
(t)
v . Equation (2) is

our new equation that is directly included as observational data, whereas the original SSA model did
not include it. Although it may appear to be a mere addition of a simple formula, it is important to
note that this single addition fundamentally alters the nature and scope of the algorithm. Equations
(1) and (2) also represent a factor model where the noise model follows a diagonal noise covariance
matrix. This paper is not the first to model treatments or causes directly using a factor model. Wang
& Blei (2019) and Bica et al. (2020a) successfully removed hidden confounding factors by directly
modeling multiple causes as latent variables.

3.2 PROBLEM I: FITTING OF A MODEL TO A DATA SET

Given an observed data set D = {x(t)
n |t ∈ Tn, n = 1, · · · , N} ⊂ D, our first problem is to

perform SSA by decomposing the data set D into a time-varying matrix W (t) and a set of static
state vectors S = {sn|n = 1, · · · , N} ⊂ S. To learn the static state space S from the dataset, we
employ a Gaussian mixture model (GMM) probabilistic distribution to model the static state as a
vector-valued random variable, which is given by

p(s) =

K∑
k=1

πkN (s;µk,Σk) (3)

where K is the number of mixture components. There is no more dependence on treatment notation
because treatment data are directly included in the observational data. The problem is to estimate
a set of parameters Q ≡ {{πk}, {µk}, {Σk},W ,Ψ} that maximizes the expected complete-data
log-likelihood by using the expectation and maximization algorithm:

Q̂ = argmax
Q

N∑
n=1

∑
t∈Tn

⟨ln p(x(t)
n , sn|Q)⟩ (4)

where ⟨sn⟩ =
∫
|ds|p(s|xn,Q) × s and ⟨snsTn ⟩ =

∫
|ds|p(s|xn,Q) × ssT . Then, we can also get

the noise vector as ⟨η(t)
n ⟩ = x

(t)
n − Ŵ

(t)
⟨sn⟩. Through GMM, latent states s can reflect various

clusters (e.g., patient types, conditions), which is essential for predicting various potential outcomes
in counterfactual scenarios.

3.3 PROBLEM II: COUNTERFACTUAL GENERATION WITH NO BACKWARD CAUSATION

Let Q̂ be a maximizer of the log-likelihood function by Equation (4) for a factual data set Df =

{x(:)
n,f|n = 1, · · · , N}. The main problem in our paper is to generate a synthetic counterfactual
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longitudinal dataset D(τ+δ:)
cf = {x(τ+δ:)

n,cf |n = 1, · · · , N} from using Q̂ when we assume that we had

assigned alternative treatments a(τ :τ+δ)
n,cf instead of a(τ :τ+δ)

n,f where we define the colon notation as
concatenating time-varying data or parameters:

x ≡ x(:) ≡

x
(0)

x(1)

...

 , W (:τ) ≡ W (0:τ) ≡

 W (0)

...
W (τ−1)

 , a(τ :τ+δ) ≡

 a(τ)

...
a(τ+δ−1)

 . (5)

Counterfactual pretreatment data must align as closely as possible with the provided factual pretreat-
ment data (Abadie & Gardeazabal, 2003; Doudchenko et al., 2021). Thus, equivalently, the above
problem can be written as generating an entire dataset Dcf = {x(:)

n,cf|n = 1, · · · , N} that satisfies

x
(:τ)
n,cf = x

(:τ)
n,f .

The subscript “f” stands for factual, and “cf” is derived from the first letters of counter-factual.
Data obtained through observation is called factual data. On the other hand, data generated through
counterfactual reasoning without being observed in the real world is referred to as counterfactual
data in this paper. Counterfactual reasoning involves considering hypothetical scenarios, such as
imagining what would happen if a patient who took medication at time τ had not taken it. Before
time τ , the patient actually did not take the medication, so the factual data and counterfactual data
are the same, which can be expressed as x

(:τ)
n,cf = x

(:τ)
n,f . The goal of this paper is to generate

counterfactual data. This can be interpreted in the context of clinical trials as virtual patient data or
a synthetic placebo arm. In the next section, we introduce the basic assumptions of counterfactual
reasoning and propose a new method for counterfactual prediction.

4 METHODS

To solve the second problem, this section details the specific assumptions and formulas for generat-
ing counterfactual predictions.

4.1 ASSUMPTIONS

A probabilistic observation refers to a process of observing outcomes that are not deterministic but
rather governed by probability distributions. In other words, instead of a single fixed outcome, there
are multiple possible outcomes, each associated with a certain probability of occurrence. In this
paper, probabilistic observation is formalized using the SSA model as follows:

Probabilistic Observation

Consider a patient with pretreatment data x(:τ)
f , who receives a course of treatment a(τ :τ+δ)

f .
Post-treatment data are obtained by monitoring the patient’s state vector sf using observers
W (τ :) and additive noises η(τ :):

x
(τ :)
f = W (τ :)sf + η(τ :) (6)

where sf is a realization of
sf ∼ p(s|x(:τ)

f ,a
(τ :τ+δ)
f ). (7)

This formulation implies a probabilistic observation process in which future outcomes are proba-
bilistically determined. However, the random generation of a state vector from Equation (7) must
not affect the past information prior to τ or the treatment information. Thus, we have:[

x
(:τ)
f

a
(τ :τ+δ)
f

]
=

[
W (:τ)

W (τ :τ+δ)
a

]
sf +

[
η(:τ)

η
(τ :τ+δ)
a

]
. (8)

The process of probabilistic observation is not limited exclusively to the acquisition of factual data.
When an alternative treatment, distinct from the one administered, is posited, this same process can
be applied to generate counterfactual data. This is restated as counterfactual generation as follows:
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Counterfactual Generation

Consider a patient with pretreatment data x
(:τ)
f , who, instead of receiving the actual treat-

ment a(τ :τ+δ)
f , is assumed to have received an alternative treatment a(τ :τ+δ)

cf . Post-treatment
data would be obtained by monitoring the patient’s state vector scf using the same observers
W (τ :) and noises η(τ :):

x
(τ :)
cf = W (τ :)scf + η(τ :) (9)

where scf is a realization of
scf ∼ p(s|x(:τ)

f ,a
(τ :τ+δ)
cf ). (10)

This formulation also implies that the random generation of a counterfactual state vector from Equa-
tion (10) must not affect the past information prior to τ or the treatment information. Thus, we have:[

x
(:τ)
f

a
(τ :τ+δ)
cf

]
=

[
W (:τ)

W (τ :τ+δ)
a

]
scf +

[
η(:τ)

η
(τ :τ+δ)
a

]
. (11)

where η is the same noise as in the factual data observation from Equations (6) and (8). If the patient
were to return exactly to the time τ and receive a different treatment, only the patient’s state vector
would change due to the altered treatment, while the additive noise, acting independently of the
changed treatment, should remain the same.

The counterfactual generation described above assumes a retrospective perspective. It refers to imag-
ining alternative outcomes to past events, essentially considering what could have been if different
actions or circumstances had occurred. The current time is t > τ + δ. However, Equations (9) and
(10) can still be applied from a prospective perspective. That is, it can be written as “If the patient
were to receive an alternative treatment, the post-treatment data would be obtained by Equations
(9) and (10).” In this case, the current time is t = τ . If the retrospective perspective is valid for post-
analysis (e.g. after completing a clinical trial), the prospective perspective can be valid for ongoing
decision making (e.g. virtual twins).

4.2 GENERATING A COUNTERFACTUAL STATE

Once we find a maximizer Q̂ estimated by solving problem I using EM algorithms (see Appendix
B), we can sample a factual state sf from p(s|x(:τ)

f ,a
(τ :τ+δ)
f ) or obtain its expectation sf ≡ ⟨sf⟩ for

a new patient with data x
(:τ)
f who took the treatment a(τ :τ+δ)

f . As the first step in counterfactual
data generation for the patient, we can generate a counterfactual state by realizing a vector scf from
Equation (3)

scf ∼
K∑

k=1

πkN (s;µk,Σk) (12)

that is conditioned on, by subtracting Equation (11) from Equation (8),[
0

a
(τ :τ+δ)
cf − a

(τ :τ+δ)
f

]
=

[
W (:τ)

W (τ :τ+δ)
a

]
(scf − sf). (13)

Equivalently, we can write a counterfactual state random vector in the form of

scf = sf +

[
W (:τ)

W (τ :τ+δ)
a

]† [
0

a
(τ :τ+δ)
cf − a

(τ :τ+δ)
f

]
+ ker

([
W (:τ)

W (τ :τ+δ)
a

])
ξ

≡ sf + δa +Nξ (14)

where dagger and ker() denote the pseudo-inverse and a basis of the kernel of [W (:τ); W (τ :τ+δ)
a ],

respectively, and ξ is a random vector of the following distribution by denoting a state shift by
treatment change as δa and the kernel matrix as N :

ξ ∼
K∑

k=1

pkN (ξ;mk,Ck) (15)
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with

Ck = (NTΣ−1
k N)−1 (16)

mk = CkN
TΣ−1

k (µk − sf − δa) (17)

pk =
πkN (Nmk + sf + δa|µk,Σk)|Ck|

1
2∑K

k′=1 πk′N (Nmk′ + sf + δa|µk′ ,Σk′)|Ck′ | 12
. (18)

Notice that δa in Equations (14), (17), and (18) is the new term derived by introducing Equation (2),
and makes a crucial contribution to this paper.

4.3 GENERATING COUNTERFACTUAL OUTCOMES

From Equations (6), (9), and (14), we can generate a counterfactual data vector based on the Gaus-
sian mixture: xcf = xf +W (δa +Nξ) where ξ is a realization of Equation (15). More formally,
we can state from a retrospective perspective:

Gaussian Mixture Counterfactual Generator

If a patient with factual data xf had received an alternative treatment a(τ :τ+δ)
cf , the counter-

factual data that we would have obtained is represented as a random variable given by

xcf ∼
K∑

k=1

pkN
(
x;xf +W (δa +Nmk),WNCkN

TW T
)

(19)

where pk, mk, and δa are functions of a(τ :τ+δ)
cf as given by Equations (14), (17), and (18).

This formulation reflects a probabilistic approach for generating counterfactual outcomes based on
a single Gaussian mixture model. Note that the GMCG presented in Equation (19) is not a statically
fixed GMM model but a complex model where pk, δa, N , Ck, and mk change by τ , δ, and acf.
Equation (19) is expressed in terms of complex mean vectors and covariance matrices, but it can be
implemented more simply by separating it into a sampling process and a linear transformation.

Because W (:τ)δa = W (:τ)N = 0, the random variable x
(:τ)
cf is always the same as x

(:τ)
f by

Equation (19). However, the difference in outcomes made by a particular vector ξ in the proba-
bilistic model in Equation (15) is a time-varying individualized treatment effect (ITE) caused by the
difference in treatments a(τ :τ+δ)

cf − a
(τ :τ+δ)
f that we can obtain

ITE ≡ y
(τ :)
cf − y

(τ :)
f = W (τ :)

y (δa +Nξ). (20)

The expected ITE (eITE) we can obtain on average is

E[ITE] ≡ E[y(τ :)|x(:τ)
f ,a

(τ :τ+δ)
cf ]− y

(τ :)
f = W (τ :)

y (δa +N

K∑
k=1

pkmk). (21)

By using Equations (15), (17), and (18), we can calculate the conditional averaged treatment effect
(CATE) from Equation (20)

CATE ≡ E[y(τ+δ:)|x(:τ)
f ,a

(τ :τ+δ)
cf ]− E[y(τ+δ:)|x(:τ)

f ,a
(τ :τ+δ)
f ]

= W (τ :)
y N

K∑
k=1

(pkmk − qknk) (22)

where

nk = CkN
TΣ−1

k (µk − sf) (23)

qk =
πkN (Nnk + sf|µk,Σk)|Ck|

1
2∑K

k′=1 πk′N (Nnk′ + sf|µk′ ,Σk′)|Ck′ | 12
. (24)
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5 EXPERIMENTS

5.1 ILLUSTRATIVE EXAMPLE OF A CROSSOVER TRIAL

To demonstrate the effectiveness of GMCG in handling continuous treatment spaces and time-
dependent effects at the individual patient level, we present a crossover trial as an illustrative ex-
ample. A crossover trial is a clinical study design in which participants receive different treatments
in a sequential manner, offering a robust framework for evaluating the prolonged efficacy and safety
of new therapeutic interventions (Elbourne et al., 2002; Nolan et al., 2016; Dwan et al., 2019). In
this design, patients are initially randomized into two groups—one receiving the active treatment
and the other a placebo—for a defined period. Following this, the placebo group transitions to the
active treatment during an open-label extension phase. This approach ensures that all participants
eventually receive the treatment, addressing ethical considerations while enabling the observation
of sustained treatment responses. However, a key challenge arises in the extension phase due to
the lack of concurrent control data, making it difficult to distinguish treatment effects from natural
disease progression. By employing the GMCG, we address this issue by generating synthetic coun-
terfactual data, capitalizing on its ability to model continuous variations in treatment and capture
dynamic, time-dependent patient outcomes effectively.

This section demonstrates how the proposed GMCG algorithm by Equation (19) can be applied to
crossover trial data to generate synthetic control data for illustrative purposes. The data set shown
here is not actual but derived from a simulation model, the details of which can be found in Appendix
C. In the left panel of Figure 1, data from two arms are depicted using shades of red and blue. The
red-shaded arm represents groups that received the assigned doses over an entire 24-week period,
while the blue-shaded arm represents groups that received the doses only during the last 12 weeks.
Each arm is further subdivided into groups based on different doses of 1 mg and 2 mg, resulting in
a total of four distinct dose groups. Notably, no group remains on placebo for the entire duration,
necessitating the creation of a synthetic control arm to compare to the treatment arms to estimate the
efficacy of the treatment. The GMCG model was trained on 400 patients’ outcome data across the
four groups, each consisting of 100 patients, without additional covariates.

The four thick lines of different colors on the left are randomly selected and displayed, and they
are further dealt with in the four subplots on the right. The first subplot displays data from the
1mg group during the second 12-week period, with the algorithm-generated synthetic data marked
by the red dashed line. Comparing these synthetic data with the observed data and the ground-
truth control data, respectively, we observe a perfect match during the first 12 weeks and a close
alignment in the second half. The difference between the observed 12-week 1mg data and the red
dashed synthetic data after the 12th week can be interpreted as the patient’s expected individual
treatment effect (eITE) estimated by Equation (21). The critical point is that the synthetic control
arm created through the proposed algorithm corresponds individually to the active or crossover arm,

Figure 1: Illustrative crossover trial dataset (linear efficacy) and synthetic control data generation

7



Published as a conference paper at ICLR 2025

forming a synthetic individually controlled arm. Generating and utilizing the synthetic individually
controlled arm makes it possible to estimate ITEs or eITEs.

This simple example clearly illustrates a problem that does not have a readily available logical
solution despite its apparent simplicity in the reference. For example, look at the blue-colored data.
Seemingly, synthetic control methods could create synthetic control data for the data. However,
traditional synthetic control methods rely on the availability of control units, which are absent here,
to approximate it by taking the weighted sum of them. Thus, this algorithm provides an innovative
way to infer these control data by circumventing the need for explicit control units, highlighting its
capability to solve problems that traditional algorithms cannot address.

5.2 SIMULATED DATA

5.2.1 LDL CHOLESTEROL DATA

For quantitative analysis, LDL cholesterol simulated data was utilized. Data for the treatment and
control groups were created using the PK/PD model (Faltaos et al., 2006; Yokote et al., 2008; Kim
et al., 2011) of statin drugs prescribed to hypercholesterolaemic patients. The experiment was con-
ducted using data with the same characteristics as those generated by SyncTwin (Qian et al., 2021)
and SSA-GMM (Ahn & Vashist, 2024).

As explained in Section 2 on the motivation of this paper, the proposed algorithm was developed
by converting SSA-GMM into the S-learner framework. While this greatly enhances its versatility
by allowing application to various types of treatments, its performance should remain equivalent to
the original GMM-based counterfactual generator. However, we achieved better results by finding
optimized parameters in the GMCG algorithm. As shown in Table 1 below, the MAE of SSA-
GMM reached a level of 0.07, but GMCG was able to reduce the error to a much lower level. When
compared to the SyncTwin, SCM (Synthetic Control Method), and CRN (Bica et al., 2020b) models,
the error gap becomes even larger.

Table 1: LDL cholesterol data experiment results

Method
N = N0 +N1 = 200 + 200 = 400 N = N0 +N1 = 1000 + 200 = 1200

p0 = 0.1 p0 = 0.25 p0 = 0.5 p0 = 0.1 p0 = 0.25 p0 = 0.5

GMCG 0.042 0.038 0.043 0.040 0.039 0.035
SSA-GMM 0.072 0.072 0.076 0.070 0.073 0.069
SyncTwin 0.308 0.150 0.116 0.178 0.106 0.094
SCM 0.341 0.151 0.150 0.231 0.172 0.158
CRN 0.530 0.631 0.343 0.456 0.404 0.371

5.2.2 LDL CHOLESTEROL DATA WITH NO CONTROLS

The reason for using LDL cholesterol data is not just to show superiority over SSA-GMM and
the other algorithms. As sketched in the introduction and illustratively shown in Section 5.1, it is
intended to be used for more quantitative analysis of crossover trials. However, the composition of
the data differs from that in Table 1. In Table 1, N0 = 200 control data and N1 = 200 treatment
data were used. In addition, N0 = 1000 control data and N1 = 200 treatment data were also used
as training data. But now, we aim to evaluate a much more challenging task: using no control data
at all. This is logically unsound because comparing the results of the treatment data with the control
data is the golden standard for determining the treatment effect. Without comparison, the effect of
the treatment cannot be discussed. Instead, we assumed that we would test the experimental data
at various doses. The total duration of the experiment is T = 30. Until time t = 25, no patient
receives the drug. After time t = 25, each patient takes a random dose of statin between 0mg and
10mg. This marks a crossover point at time t = 25.

After training the model using random doses data, we tested it on the 10mg test data used in Table
1 and obtained the results shown in Table 2. When comparing the results for N = 1200, the
performance was similar to SCM. Increasing N slightly improved the results. However, the data
for N = 400 did not train properly. The results in Table 1 were obtained using control data, while
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the results in Table 2 were obtained by training the model without control data, highlighting the
notable performance of GMCG. As explained in the Related Work section, models like SCM and
SyncTwin do not function without control data because they create synthetic control by finding
linear or nonlinear combinations of control units. Although recurrent network models like CRN can
be tested, considering the poor results in Table 1, it is not possible to obtain proper results without
training with control data. The results in Tables 1 and 2 are numerical results in terms of MAE, and
examples for visual reference are provided in the Appendix D.

Table 2: LDL cholesterol data experiment results (no control group)

Method
N = 1200 N = 2000

p0 = 0.1 p0 = 0.25 p0 = 0.5 p0 = 0.1 p0 = 0.25 p0 = 0.5

GMCG 0.251 0.199 0.168 0.184 0.150 0.152

GMM-type algorithms use the EM algorithm to find the local maximum of the given likelihood
function. The EM algorithm for GMCG training also finds the local maximum of the likelihood
function (see Appendix B for the EM algorithm for GMCG). This means that results are influenced
by the initial values. In the GMCG algorithm for crossover trials, the choice of initial values affected
performance. Applying the EM algorithm from random values may make it difficult to achieve re-
sults like those in Table 2. The data structure of crossover trials is fundamentally curved and requires
multiple mixture components. The synthetic control data by zero dose is particularly influenced by
mixture components derived from low-dose data. Therefore, the GMCG-EM algorithm should be
executed using values obtained by first applying a GMM to data created by low doses. The results
in Table 2 used two mixture components for dose data between 0mg and 3mg, one for 3mg to 7mg,
and one for 7mg to 10mg. Thus, a total of K = 4 mixture components were used.

Although the MAE is larger compared to the GMCG results in Table 1, this method has poten-
tially powerful implications. First, to the best of the authors’ knowledge, this is the first attempt
to solve a causal inference problem without using control data. In the field of clinical trials, there
are single-arm trials (Wang et al., 2024), but they make control groups using historical or external
controls. However, the GMCG method structurally learns the dose response from the experimental
data alone and extrapolates the prediction for zero dose. Second, clinical trials without any control
data present a new form of clinical trials that are more economical, easier to recruit patients, and
more ethically suitable for patients in many cases where historical or external controls cannot be
sufficiently obtained, thus opening up broader possibilities.

6 CONCLUSION

This study introduces the Gaussian mixture counterfactual generator (GMCG) as a novel approach
to estimating individualized treatment effects (ITE) in precision medicine. By adapting the Gaus-
sian mixture model (GMM) into a robust framework for causal inference, GMCG addresses chal-
lenges that traditional methods struggle with, such as continuous treatment doses, multidimensional
treatments, and time-varying effects. Its probabilistic nature allows it to effectively capture the
complexity of real-world treatment scenarios, suggesting its potential to contribute meaningfully to
developing personalized treatment strategies.

The experimental results lend support to GMCG’s practical utility. Using synthetic crossover trial
data, it reliably generated counterfactuals even without concurrent controls, and it outperformed
state-of-the-art methods like SCM, SyncTwin, and CRN on simulated LDL cholesterol and tumor
growth datasets. Notably, GMCG maintained strong performance despite limited control data, hint-
ing at its applicability to real clinical settings for personalized treatment planning and decision sup-
port. Moving forward, validating GMCG with real-world clinical data and extending the model to
handle diverse treatment types—while relaxing assumptions like Gaussian noise—could enhance its
flexibility and broaden its impact.
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A NOTATIONS

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied by context

diag(a) A square, diagonal matrix with diagonal entries given by a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable

[a; a] ≡

[
a

a

]
Vectors concatenation

[A; A] ≡

[
A

A

]
Matrices concatenation

Sets and Graphs

A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

Probability and Information Theory

P (a) A probability distribution over a discrete variable

p(a) A probability distribution over a continuous variable, or
over a variable whose type has not been specified

a ∼ P Random variable a has distribution P

Ex∼P [f(x)] or Ef(x) Expectation of f(x) with respect to P (x)

Var(f(x)) Variance of f(x) under P (x)

Cov(f(x), g(x)) Covariance of f(x) and g(x) under P (x)

N (x;µ,Σ) Gaussian distribution over x with mean µ and covariance
Σ
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B EM ALGORITHMS FOR TRAINING GMCG

For the case of having noise η(t) ∼ N (0,Ψ(t)) with a diagonal matrix Ψ(t), Eq. (1) implies a
probability distribution over x(t)-space for a given s ∈ RM of the form

p(x(t)|s) = |2πΨ(t)|− 1
2 exp

{
−1

2
(x(t) −W (t)s)T (Ψ(t))−1(x(t) −W (t)s)

}
. (25)

With a Gaussian mixture prior over s defined by Eq. (3), we obtain the marginal distribution of x(t)

in the form

p(x(t)) =

K∑
k=1

πk · |2πV (t)
k |− 1

2 exp

{
−1

2
(x(t) −W (t)µk)

TV
(t)
k

−1
(x(t) −W (t)µk)

}
, (26)

where the model covariance is V (t)
k = Ψ(t) +W (t)ΣkW

(t)T .

We can also use the colon notation x ≡ x(:) and W ≡ W (:) defined by Eq. (5). Then, we have the
conditional distribution and the marginal distribution in the form of

p(x|s) = |2πΨ|− 1
2 exp

{
−1

2
(x−Ws)TΨ−1(x−Ws)

}
(27)

p(x) =

K∑
k=1

πk · |2πV k|−
1
2 exp

{
−1

2
(x−Wµk)

TV −1
k (x−Wµk)

}
. (28)

where V k = Ψ+WΣkW
T . By Bayes’ rule, this leads to the posterior distribution of the form

p(s|x) =
∑
k

p(s|x, k)p(k|x) =
∑
k

p(k|x) · p(x|s)p(s|k)/p(x|k)

=
∑
k

p(k|x) · |2πMk|−
1
2 exp { − 1

2

(
(s− µk)−MkW

TΨ−1(x−Wµk)
)T

×M−1
k

(
(s− µk)−MkW

TΨ−1(x−Wµk)
)
} (29)

where Mk = (Σ−1
k +W TΨ−1W )−1.

Now we have the joint distribution of observational data xn and the latent variables sn in the form
of

p(xn, sn) = |2πΨ|− 1
2 exp

{
−1

2
(xn −Wsn)

TΨ−1(xn −Wsn)

}
×

K∑
k=1

πk|2πΣk|−
1
2 exp

{
−1

2
(sn − µk)

TΣ−1
k (sn − µk)

}
. (30)

By calculating the expectation values

γnk ≡ p(k|xn) (31)

⟨sn⟩k =

∫
p(s|xn, k) s |ds| (32)

⟨sn⟩ =

∫
p(s|xn) s |ds| (33)

⟨(sn − ⟨sn⟩)(sn − ⟨sn⟩)T ⟩ =
∑
k

p(k|xn)Mk, (34)
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we can obtain the expectation of the complete data log-likelihood in the form of

⟨LC⟩ =

N∑
n=1

K∑
k=1

γnk{lnπk − 1

2
ln |Σk| −

1

2
tr(Σ−1

k ⟨snsTn ⟩) + µT
kΣ

−1
k ⟨sn⟩ −

1

2
µT

kΣ
−1
k µk

−1

2
ln |Ψ| − 1

2
xT
nΨ

−1xn + xT
nΨ

−1W ⟨sn⟩ −
1

2
tr(W TΨ−1W ⟨snsTn ⟩)}

−λ(

K∑
k=1

πk − 1) (35)

where the expectation values are given by

E-steps:

γnk =
πkN (xn|Wµk,V k)∑
k′ πk′N (xn|Wµk′ ,V k′)

(36)

⟨sn⟩k = µk +MkW
TΨ−1(xn −Wµk) (37)

⟨sn⟩ =
∑
k

γnk⟨sn⟩k (38)

⟨snsTn ⟩ =
∑
k

γnk
(
Mk + (⟨sn⟩k − ⟨sn⟩)(⟨sn⟩k − ⟨sn⟩)T

)
+ ⟨sn⟩⟨sn⟩T (39)

with V k = Ψ+WΣkW
T and Mk = (Σ−1

k +W TΨ−1W )−1.

Equation (35) is maximized by the following M-step formulas

M-steps:

πk =

∑
n γnk
N

(40)

µk =
1∑
n γnk

∑
n

γnk⟨sn⟩ (41)

Σk =
1∑
n γnk

∑
n

γnk(⟨snsTn ⟩ − µk⟨sn⟩T − ⟨sn⟩µT
k + µkµ

T
k ) (42)

W = (
∑
n

xn⟨sn⟩T )(
∑
n

⟨snsTn ⟩)−1 (43)

Ψ = Diag(
∑
n=1

xnx
T
n − 2W ⟨sn⟩xT

n +W ⟨snsTn ⟩W
T )N−1 (44)

where Diag(·) returns a diagonal matrix composed of the diagonal elements of a given square matrix.
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Algorithm 1 Gaussian Mixture Counterfactual Generator (GMCG)
Require: (1) Factual training data set {xn,f}; (2) Factual test data xf and alternative treatment acf
Ensure: (1) GMCG parameters Q = {{πk}, {µk}, {Σk},W ,Ψ}; (2) Counterfactual data xcf

1: Training an SSA model
2: Input: {xn,f}
3: Initialize Q
4: repeat
5: # E-step
6: for n = 1 to N do
7: for k = 1 to K do
8: Compute γnk and ⟨sn⟩k from Eqs. (36) and (37)
9: end for

10: Compute ⟨sn⟩ and ⟨snsTn ⟩ from Eqs. (38) and (39)
11: end for
12: # M-step
13: for k = 1 to K do
14: Compute πk, µk, and Σk from Eqs. (40), (41), and (42)
15: end for
16: Compute W and Ψ from Eqs. (43) and (44)
17: until convergence
18: return Q

19: Inferring a new patient’s state vector
20: Input: Q, xf
21: for k = 1 to K do
22: Compute γk and ⟨s⟩k from Eqs. (36) and (37)
23: end for
24: Compute ⟨s⟩ from Eq. (38)
25: return ⟨s⟩ as sf

26: Generating the patient’s counterfactual data
27: Input: Q, xf, sf, acf
28: Compute δa and N from Eq. (14)
29: for k = 1 to K do
30: Compute Ck, mk, and pk from Eqs. (16), (17), and (18)
31: end for
32: Generate xcf from Eq. (19)
33: return xcf
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C ADDITIONAL MATERIALS FOR CROSSOVER TRIAL EXAMPLE

Figure 2: A simple illustrative example of creating crossover trials data.

Data Generation. The linear efficacy data presented in Figure 1 were created using the method
shown in Figure 2. First, as illustrated in the left panel, outcome data for 400 patients were created
by adding noise mainly within the range of -0.2 to 0.2. Figure 1 used these data as the ground-truth
control. The middle panel shows the assumed efficacy for four groups based on the duration and
dosage of the drug used. It was assumed that all patients in each group exhibited the same efficacy.
The assumed curve shape was generated as a function of time, specifically using log(t + 1) for
0 ≤ t < 24. The two blue-shaded curves are horizontal translations of the two red-shaded curves.
The final synthetic crossover trial data, shown in the right panel, were created by combining the
data from panels I and II for each patient. This way represents the simplest form of data and does
not accurately reflect accurate clinical trial data. Clinical data include discontinuous values, missing
values, and various complex covariate structures. While covariate data can provide additional helpful
information for experimental results, they were excluded from this example.

Nonlinear Efficacy. In Figure 1, the synthetic control data arm could be created with only two
different dose groups per arm due to the assumption that the efficacy is proportional to the dose
administered. However, in a more general case, where the relationship between dose and efficacy
is nonlinear, the generation of synthetic control data requires more dose groups. Figure 3 presents
an example that addresses this question, showing four dose groups for each arm: shades of red
representing four dose groups with 0.5, 1.0, 1.5, and 2.0 mg over the full 24-week period, and
shades of blue representing four other groups with the same doses during only the last 12 weeks.

The nonlinear relationship assumed here is modeled by (treatment effect by a dose) = (dose +
0.2×dose2)× (treatment effect by 1mg dose). Each group consists of 100 individuals, totaling 800
training data. The four small plots on the right show synthetic control data for four hypothetical
patients taking 1.0 mg and 2.0 mg in each arm, with the generated synthetic mean control data
closely approximating the ground truth control.

Figure 3: Simulated crossover trial dataset (nonlinear efficacy) and synthetic control data generation.
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This problem’s nonlinear effect cannot be adequately captured with only two dose groups per arm.
The Appendix provides additional results related to this issue. This situation is similar to needing
at least three points, rather than just two, to determine a quadratic function’s position, direction, and
curvature. Therefore, more diverse dose levels are necessary in the experimental data to uncover
complex or hidden effects in counterfactual predictions. Therefore, more diverse dose levels are
likely necessary in the experimental data to uncover more complex or hidden effects in counterfac-
tual predictions.

This section demonstrates how the proposed GMCG algorithm can be applied to crossover trial data
and the types of results it can produce. However, it is important to note that this paper does not
claim guaranteed success for all types of crossover trials. As an algorithm within the GMM family,
the GMCG algorithm’s clear and concise mathematical model highlights its potential to tackle new
types of synthetic data generation problems. Discussing this potential alone represents a meaningful
achievement.

Non-trivial Control The ground-truth control data in Figure 1 or 2 follows a simple linear trend,
which may seem trivial. However, the proposed method does not fit the shape or distribution of the
ground-truth control. Figure 3 demonstrates that the ground-truth control data is well predicted even
when following a sine wave pattern.

Figure 4: Simulated crossover trial dataset (linear efficacy and sinusodial ground truth control) and
synthetic control data generation.

The problem of estimating the nonlinear effect of dosage shown in Figure 3 cannot be adequately
addressed with only two dose groups per arm. Therefore, Figure 3 uses four dose groups per arm.
Figure 5 shows the bad result when only two dose groups are used. It demonstrates that the syn-
thetic control for the 12-week treatment group is pulled upward due to the nonlinear effect, and the
24-week treatment group shows unstable predictions with significant fluctuations. Increasing the
diversity of dosages in the training data, i.e., using more dose groups per arm, can achieve more sta-
ble and accurate counterfactual predictions. For instance, if a hypothetical experiment is conducted
where each patient receives slightly different dosages, as shown in Figure 6, the results improve
even in more complex nonlinearities in efficacy.
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Figure 5: Simulated crossover trial dataset (nonlinear efficacy) and incorrect synthetic control data
generation.

Figure 6: Simulated crossover trial dataset (nonlinear efficacy with diverse doses) and synthetic
control data generation.

18



Published as a conference paper at ICLR 2025

D ADDITIONAL RESULTS OF LDL DATA EXPERIMENTS

In this experiment, we did not use dimensionality reduction. Thus, W becomes an identity matrix,
making the EM algorithm of section B equivalent to the standard GMM algorithm. Specifically, we
used one component for each of the treatment and control groups, which trivially means performing
single Gaussian density estimation for each group. At this point, there is still an undetermined noise
model: Ψ = σ2I (see Appendix B to check how Ψ affects the parameters of Eq. (19)), and we
manually substituted various σ values to obtain the counterfactual predictions given by Eq. (19).
The results are shown in Fig. 7. The figure shows that very small or very large sigma values resulted
in high error values, while values between 0.1 and 1 yielded the lowest error values. Considering
that we added noise with a variance of 0.1 when simulating LDL data, it explains why the lowest
error value in terms of MAE was obtained around 0.1.

Figure 7: Counterfactual prediction error (MAE) as a function of σ2 in the noise covariance model
Ψ = σ2I .

Figure 8 plots 15 different patients’ examples obtained by applying the GMCG algorithm to the LDL
cholesterol data. Specifically, for a total time length of T = 30, the simulation was performed at
t = 25 when statin medication was taken, and the factual data, ground truth counterfactual data, and
counterfactual prediction obtained through the GMCG algorithm were plotted on each axis. There
are two points of observation here: the pretreatment data before t = 25 align exactly with the factual
data, and the post-treatment data after t = 25 closely approximate the ground-truth counterfactual
data.
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Figure 8: Several plots derived from the results of p0 = 0.1 and N = 400 presented in Table 1. Each
subplot represents the data of an individual patient. There are two key points to note here: First,
the pre-treatment data before t = 25 matches exactly between the factual data and counterfactual
prediction. Second, the counterfactual prediction after t = 25 closely approximates the given ground
truth post-treatment data. This serves as further evidence of the excellent results shown in Table 1.
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Figure 9: Several plots derived from the results of p0 = 0.5 and N = 1200 presented in Table
2. Each subplot represents the data of an individual patient. There are three key points to note
here: First, these results were generated by a GMCG model trained without control data, generating
control data. Second, the pre-treatment data before t = 25 matches exactly between the factual
data and counterfactual prediction. Third, the counterfactual prediction after t = 25 approximates
the given ground truth post-treatment data. This serves as further evidence of the excellent results
shown in Table 1.
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E SIMULATED TUMOR GROWTH DATA

Although the proposed algorithm is designed to generate synthetic control arms, it can also perform
general causal inference, as defined in Section 3.3. This definition aligns with the problem defini-
tions specified in the RMSN and CRN algorithms (Lim, 2018; Bica et al., 2020b). Therefore, in this
section, we applied the algorithm to tumor growth data (Geng et al., 2017), which is commonly used
for validating general causal inference algorithms. We used data from approximately 10,000 virtual
patients and applied it to unbiased and biased data for T = 10, 20, 30. The number of mixture com-
ponents used in the GMCG model is K = 30. We compared the state-of-the-art CRN model to the
same data and obtained the results. Detailed information is provided in the Appendix.

Table 3 shows the mean absolute error (MAE) obtained by varying δ while keeping τ fixed for
data with T = 10 and T = 20. The error measure was averaged between t = τ + 1 and t =
τ+δ. Surprisingly, the GMM-based GMCG algorithm outperformed the RNN-based CRN regarding
MAE. Results for unbiased data are also summarized in the Appendix.

(T, τ) (10, 5) (20, 15)

δ 1 2 3 4 5 1 2 3 4 5

GMCG 0.0436 0.0484 0.0520 0.0505 0.0497 0.0044 0.0051 0.0054 0.0054 0.0056

CRN 0.0587 0.0596 0.0627 0.0633 0.0644 0.0325 0.0283 0.0283 0.0292 0.0305

Table 3: Mean absolute errors (MAE) comparison for biased tumor growth data.

As the duration T increases, there is a tendency for the error values to decrease. However, this
cannot be solely attributed to the more extended data being learned. Fundamentally, with longer
durations, the tumor is exposed to more therapy sessions, and the tumor size has already reduced.
Consequently, the ground truth counterfactual tumor size for other arbitrary therapy alternatives does
not differ significantly from factual tumor size. While the GMCG results closely approximated the
ground truth counterfactual data or factual data, the CRN’s counterfactual predictions showed some
differences from both of them.

How can a GMM-based algorithm yield better results than an RNN-based adversarial network al-
gorithm? Firstly, it is important to recall that GMM can act as an excellent universal approximator
as the number of mixture components increases (Heaton, 2018). Additionally, Problem I defined
in Section 3.2 is an unsupervised learning problem, and GMM is stably optimized through the EM
algorithm (McLachlan & Krishnan, 2007). The most crucial factor lies in the conditional proba-
bility calculated through Equation (15). Even in regions with sparse training data, the conditional
probability calculates a normalized probabilistic density distribution conditional on the counterfac-
tual assumption, which creates a robust characteristic against bias. This explains the successful
generation of a synthetic control arm in the crossover trials example where training data did not
exist.
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F ADDITIONAL MATERIALS FOR TUMOR DATA EXAMPLE

F.1 USED HYPERPARAMETERS

To train the CRN for our experiments, we used the default hyperparameters. The exact values used
are as follows. These values fall within the optimized hyper-parameters range in Tables 6 and 7 of
Appendix J in the CRN paper (Bica et al., 2020b).

The encoder’s used hyperparameters:

num epochs = 100

{ rnn hidden units : 24,
br size : 12,

fc hidden units : 36,
learning rate : 0.01,

batch size : 128,

rnn keep prob : 0.9 }

The decoder’s used hyperparameters:

num epochs = 100

{ rnn hidden units : 12,
br size : 18,

fc hidden units : 36,
learning rate : 0.001,

batch size : 1024,

rnn keep prob : 0.9 }

where (br size) is (balancing representation size) and (rnn keep prob) = 1 - (RNN dropout probabil-
ity).

F.2 ADDITIONAL TABLE

(T, τ) (10, 5) (20, 15)

δ 1 2 3 4 5 1 2 3 4 5

GMCG 0.0548 0.0636 0.0697 0.0694 0.0682 0.0057 0.0061 0.0071 0.0071 0.0073

CRN 0.0831 0.0795 0.0773 0.0788 0.0776 0.0429 0.0390 0.0348 0.0327 0.0296

Table 4: Mean absolute errors (MAE) comparison for unbiased tumor growth data for T = 10 and
T = 20.

(T, τ) (30, 15) (30, 25)

δ 1 2 3 4 5 1 2 3 4 5

GMCG 0.0075 0.0072 0.0077 0.0079 0.0081 0.0015 0.0017 0.0019 0.0019 0.0020

CRN 0.0179 0.0226 0.0262 0.0293 0.0321 0.0128 0.0151 0.0167 0.0192 0.0209

Table 5: Mean absolute errors (MAE) comparison for unbiased tumor growth data for T = 30.
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G ASSUMPTIONS

G.1 STANDARD ASSUMPTIONS

This paper adopts Rubin’s potential outcome framework for LDL cholesterol data analysis presented
in Table 1 and is based on standard assumptions commonly found in many studies, such as consis-
tency, overlap, and unconfoundedness. In addition, important new assumptions are discussed in
Section 4.1, where we explore the concept of counterfactual reasoning. There are two types of
counterfactual reasoning: retrospective counterfactual reasoning, which examines the effects of al-
tering past treatments at the current time, and prospective counterfactual reasoning, which forecasts
the outcomes of choosing among various possible future treatments at the present moment.

Assumption 1: Consistency. If treatment a(:t) = a
(:t)
f was administered to a given patient, then

the potential outcome for treatment a(:t)
f is the same as the observed factual outcome: y

(t+1)
f =

y(t+1)[a
(:t)
f ].

Assumption 2: Positivity. If p(x(:t) = x(:t)) ̸= 0, then p(a(t) = a(t)|x(:t) = x(:t)) > 0 for all
a(t).

Assumption 3: Sequential Strong Ignorability. y(t+1)[a(t)] ⊥⊥ a(t)|x(:t) for all a(t).

G.2 ALTERNATIVE ASSUMPTIONS FOR POSITIVITY VIOLATION

When the positivity assumption is violated, as with the data used in Table 2, an alternative assump-
tion is needed. Generally, it can be assumed that the conditional expectation of the outcome variable
is a sufficiently smooth function with respect to the treatment variable. This continuity allows for
the estimation of outcomes for treatment values that are not directly observed, i.e.,

Assumption 4: Strong Continuity. E[y|xf = xf,acf = acf] is continuous and differentiable with
respect to treatment to an appropriate order.

Alternatively, it can be assumed that the relationship between the outcome y, the counterfactual
treatment acf, and the covariates xf follows a specific functional form (e.g., linear or quadratic
regression model). This assumption enables extrapolation to estimate causal effects:

Assumption 5: Functional Form of Outcome Model. E[y|xf = xf,acf = acf] = f(xf,acf;θ)
where f is a known functional form, and θ represents parameters to be estimated.

Specifically, the results in Figure 1 and the various examples in the Appendix were obtained based
on this assumption.
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H PROOF OF GAUSSIAN MIXTURE COUNTERFACTUAL GENERATOR

Lemma 1. Let the random vector ξ follow a mixture of multivariate normal distributions with the
k-th mean mk and the k-th covariance matrix Ck for k = 1, · · · ,K. Let A be a full-rank matrix
and b be a translation vector. Then the random vector x defined by

x = Aξ+ b

has a mixture of multivariate normal distributions with the k-th mean

Amk + b (45)

and the k-th covariance matrix
ACkA

T (46)
with the same proportions.

Proof. See Johnson et al. (2002) for the proof.

H.1 PROOF OF GMCG

Proof. Subtracting Eq. (6) from Eq. (9), we obtain the following equation:

x
(τ :)
cf − x

(τ :)
f = W (τ :)(scf − sf).

Combining this with Eq. (13), we can write it as follows:

xcf = xf +W (scf − sf).

Using Eq. (14) to simplify the expression and rearranging the equation with respect to ξ, we can
organize the equation in the form of b+Aξ:

xcf = xf +W (δa +Nξ)

= (xf +Wδa) + (WN)ξ

≡ b+Aξ.

Using Eq. (45) and (46) of Lemma 1, we finally obtain Eq. (19):

xcf ∼
K∑

k=1

pkN
(
x;xf +W (δa +Nmk),WNCkN

TW T
)
.
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I LIMITATION OF SCM IN CREATING A SYNTHETIC CONTROL ARM

Generating synthetic control arms in crossover trials is challenging due to the unavailability of con-
trol group data after patients switch to active treatment. In a standard RCT, control group data are
crucial for comparing outcomes over time. However, in crossover trials—especially those with an
open-label extension phase—patients initially assigned to the control group often switch to the active
treatment after a certain period (e.g., after 12 weeks). This switch means that there are no remain-
ing patients in the control group during the extended phase (e.g., up to 24 weeks). The absence of
extended control data makes it difficult to assess the long-term efficacy and safety of the treatment,
as there is no direct comparison group.

Abadie’s synthetic control method (SCM) attempts to approximate the treatment group’s outcomes
by creating a weighted combination of control units that closely resembles the treatment-assigned
patient data before the intervention (Abadie & Gardeazabal, 2003; Abadie et al., 2010). This method
relies on the availability of control data to compute the necessary weights. Applying Abadie’s
method becomes problematic in the context of crossover trials lacking extended control data. For
example, in a trial with a 12-week RCT followed by a 12-week open-label extension where all
patients receive the active treatment, no 24-week control data is available. Without this data, we
cannot calculate the weighted sum of the 24-week control outcomes needed to construct a synthetic
control arm for the switched patients. This limitation prevents the direct application of Abadie’s
algorithm in such scenarios. In Zhou et al. (2024), SCM and difference-in-differences (Abadie,
2005; Sant’Anna & Zhao, 2020) methods successfully measured treatment effects in crossover trials
with the availability of external controls; however, this approach is not feasible in studies where
securing external controls is challenging.
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