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This paper considers a bearings-only tracking problem with unknown measurement noise statistics. It is assumed 
that the measurement noise follows a Gaussian probability density function where the mean and the covariance of 
the noise are unknown. Here, an adaptive nonlinear filtering technique is proposed, where the joint distribution 
of the measurement noise mean and its covariance are considered to follow a normal inverse Wishart (NIW) 
distribution. Using the variational Bayesian (VB) approximation, joint distribution of the target state, the 
measurement noise mean and covariance is factorized as the product of their individual probability density 
function (pdf). Minimizing the Kullback-Leibler divergence (KLD) between the factorized and true joint pdfs, 
probability distributions of the noise mean, covariance and the target states are evaluated. The estimation of 
states with the proposed VB based method is compared with the maximum a posteriori (MAP) and the maximum 
likelihood estimation (MLE) based adaptive filtering. Deterministic sigma points are used to realize the filtering 
algorithms. The proposed adaptive filter with VB approximation is found to be more accurate compared to their 
corresponding MAP-MLE based counterparts.
1. Introduction

Bearings-only tracking (BOT) involves tracking a target using only 
noisy line of sight (LOS) measurements, commonly referred to as the 
bearing angle measurement [1,2]. As only bearing angle measurements 
are used, the measuring device, sonar, works without emitting any sig-

nal. Such tracking is known as passive tracking and the reason for it is 
not to disclose ownship position to the enemy during war [3]. Further, 
when the measurement is angle, the measurement equation becomes 
nonlinear. Under such a restrictive sensing environment and nonlin-

ear measurement relation, achieving a good performance becomes a 
paramount challenge [4]. So, the BOT attracts researchers over many 
decades [5–10] and still an optimal solution is far to achieve.

The angle measurements are corrupted with sensor noise which was 
mostly assumed as Gaussian with zero mean and known covariance 
in previous literature. With such assumption, initially, the extended 
Kalman filter (EKF) [11,12] and its variants [13–15] which linearize 
the measurement equation with a first-order Taylor series approxima-

tion, are implemented for target motion analysis (TMA). However, the 
EKF exhibits limitations such as poor estimation accuracy and it is prone 
to high track divergence [16,17]. To enhance estimation accuracy, sev-
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eral other nonlinear filtering algorithms have been developed. These 
include the cubature Kalman filter (CKF) [2], the unscented Kalman 
filter (UKF) [18], the Gauss-Hermite filter (GHF) [19] and their respec-

tive variants [20–22]. These filters approximate the probability density 
functions (pdfs) of the state using deterministic sample points and their 
associated weights, so they are commonly referred to as deterministic 
sample point filters [23].

Gaussian filters perform well when we have prior knowledge of 
the measurement noise statistics, including its mean and covariance. 
However, in many practical applications, the statistics of measurement 
noise are often unknown. In such cases, the traditional filters mentioned 
above cannot be implemented. In order to estimate states, the noise 
statistics need to be estimated first. This kind of estimation is known 
as adaptive estimation [24,25]. Various adaptive estimation techniques 
have been proposed in the literature. One of them is to employ the max-

imum a posteriori (MAP) method [26,27]. This method estimates both 
the mean and the covariance of the process and measurement noise, in 
addition to the target’s state [26,27]. However, this technique may not 
always guarantee positive definiteness of the estimated noise covariance 
[27,28] and sometimes does not converge to the true covariance value 
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[28,29]. Another adaptive filtering technique is based on maximum 
likelihood estimation (MLE) [30–32] which estimates the measurement 
noise covariance alongside the target state. There are two variations of 
MLE based adaptive filtering: (i) using an innovation based sequence 
[33] (ii) using a residual based sequence [34]. The residual and the 
innovation based adaptive UKF were proposed in [25] which was anal-

ogous to the adaptive Kalman filter in [34]. The positive definiteness 
of the estimated noise covariance matrix is guaranteed in the residual 
adaptive method based on MLE [34]. Nonetheless, the MLE based adap-

tive filtering required large data windows to yield reliable estimates of 
the noise covariance matrix. This limitation renders it unfeasible for 
situations involving time varying noise covariance matrix [35]. The ap-

plication of adaptive filtering technique on underwater BOT problem is 
quite limited except a few notable publications [8,36,37].

In recent years, the variational Bayesian (VB) approach has been 
studied extensively to estimate the unknown noise parameters for a lin-

ear system [35,38–42]. In [38], only the measurement noise covariance 
and in [35,39] both the process and the measurement noise covariance 
matrices are considered to be unknown. The noise covariance matrices 
are assumed to be following inverse Wishart distribution and are jointly 
estimated with the state vector. Instead of using the fixed point iteration 
as in [35,38], an approximation of backward smoothing of the posterior 
distribution of a sliding window (SW) state vectors is proposed in [39]. 
In [40], the measurement noise is estimated along with state assum-

ing the joint distribution follows Gaussian generalized inverse Gaussian 
distribution (GGIG). In [41,42], the mean and covariance of both pro-

cess and measurement noise are considered to be unknown. Robust VB 
based adaptive filters are also formulated to handle high initialization 
uncertainty [43,44], and noise mismatch [45–48].

For nonlinear system, the VB based adaptive UKF [49], adaptive 
CKF [50,51] and adaptive interpolatory CKF [44,52], and adaptive cu-

bature information filter (CIF) [53] are developed in the literature. 
But in all these works, the noises mean are considered to be known 
and zero. In this paper, we develop an adaptive estimation method 
for a nonlinear system whose measurement noise mean and covariance 
are unknown. We applied our method for an underwater bearings-only 
tracking problem where both the measurement noise mean and covari-

ance are considered to be unknown.

To jointly estimate the measurement noise mean and covariance 
with the target state, their joint probability density function (pdf) is 
considered to follow the normal inverse Wishart (NIW) distribution. 
The joint distribution is factorized using VB approximation and the 
approximated individual distributions are obtained by minimizing the 
Kullback-Leibler divergence (KLD) between the approximated factored 
pdfs and the true joint pdf. The estimation is realized with determin-

istic sample points. We also optimized the likelihood to obtain the 
appropriate initialization of the tuning parameters, needed during the 
estimation.

The proposed VB based adaptive estimation is applied to an under-

water BOT problem and the results are compared with the MAP-MLE 
technique in two engagement scenarios in terms of estimation accu-

racy and execution time. In MAP-MLE method, measurement noise 
mean is estimated using the MAP method and its covariance is esti-

mated using the residual based MLE method. Estimation accuracy is 
evaluated in terms of root mean square error (RMSE), bias norm, and 
average normalized estimation error squared (ANEES), percentage of 
track divergence, and relative execution time. We have compared the 
proposed VB technique with MAP-MLE, MAP-VB, MAP-GGIG, and MAP-

SW, where in the measurement noise mean is estimated using MAP and 
the covariance is estimated using MLE [34], VB [35,38], GGIG [40]

and SW [39] techniques, respectively. It has been observed that the 
VB based adaptive filtering technique provides better accuracy than the 
2

other adaptive filters.
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2. Problem formulation

2.1. System model

The state vector of the target is assumed to follow a nearly straight 
line path with nearly constant velocity in the discrete time domain and 
it is expressed as  𝑡

𝑘
=
[
𝑥𝑡
𝑘

𝑦𝑡
𝑘

𝑥̇𝑡
𝑘

𝑦̇𝑡
𝑘

]𝑇
, where 𝑥𝑡

𝑘
and 𝑦𝑡

𝑘
are the 

target’s position along 𝑥 and 𝑦 axis, respectively, and 𝑥̇𝑡
𝑘

and 𝑦̇𝑡
𝑘

are 
the target’s velocity along 𝑥 and 𝑦 axis, respectively, at the 𝑘th time 
instant. Similarly, the observer’s state vector can be expressed as 𝑜

𝑘
=[

𝑥𝑜
𝑘

𝑦𝑜
𝑘

𝑥̇𝑜
𝑘

𝑦̇𝑜
𝑘

]𝑇
, where 𝑥𝑜

𝑘
and 𝑦𝑜

𝑘
are the observer’s position along 

𝑥 and 𝑦 axis, respectively, and 𝑥̇𝑜
𝑘

and 𝑦̇𝑜
𝑘

are the observer’s velocity 
along 𝑥 and 𝑦 axis, respectively. The dynamic model of the target can 
be expressed as [1,2]

𝑘 = 𝐹𝑘−1 +𝜔𝑘−1 −℧𝑘−1,𝑘, (1)

where 𝑘 =  𝑡
𝑘
−𝑜

𝑘
=
[
𝑥𝑘 𝑦𝑘 𝑥̇𝑘 𝑦̇𝑘

]𝑇
is the relative state vector of 

the target from the observer, 𝐹 is the state transition matrix evaluated 
as,

𝐹 =
[
𝐼2×2 Δ𝐼2×2
02×2 𝐼2×2

]
, (2)

where Δ is the sampling time, ℧𝑘−1,𝑘 is a vector of inputs evaluated as,

℧𝑘−1,𝑘 =

⎡⎢⎢⎢⎢⎣

𝑥𝑜
𝑘
− 𝑥𝑜

𝑘−1 − Δ𝑥̇𝑜
𝑘−1

𝑦𝑜
𝑘
− 𝑦𝑜

𝑘−1 − Δ𝑦̇𝑜
𝑘−1

𝑥̇𝑜
𝑘
− 𝑥̇𝑜

𝑘−1
𝑦̇𝑜
𝑘
− 𝑦̇𝑜

𝑘−1

⎤⎥⎥⎥⎥⎦
, (3)

and 𝜔𝑘−1 ∼ (0, 𝑄) is the process noise which is assumed to be Gaus-

sian with zero mean and covariance, 𝑄 given as,

𝑄 =
⎡⎢⎢⎢⎣
Δ3

3
𝐼2×2

Δ2

2
𝐼2×2

Δ2

2
𝐼2×2 Δ𝐼2×2

⎤⎥⎥⎥⎦
𝑞, (4)

where 𝑞 is the intensity of process noise.

2.2. Measurement model

The bearing measurement of the target with respect to the true 
north is measured using sensors mounted to ownship. The measurement 
model is expressed as:

𝑘 = ℎ(𝑘) + 𝜈𝜃𝑘
, (5)

where ℎ(𝑘) = tan−1(𝑥𝑘∕𝑦𝑘) and 𝜈𝜃𝑘 is the measurement noise, assumed 
to be Gaussian, i.e., 𝜈𝜃𝑘 ∼ (𝑟′, 𝑅′

𝑘
). However, the mean (𝑟′) and covari-

ance (𝑅′
𝑘
) of the noise 𝜈𝜃𝑘 is unknown. The objective of the work is to 

estimate 𝑟′ and 𝑅′
𝑘

along with the states of the system.

3. Adaptive filtering using variational Bayesian approximation

3.1. Normal inverse Wishart (NIW) distribution

In this work, we propose a VB based adaptive filtering to estimate 
the target state when both the measurement noise mean and covariance 
are unknown. The VB approximation can be used to estimate the mea-

surement noise statistics by choosing an appropriate conjugate prior 
distribution. When the mean of a normal distribution is known, the in-

verse Wishart (IW) distribution is used as the conjugate prior for the 
covariance of normal distribution [54]. But if the mean as well as the 
covariance of a normal distribution are unknown, then in general, the 
normal inverse Wishart (NIW) distribution is preferred as the joint con-
jugate prior [55].
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The inverse Wishart distribution of a random symmetric positive 
definite matrix,  ∈ℝ𝑛×𝑛 can be written as

𝐼𝑊 (;𝜆,𝜓) =
|𝜓|𝜆∕2||−(𝜆+𝑛+1)∕2 exp{−0.5𝑡𝑟(𝜓−1)}

2𝑛𝜆∕2Γ𝑛(𝜆∕2)
, (6)

where 𝜆 is the degrees of freedom, 𝜓 ∈ ℝ𝑛×𝑛 is a symmetric positive 
definite matrix and is known as the scale matrix, | ⋅ |, 𝑡𝑟(⋅) are the 
determinant and trace of a matrix, respectively, and Γ𝑛(⋅) is the 𝑛 vari-

ate gamma function [54]. If  ∼ 𝐼𝑊 (; 𝜆, 𝜓), then a property of the 
IW distribution is that the mean of the distribution is evaluated as, 
𝐸[] = 𝜓∕(𝜆 − 𝑛 − 1), such that 𝜆 > 𝑛 + 1 [54]. The NIW probability 
density function of  and  can be expressed as

𝑁𝐼𝑊 ( ,;𝜇 , 𝛼, 𝜆,𝜓) = ( ;𝜇 , 𝛼)𝐼𝑊 (;𝜆,𝜓), (7)

where 𝜇 =𝐸[] and 𝛼 > 0 is named as the confidence parameter. With 
marginalization the pdf of a NIW distributed random vector  can be 
written as

𝑁𝐼𝑊 ( ;𝜇 , 𝛼, 𝜆,𝜓) = ∫  ( ;𝜇 , 𝛼)𝐼𝑊 (;𝜆,𝜓)𝑑. (8)

3.2. Adaptive filtering

3.2.1. Process update

The prior state follows Gaussian distribution with mean, ̂𝑘|𝑘−1 and 
covariance, 𝑃𝑘|𝑘−1, i.e.,

𝑝(𝑘|1∶𝑘−1) = (𝑘; ̂𝑘|𝑘−1, 𝑃𝑘|𝑘−1), (9)

As the process noise statistics are known, i.e.,  (0, 𝑄) and the process 
is linear in our case, so the process update will follow the Kalman filter 
equations:

̂𝑘|𝑘−1 = 𝐹 ̂𝑘−1|𝑘−1 −℧𝑘−1,𝑘, (10)

𝑃𝑘|𝑘−1 = 𝐹𝑃𝑘−1|𝑘−1𝐹𝑇 +𝑄. (11)

3.2.2. Measurement update

Let us assume the variables, 𝑟′ and 𝑅′
𝑘

represent the measurement 
noise mean and covariance matrix at any step, 𝑘. As we assume mean 
of the noise is time invariant, we omit the subscript 𝑘 while denoting 
it. Accumulated measurements up to time step, 𝑘 is denoted as 1∶𝑘 =
{1, 2, ⋯ , 𝑘}. Using the formula of conditional probability, we can 
factorize the joint density as follows,

𝑝(𝑘,𝑅
′
𝑘
, 𝑟′,1∶𝑘) = 𝑝(𝑘|𝑅′

𝑘
, 𝑟′,1∶𝑘)𝑝(𝑅′

𝑘
, 𝑟′,1∶𝑘)

= 𝑝(𝑘|𝑅′
𝑘
, 𝑟′,1∶𝑘)𝑝(𝑟′|𝑅′

𝑘
,1∶𝑘)𝑝(𝑅′

𝑘
,1∶𝑘)

= 𝑝(𝑘|𝑅′
𝑘
, 𝑟′,1∶𝑘)𝑝(𝑟′|𝑅′

𝑘
,1∶𝑘)𝑝(𝑅′

𝑘
|1∶𝑘)𝑝(1∶𝑘).

Using the formula of conditional probability, we can also write 
𝑝(𝑘, 𝑅′

𝑘
, 𝑟′, 1∶𝑘) = 𝑝(𝑘, 𝑅′

𝑘
, 𝑟′|1∶𝑘)𝑝(1∶𝑘), and finally we obtain

𝑝(𝑘,𝑅
′
𝑘
, 𝑟′|1∶𝑘) = 𝑝(𝑘|𝑅′

𝑘
, 𝑟′,1∶𝑘)𝑝(𝑟′|𝑅′

𝑘
,1∶𝑘)𝑝(𝑅′

𝑘
|1∶𝑘). (12)

However, it would be difficult to evaluate each joint pdfs and in this 
respect, we approximately factorize it as follows,

𝑝(𝑘, 𝑟
′,𝑅′

𝑘
|1∶𝑘) ≈ 𝑞(𝑘)𝑞(𝑟′)𝑞(𝑅′

𝑘
), (13)

where 𝑞(⋅) represents approximate pdf of 𝑝(⋅), where

log 𝑞(𝜃) =𝐸−𝜃[log𝑝(𝑘, 𝑟
′,𝑅′

𝑘
,1∶𝑘)] + 𝑐𝜃, (14)

where the 𝐸−𝜃 represents the expectation on the variables other than 
𝜃, and 𝑐𝜃 is a constant. By minimizing the Kullback-Leibler divergence 
(KLD) between the approximate pdf 𝑞(𝑘)𝑞(𝑟′)𝑞(𝑅′

𝑘
) and the true pdf 

𝑝(𝑘, 𝑟′, 𝑅′
𝑘
|1∶𝑘), we will receive (14); see [56, pp. 450] and [57].

As 𝑅′
𝑘

is the covariance of a Gaussian pdf, we consider the distribu-
3

tion of it, i.e., 𝑝(𝑅′
𝑘
|1∶𝑘) follows an IW distribution. So, we can write
Digital Signal Processing 153 (2024) 104648

𝑝(𝑅′
𝑘
|1∶𝑘) = 𝐼𝑊 (𝑅′

𝑘
; 𝑢̂′

𝑘
, 𝑈̂ ′

𝑘
), (15)

where 𝑢̂′
𝑘
> 𝑚 + 1, 𝑚 is the dimension of measurement, and estimated 

value of 𝑅′
𝑘

is the mean of the IW distribution given by

𝐸[𝑅′
𝑘
] =

𝑈̂ ′
𝑘

𝑢̂′
𝑘
−𝑚− 1

, (16)

where the degree of freedom, 𝑢̂′
𝑘
> 𝑚 + 1, as 𝑚 is the dimension of 

measurement, so 𝑚 > 0, therefore, 𝑢̂′
𝑘
> 0, and the scale parameter, 𝑈̂ ′

𝑘
>

0. Consequently, the mean, 𝐸[𝑅′
𝑘
] is also positive, ensuring that the 

estimated measurement noise covariance is positive definite by nature. 
As 𝑟′ is the mean of a Gaussian pdf, we consider the prior distribution 
of it, i.e., 𝑝(𝑟′|1∶𝑘) follows a normal distribution,

𝑝(𝑟′|1∶𝑘) = (𝑟′; 𝑟̂𝑘, 𝛼̂𝑘𝑅
′
𝑘
), (17)

where 𝑟̂𝑘 =𝐸[𝑟′] and 𝛼̂𝑘 is the confidence parameter.

Remark. Please note that 𝑟̂𝑘 is an estimate of the mean of measurement 
noise. Although we assume the mean of the measurement noise is not 
time varying, we shall receive estimates which are not the same in all 
the time steps. To represent that, we use subscript, 𝑘 while writing the 
estimate of the mean of the measurement noise.

In our problem described above, the measurement is bearing angle 
and hence the measurement equation is nonlinear which makes the pdf 
of states non Gaussian. However, we approximate them as Gaussian and 
represent them with a few deterministic sample points and their corre-

sponding weights. These points are alternatively known as sigma points 
or support points and can be generated using the unscented transform 
[58,59], or cubature rule [60,20] or Gauss-Hermite rule of integration 
[19,61]. To read more about the various approaches for generating sam-

ple points and weights interested readers may read [23]. Any Gaussian 
distribution of mean, ̂𝑘|𝑘−1 and covariance, 𝑃𝑘|𝑘−1 is approximated 
with the points

𝚇𝑗,𝑘|𝑘−1 = ̂𝑘|𝑘−1 +𝑆𝑘|𝑘−1𝜉𝑗 , (18)

and their weights 𝑤𝑗 , where 𝑆𝑘|𝑘−1 is the Cholesky factorization of 
𝑃𝑘|𝑘−1 and 𝜉𝑗 are the points to represent standard normal distribution. 
The predicted measurements at each sigma point are evaluated as

𝚈𝑗,𝑘|𝑘−1 = ℎ(𝚇𝑗,𝑘|𝑘−1). (19)

Theorem 1. Recursive estimates of the degree of freedom, 𝑢̂′
𝑘

and the esti-
mated scale parameter, 𝑈̂ ′

𝑘
are given by

𝑢̂′
𝑘
= 𝑢̂′

𝑘−1 + 2, (20)

and

𝑈̂ ′
𝑘
= 𝑈̂ ′

𝑘−1 +𝐵𝑘 +𝐷𝑘, (21)

respectively, where

𝐵𝑘 =𝐸𝑘,𝑟
′ [̃𝑘̃𝑇

𝑘
], (22)

and

𝐷𝑘 =
1

𝛼̂𝑘−1
𝐸𝑟′ [𝑟𝑟𝑇 ], (23)

where ̃𝑘 = (𝑘 − ℎ(𝑘) − 𝑟′) and 𝑟 = (𝑟′ − 𝑟̂𝑘−1).

Proof. The proof is provided in Appendix A. □

Lemma 1. With the help of deterministic sample points, and their corre-
sponding weights, 𝐵𝑘 of (22) can be manipulated as
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𝐵𝑘 = (𝑘 −
𝑁𝑠∑
𝑗=1

𝑤𝑗𝚈𝑗,𝑘|𝑘−1 − 𝑟̂𝑘−1)(𝑘 −
𝑁𝑠∑
𝑗=1

𝑤𝑗𝚈𝑗,𝑘|𝑘−1 − 𝑟̂𝑘−1)𝑇

+
𝑁𝑠∑
𝑗=1

𝑤𝑗 [𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1)][𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1)]𝑇 + 𝛼̂𝑘−1𝑅̂𝑘.

(24)

Proof. The proof is provided in Appendix B. □

Lemma 2. 𝐷𝑘 of (23) can be manipulated as

𝐷𝑘 =
𝛼𝑘

𝛼̂𝑘−1
𝑅̂𝑘 +

1
𝛼̂𝑘−1

(𝑟̂𝑘 − 𝑟̂𝑘−1)(𝑟̂𝑘 − 𝑟̂𝑘−1)𝑇 . (25)

Proof. The proof is provided in Appendix C. □

Theorem 2. The covariance of the measurement likelihood, 𝑅̂𝑘 can be eval-

uated as:

𝑅̂𝑘 = (𝑈̂ ′
𝑘−1 + (𝑘 −

𝑁𝑠∑
𝑗=1

𝑤𝑗𝚈𝑗,𝑘|𝑘−1 − 𝑟̂𝑘−1)(𝑘 −
𝑁𝑠∑
𝑗=1

𝑤𝑗𝚈𝑗,𝑘|𝑘−1 − 𝑟̂𝑘−1)𝑇

+
𝑁𝑠∑
𝑗=1

𝑤𝑗 [𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1)][𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1)]𝑇 + 𝛼̂𝑘−1𝑅̂𝑘

+
𝛼̂𝑘𝑅̂𝑘

𝛼̂𝑘−1
+ 1

𝛼̂𝑘−1
(𝑟̂𝑘 − 𝑟̂𝑘−1)(𝑟̂𝑘 − 𝑟̂𝑘−1)𝑇 )(𝑢̂′𝑘 −𝑚− 1)−1. (26)

Proof. The proof is provided in Appendix D. □

Theorem 3. The estimated mean, 𝑟̂𝑘 and the estimated confidence param-

eter, 𝛼̂𝑘 of the measurement noise mean can be evaluated with the help of 
deterministic sample points as

𝑟̂𝑘 =
𝑟̂𝑘−1 + 𝛼̂𝑘−1(𝑘 −

∑𝑁𝑠

𝑗=1 𝑤𝑗𝚈𝑗,𝑘|𝑘−1)
𝛼̂𝑘−1 + 1

, (27)

and

𝛼̂𝑘 =
𝛼̂𝑘−1

𝛼̂𝑘−1 + 1
, (28)

respectively.

Proof. The proof is provided in Appendix E. □

Theorem 4. The expressions of the mean and the covariance of Gaussian 
approximated posterior pdf are

̂𝑘|𝑘 = ̂𝑘|𝑘−1 +𝐾𝑘(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘), (29)

and

𝑃𝑘|𝑘 = 𝑃𝑘|𝑘−1 −𝐾𝑘𝑃𝐾𝑇
𝑘
, (30)

where 𝐾𝑘 = 𝑃𝑃−1 is the Kalman gain, where

𝑃 =
𝑁𝑠∑
𝑗=1

𝑤𝑗 (𝚇𝑗,𝑘|𝑘−1 − ̂𝑘|𝑘−1)(𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1))𝑇 , (31)

and

𝑃 = 𝑅̂𝑘 +
𝑁𝑠∑
𝑗=1

𝑤𝑗 (𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1))(𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1))𝑇 . (32)

Proof. The proof is provided in Appendix F. □

Interestingly, the filter proposed with the help of above theorems is 
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unbiased and it is proved in the following lemma.
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mma 3. Estimation of VB adaptive filter is unbiased i.e., 𝐸[̂𝑘|𝑘−𝑘] =

roof. The proof is provided in Appendix G. □

3. Fixed point iteration

We can see in (24), that 𝐵𝑘 is a function of 𝑅̂𝑘 and (25), 𝐷𝑘 is 
function of 𝑅̂𝑘, which is used to evaluate 𝑈̂ ′

𝑘
; as in (21), which is 

ain used to evaluate 𝑅̂𝑘, making 𝑅̂𝑘 a function of 𝑅̂𝑘; see (26). As 
aluation of 𝑅̂𝑘 depends on itself, fixed point iteration (FPI) method 
 needed to obtain it. The FPI is performed during each measurement 
date step where (24) and (25) are iterated as,

𝑖+1
𝑘

= (𝑘 −
𝑁𝑠∑
𝑗=1

𝑤𝑗𝚈𝑗,𝑘|𝑘−1 − 𝑟̂𝑘−1)(𝑘 −
𝑁𝑠∑
𝑗=1

𝑤𝑗𝚈𝑗,𝑘|𝑘−1 − 𝑟̂𝑘−1)𝑇

+
𝑁𝑠∑
𝑗=1

𝑤𝑗 [𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1)][𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1)]𝑇 + 𝛼̂𝑘−1𝑅̂
𝑖
𝑘
,

(33)

d

𝑖+1
𝑘

=
𝛼𝑘

𝛼̂𝑘−1
𝑅̂𝑖

𝑘
+ 1

𝛼̂𝑘−1
(𝑟̂𝑘 − 𝑟̂𝑘−1)(𝑟̂𝑘 − 𝑟̂𝑘−1)𝑇 , (34)

spectively. Using these, 𝑈̂ 𝑖+1
𝑘

in (21), is evaluated for every (𝑖 + 1)th 
eration which is further used to calculate 𝑅̂𝑖+1

𝑘
. Using 𝑅̂𝑖+1

𝑘
, measure-

ent error covariance, 𝑃 𝑖+1 , the Kalman gain, 𝐾𝑖+1
𝑘

and estimated state, 
𝑖+1
𝑘|𝑘 and its error covariance, 𝑃 𝑖+1

𝑘|𝑘 are evaluated. The loop continues 
ll |̂ 𝑖+1

𝑘|𝑘 − ̂ 𝑖
𝑘|𝑘| < 𝜁 , a user defined threshold. In our work, we chose 

e value of 𝜁 to be 10−3.

The measurement noise covariance is obtained using fixed point it-
ation method. As the fixed point iteration is a natural gradient method 
9], it ensures an asymptotic convergence [62,35] for a limited initial 
ror. If the fixed point iteration converges, the estimated measurement 
ise covariance will also converge. However, for a large initialization 
ror, the estimated measurement noise covariance might not converge, 
 the VB approach guarantees only local convergence [35]. From the 
periments, we have observed that the posterior estimate value con-

rges quickly generally within a few iteration (4 or 5 iterations). Fur-

er, in earlier literature [63, pp. 158], [64,65], it has been argued that 
e fixed point iteration method is numerically stable if and only if iter-

ed sequence converges to a fixed point. So, we can say that the fixed 
int iteration method is numerically stable. The algorithm of FPI is 
entioned in Algorithm 1.

During initialization, 𝑢̂′0, is used to evaluate 𝑈̂ ′
0 = (𝑢̂′0 − 𝑚 − 1)𝑅̂0

hich is further used to evaluate 𝑈̂ 𝑖+1
1 and 𝛼̂0 is used to evaluate 𝐷𝑖+1

1 . 
, proper initialization of 𝑢̂′0, and 𝛼̂0 is essential as it has a significant 
pact on the estimation accuracy. The confidence parameters, 𝛼̂0 and 
are initialized by maximizing the likelihood i.e.

′
0, 𝛼̂0) = arg max

(𝑢̂′0 ,𝛼̂0)
𝐿𝑘, (35)

here

𝑘 =
1√

2𝜋𝑃 𝑖
exp(−1

2

(𝑘 − ̂ 𝑖
𝑘|𝑘−1)2

𝑃 𝑖
). (36)

 has been observed that fair accuracy is achieved with 𝛼̂0 and 𝑢̂′0 values 
nging from 1 to 20 and 3 to 23, respectively. So the optimization 
oblem is solved by varying 𝛼̂0 and 𝑢̂′0 in this range and choosing a set 
of values where the cost function becomes maximum.
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Algorithm 1 Subroutine for fixed point iteration.

[̂𝑘|𝑘, 𝑃𝑘|𝑘, 𝑅̂𝑘, 𝑈̂𝑘] = 𝐹𝑃𝐼[̂𝑘|𝑘−1, 𝑃𝑘|𝑘−1, 𝑘, 𝑅̂𝑘−1, 𝑟̂𝑘, 𝑟̂𝑘−1, 𝑈̂ ′
𝑘−1, 𝑢̂′

𝑘
, 𝛼̂𝑘,

𝛼̂𝑘−1]

1: Initialize: 𝑁 = 0, 𝑖 = 0, 𝑅̂0
𝑘
= 𝑅̂𝑘−1.

2: while N=0 do

3: Evaluate: 𝑈̂ 𝑖+1
𝑘

from Eqn. (21) using 𝐵𝑖+1
𝑘

and 𝐷𝑖+1
𝑘

from (33) and (34), 
respectively.

4: Evaluate: 𝑅̂𝑖+1
𝑘

= 𝑈̂ 𝑖+1
𝑘

∕(𝑢̂′
𝑘
−𝑚 − 1).

5: Calculate measurement error covariance, 𝑃 𝑖+1 using (32) replacing 𝑅̂𝑘 by 
𝑅̂𝑖+1

𝑘
.

6: Evaluate Kalman gain, 𝐾𝑖+1
𝑘

= 𝑃 (𝑃 𝑖+1 )−1.
7: Evaluate posterior mean, ̂ 𝑖+1

𝑘|𝑘 using 𝐾𝑖+1
𝑘

in (29).

8: Evaluate posterior error covariance, 𝑃 𝑖+1
𝑘|𝑘 using 𝐾𝑖+1

𝑘
and 𝑃 𝑖+1 in (30).

9: if |̂ 𝑖+1
𝑘|𝑘 − ̂ 𝑖

𝑘|𝑘| < 𝜁 then

10: 𝑁 = 𝑖 + 1.

11: else

12: 𝑖 = 𝑖 + 1.

13: end if

14: end while

15: ̂𝑘|𝑘 = ̂𝑁
𝑘|𝑘, 𝑃𝑘|𝑘 = 𝑃𝑁

𝑘|𝑘, 𝑈̂ ′
𝑘
= 𝑈̂𝑁

𝑘
, 𝑅̂𝑘 = 𝑅̂𝑁

𝑘
.

Algorithm 2 VB approach for unknown noise covariance.

1: Inputs: ̂0|0, 𝑃0|0, ̂𝑟0, 𝑅̂0, ̂𝛼0, ̂𝑢′0, 𝑈̂ ′
0 = (𝑢̂′0 −𝑚 − 1)𝑅̂0.

2: for k=1 to 𝑇𝑇 do

3: Time Update:

̂𝑘|𝑘−1 = 𝐹 ̂𝑘−1|𝑘−1 − ℧𝑘−1,𝑘
𝑃𝑘|𝑘−1 = 𝐹𝑃𝑘−1|𝑘−1𝐹𝑇 +𝑄𝑘

4: Measurement Update:

5: Calculate: 𝑆𝑘|𝑘−1 = 𝑐ℎ𝑜𝑙(𝑃𝑘|𝑘−1).
6: Evaluate sigma points: 𝚇𝑗,𝑘|𝑘−1 = 𝑆𝑘|𝑘−1𝜉𝑗 + ̂𝑘|𝑘−1, where 𝑗 = 1, 2, ..., 𝑁𝑠.

7: Predicted measurement at each point, 𝚈𝑘|𝑘−1 = ℎ(𝚇𝑗,𝑘|𝑘−1).
8: Predicted measurement estimation: ℎ(̂𝑘|𝑘−1) =∑𝑁𝑠

𝑗=1 𝑤𝑗𝚈𝑗,𝑘|𝑘−1.
9: Calculate 𝑃 using (31).

10: Evaluate: 𝑟̂𝑘 , 𝛼̂𝑘 and 𝑢̂′
𝑘

from (27), (28), and (20), respectively.

11: Determine: [̂𝑘|𝑘, 𝑃𝑘|𝑘, 𝑅̂𝑘, 𝑈̂ ′
𝑘
]=FPI[̂𝑘|𝑘−1, 𝑃𝑘|𝑘−1, 𝑘, 𝑅̂𝑘−1, 𝑟̂𝑘 , 𝑟̂𝑘−1 , 

𝑈̂ ′
𝑘−1, 𝑢̂′𝑘 , 𝛼̂𝑘 , 𝛼̂𝑘−1].

12: end for

4. Simulation results

We have implemented the proposed estimation method in two en-

gagement scenarios [2,59] as shown in Fig. 1a and 1b, respectively. 
In both the scenarios, the target moves in a nearly straight line mo-

tion with constant velocity. The ownship maneuvers from 13th min to 
17th min in the Scenario I and at 15th min in Scenario II. As we dis-

cussed earlier, the ownship maneuver is required in order to make the 
system observable so that the estimators start converging. Among the 
two scenarios, tracking is more difficult in Scenario II because in this 
engagement the system’s nonlinearity is high [2,59]. The simulation pa-

rameters of both the scenarios are provided in Table 1. The sampling 
time for both the scenarios is considered to be 5 s, i.e., Δ = 5 s, and the 
simulation is performed for a total time period of 30 min. The process 
noise intensity, 𝑞 is considered to be 1.944 × 10−6 km2/min3 for both 
the scenarios.

As we discussed earlier, our objective is to track the target from 
bearings-only measurements. We assume the measurements are cor-

rupted with a Gaussian noise whose mean and covariance are unknown. 
Further, we consider the noise covariance could be time invariant or 
time varying in nature. Case I considers time invariant standard devi-

ation, 𝜎𝜃 which is 1.5𝑜 for Scenario I, and 2𝑜 for Scenario II. Case II 
represents time varying standard deviation 𝜎𝜃𝑘

, and we assume it is 
highest at the farthest distance and decreases linearly with range. The 
5

maximum and the minimum values for 𝜎𝜃𝑘
in Case II are considered to 
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Table 1

Parameters of the scenarios.

Parameters Scenario I Scenario II

Initial range (𝑟) 5 km 10 km

Target speed (𝑠) 4 knots 15 knots

Target course −140𝑜 −135.4𝑜

Observer speed 5 knots 5 knots

Observer initial course 140𝑜 −80𝑜

Observer final course 20𝑜 146𝑜

Observer maneuver From 13𝑡ℎ to 17𝑡ℎ min 15𝑡ℎ min

Initial range S.D. (𝜎𝑟) 2 km 4 km

Initial target speed S.D. (𝜎𝑠) 2 knots 2 knots

Initial course S.D. (𝜎𝑐 ) 𝜋∕
√
12 𝜋∕

√
12

Measurement noise mean (𝑟) 0.1𝑜 0.1𝑜

be 4𝑜 and 1.5𝑜, respectively. The true value of the measurement noise 
mean is considered to be 0.1𝑜 for all the cases.

In this study, we implemented the EKF-VB, CKF-VB, UKF-VB, and 
GHF-VB filters on both the scenarios and both time varying and time 
invariant noise covariance cases. The initial values of the measurement 
noise mean and covariance used in all the adaptive filtering are con-

sidered to be half of their initial true values. The results obtained from 
them are compared to their respective MAP-MLE adaptive filters. In the 
MAP-MLE adaptive filters, the mean of the measurement noise is esti-

mated using MAP [26] method and the covariance of the measurement 
noise is estimated using MLE [66], i.e., 𝑟̂𝑘 = 1

𝑘

∑𝑘

𝑖=1(𝑘 − ℎ(̂𝑘|𝑘−1)), 
and 𝑅̂𝑘 = 𝐶̂𝑣 +

∑𝑁𝑠

𝑗=1 𝑤𝑗 [𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1)][𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1)]𝑇 .

Figs. 2a and 2b show the true and the estimated measurement noise 
means and its standard deviations for Scenario I and II, respectively 
for a single representative run. From the plots, we can see that both 
the MAP-MLE and the VB adaptive filters are able to estimate the mea-

surement noise mean and its standard deviation. As a single run cannot 
be used for performance comparison of the two adaptive techniques, 
we rely on performance metrics such as RMSE, ANEES, bias norm, and 
track loss % for the purpose.

4.1. Performance comparison of tracking filters

4.1.1. Scenario I
For Scenario I, Figs. 3a, 3b show the RMSE of position and velocity, 

respectively, for time invariant noise covariance, 𝑅 (Case I), and 4a, 
4b show RMSE of position and velocity, respectively, for time varying 
𝑅𝑘 (Case II). All the RMSE plots are evaluated excluding the diverged 
tracks, as in [8] for 500 Monte Carlo runs. A track is said to be diverging 
when the terminal estimation error in range is beyond a certain value 
which is referred to as the track bound. Here, we are considering a track 
bound of 200 m. From the figures, we see that all the adaptive filters 
have higher RMSE than the nonadaptive filters because nonadaptive 
filters know the noise statistics. Further, we observed, that for unknown 
noise statistics, VB filters show lower RMSE than the filters with the 
MAP-MLE technique. Among all the VB adaptive filters, the GHF-VB 
shows better performance than the rest and the others are comparable 
to each other. In Fig. 3, we can see that the RMSE of EKF-VB is slightly 
lower than the VB based deterministic sample point filters. The reason 
behind it is that the RMSE results are assessed excluding the diverged 
tracks. Please note that the track loss percentage of EKF-VB is much 
higher (see Table 2) and if we include them, the RMSE of it will be 
much higher than the rest of the filters. As expected, the CRLB remains 
the lowest.

The bias norm plots for Scenario I are shown in 5a and 6a for Case 
I and II, respectively. The bias norm plots are also evaluated as in [8]

for 500 Monte Carlo runs, excluding the diverged tracks, considering a 
track bound of 200 m. All the plots converge to zero at the end of the 
simulation signifying zero bias. The ANEES plots, evaluated from 500 

Monte Carlo (MC) runs excluding diverged tracks with a track bound 
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Fig. 1. Tracking scenario for (a) moderately nonlinear scenario

Fig. 2. True and estimated measurement noise mean and st
of 200 m, are shown in 5b and 6b for Case I and II, respectively. The 
ANEES plots of the VB adaptive filters are almost similar to the plots 
of the nonadaptive filters after 1600 s, which are within or close to the 
95% bound in both cases which signifies consistent estimation. How-

ever, the MAP-MLE adaptive filters have much higher ANEES values 
which indicates that the estimation technique is optimistic which is not 
desirable.

The percentage of track loss for Scenario I is shown in Table 2 for 
both time varying and time invariant measurement noise covariance. 
The track loss % is evaluated from 10,000 MC runs, considering a track 
bound of 200 m. From the table, we can see that the VB adaptive filters 
show much less track loss % compared to the MAP-MLE adaptive filters 
at the expense of slightly higher execution time. Among all the VB fil-

ters, GHF-VB shows the lowest track loss % than the rest. The track loss 
% of all the filters in time varying 𝑅𝑘 (Case II) is slightly higher than 
the time invariant 𝑅 (Case I).

The VB based adaptive filtering method for unknown measurement 
noise statistics is compared to some of the existing adaptive filtering 
6

methods found in the literature. The non adaptive GHF, GHF-VB, GHF-
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(Scenario I), and (b) highly nonlinear scenario (Scenario II).

andard deviation for (a) Scenario I, and (b) Scenario II.

Table 2

The track loss %, relative execution time, and the number of flop counts.

Track loss % Rel. Flop

Filter Scenario I Scenario II exe. count

Case I Case II Case I Case II time (×104)

EKF 16.35 16.85 19.55 21.79 1 1.271

EKF-MAP-MLE 40.36 46.85 56.13 70.97 1.13 1.293

EKF-VB 18.57 19.58 20.47 29.62 1.48 1.678

CKF 1.48 2.21 4.56 11.24 2.59 1.311

CKF-MAP-MLE 34.68 42.67 52.48 63.48 2.69 1.329

CKF-VB 9.48 10.47 17.53 24.32 3.99 1.933

UKF 1.46 2.13 4.35 10.29 2.85 1.356

UKF-MAP-MLE 34.66 38.53 49.44 63.09 3.12 1.335

UKF-VB 8.33 8.99 16.45 23.12 4.62 1.975

GHF 1.44 2.05 4.10 9.44 3.76 1.683

GHF-MAP-MLE 34.47 37.92 39.78 54.08 4.64 1.731

GHF-VB 7.43 8.86 15.24 19.83 13.55 5.021
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Fig. 3. RMSE in (a) position, and (b) velocity for time invariant measurement noise covariance, Scenario I.

Fig. 4. RMSE in (a) position, and (b) velocity for time varying measurement noise covariance, Scenario I.
MAP-MLE, GHF-MAP-GGIG, and GHF-MAP-SW are compared with each 
other. The RMSE plots for position and velocity are shown in Fig. 7a and 
7b, respectively for Case I and 8a, and 8b, respectively for Case II. The 
RMSE is evaluated for 500 Monte Carlo runs excluding the diverged 
tracks, considering a track bound of 1 km. It can be seen that the GHF-

VB has the lowest RMSE among all the other adaptive techniques. The 
track loss for different adaptive filtering techniques, along with the non 
adaptive GHF, is listed in Table 3. The track loss percentage is evaluated 
for 10,000 Monte Carlo runs, considering a track bound of 1 km. From 
the table, it can be observed that the GHF-VB has the lowest track loss 
percentage than the other adaptive filtering techniques for both cases.

4.1.2. Scenario II
For Scenario II, Figs. 9a, 9b show the RMSE of position and velocity, 

respectively, for time invariant 𝑅 (Case I), and 10a, 10b show RMSE of 
position and velocity, respectively, for time varying 𝑅𝑘 (Case II). All the 
RMSE plots are evaluated excluding the diverged tracks, considering a 
track bound of 200 m for 500 MC runs. From the figures we see that 
7

the MAP-MLE adaptive filters have higher RMSE than the nonadaptive 
filters and the VB filters have similar or slightly higher RMSE compared 
to that of the nonadaptive filters. For nonadaptive filters, the exact noise 
statistics are assumed to be known, so they display the lowest RMSE. 
Among all the VB filters, the GHF-VB shows lower RMSE than the rest, 
while others are comparable to each other. In Figs. 9 and 10, we can see 
that the RMSE of EKF-VB is slightly lower than the CKF-VB and UKF-VB 
for the same reason mentioned in Sub-subsection 4.1.1.

The bias norm plots, excluding the diverged tracks, for Case I and 
II are shown in 11a and 12a, respectively. In both the figures, we can 
observe that the bias norm plots converge to zero at the end of the 
simulation signifying unbiased estimation. The ANEES plots, excluding 
diverged tracks, for Case I and II are shown in 11b and 12b, respec-

tively. The ANEES plots of the VB adaptive filters are almost similar to 
the ANEES of their nonadaptive counterparts, and they are within or 
near the 95% probability region which signifies a consistent estimation. 
However, the ANEES of the MAP-MLE filters are much higher which in-

dicates inferiority in estimation compared to the VB filters. The % of 
track loss, evaluated for 10,000 MC runs (with the same track bound), 

for Scenario II, are listed in Table 2. As Scenario II is highly nonlinear, 
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Fig. 5. (a) Bias norm, and (b) ANEES plots for time invariant measurement noise covariance, Scenario I.

Fig. 6. (a) Bias norm, and (b) ANEES plots for time varying measurement noise covariance, Scenario I.
it is more difficult to estimate compared to Scenario I which was mod-

erately nonlinear. So the track loss % of all the filters in Scenario II is 
much higher than in Scenario I. The VB filters have lower track loss % 
compared to the MAP-MLE filters. Among all the VB filters, the GHF-VB 
has the lowest track loss %, although the execution time of it is quite 
high.

A comparison with the non adaptive GHF filter with GHF-VB, MAP-

MLE, MAP-GGIG, and MAP-SW methods is done for Scenario II. The 
RMSE in position and velocity for the same are depicted in Figs. 13a 
and 13b for Case I, and Figs. 14a and 14a for Case II. These plots are 
generated based on 500 Monte Carlo runs, excluding diverged tracks, 
with a track bound of 1 km. From the results, it can be seen that GHF-

VB exhibits the lowest RMSE compared to all other adaptive techniques. 
The track loss for different adaptive filtering techniques, including non-

adaptive GHF, is summarized in Table 3, with the track loss percentage 
evaluated over 10,000 Monte Carlo runs, considering a track bound of 
1 km. Notably, GHF-VB demonstrates the lowest track loss percentage 
8

among all adaptive filtering techniques for both cases.
4.2. Computational budget

The computation budget of any estimation technique can be evalu-

ated using flop counts. The number of floating point operations termed 
flops can be counted by counting the number of addition, subtraction, 
multiplication, or division operations of two floating points. It is to be 
noted that while evaluating computation complexity the index fetching, 
storing of values, input, output, and initialization are neglected. The 
flop count for 𝐴𝑚×𝑛+𝐵𝑚×𝑛 is 𝑚𝑛, 𝐴𝑚×𝑛×𝐵𝑛×𝑝 is (2𝑛 −1)𝑝𝑚, 𝑐ℎ𝑜𝑙(𝐴𝑚×𝑚)
is 𝑚3∕3 + 2𝑚2 and 𝑒𝑥𝑝(⋅) is decomposed till third order Taylor series 
to evaluate the flop count. The computation complexity of the VB ap-

proach as shown in Algorithm 2 is given by

𝐶(𝑛,𝑁𝑠,𝑁𝐹𝑃𝐼 ) = 4𝑛6 − 4𝑛5 + 𝑛4 + 𝑛3

3
+ 𝑛2(5 + 2𝑁𝑠) + 3𝑛𝑁𝑠 + 3𝑁𝑠 + 11

+𝑁𝐹𝑃𝐼 [2𝑛2 + 4𝑛+ 8𝑁𝑠 + 22], (37)

where the system dimension, 𝑛 = 4 in our work, 𝑁𝑠 is the total number 
of sigma points, and 𝑁𝐹𝑃𝐼 is the total number of iterations that have 
to be performed at each time step. If we include the initialization of 

𝛼̂0 and 𝑢̂′0, as mentioned in Section 3.3, while calculating the total flop 
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Fig. 7. RMSE in (a) position, and (b) velocity for time invariant measurement noise covariance, Scenario I.

Fig. 8. RMSE in (a) position, and (b) velocity for time varying measurement noise covariance, Scenario I.
counts then the number of flops required to execute a VB Gaussian filter 
will be 𝐶 +𝑁𝑖(2𝑛2 + 4𝑛 + 8𝑁𝑠 + 22), where 𝑁𝑖 is the number of loops 
executed during initialization.

As we are comparing the VB adaptive filtering with the MAP-MLE 
technique, it is interesting to evaluate the computation complexity of 
the MAP-MLE method as well. For the MAP-MLE approach of adaptive 
filtering, the number of flop counts is as follows

𝐶(𝑛,𝑁𝑠,𝐿,𝑘) = 4𝑛6 − 4𝑛5 + 𝑛4 + 𝑛3

3
+ 𝑛2(7 + 2𝑁𝑠) + 𝑛(3𝑁𝑠 + 4)

+ 3𝑘+ 3𝐿+ 11𝑁𝑠 + 8, (38)

where 𝑘 represents the 𝑘th time step and 𝐿 represents the window 
length.

The number of flop counts and the relative execution time for all the 
filters are listed in Table 2. In the flop count calculation, we have con-

sidered the window length in MAP-MLE, 𝐿 = 50. As it is observed that 
the FPI algorithm generally converges within 6 to 7 iterations, 𝑁𝐹𝑃𝐼

is considered to be 7. From the table, we can see that the number of 
9

flops for the VB filters is slightly higher than the MAP-MLE. The rel-
ative execution time of all the filters is noted, w.r.t., the time taken 
by the EKF. The execution time of the VB filters is a few times more 
than that of the MAP-MLE and nonadaptive filters. Among the VB fil-

ters, both the execution time and the flop counts of GHF-VB are highest 
because it requires 81 support points as we implemented a third order 
Gauss-Hermite approximation.

5. Discussion and conclusion

This paper presents a variational Bayesian (VB) based adaptive fil-

tering framework for Gaussian filters to estimate the target trajectory 
using bearings-only measurements of unknown noise statistics. The pro-

posed adaptive estimation is based on the assumption that the joint dis-

tribution of the measurement noise mean and covariance follow normal 
inverse Wishart distribution. The VB estimation for nonlinear system 
is realized using a set of deterministic sample points generated with 
various approaches. The VB Gaussian filters such as EKF-VB, CKF-VB, 
UKF-VB, and GHF-VB are implemented to track an underwater target 

for both time invariant and time varying unknown measurement noise 
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Fig. 9. RMSE in (a) position, and (b) velocity for time invariant measurement noise covariance, Scenario II.

Fig. 10. RMSE in (a) position, and (b) velocity for time varying measurement noise covariance, Scenario II.
Table 3

The % of track loss comparison of the proposed filter 
with the methods available in the literature for the track 
bound 1 km.

Scenario I Scenario II

Filter Case I Case II Case I Case II

GHF 0.7 1.6 2.2 2.4

GHF-VB 2 2.6 10.4 7.2

GHF-MAP-MLE 19.2 21.8 22 24.2

GHF-MAP-VB 16.8 19.19 22.6 24.6

GHF-MAP-GGIG 32.8 34.8 45.2 47.3

GHF-MAP-SW 31.8 32.8 36.4 38.6

covariance. The results are compared with the MAP-MLE based adap-

tive filters and with the nonlinear filters of known noise statistics for 
two engagement scenarios. Simulation results showed that the proposed 
VB filters estimate well without knowing the noise statistics and they 
outperformed the adaptive filters based on MAP-MLE at the expense of 
10

slight higher computational cost.
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Appendix A. Proof for Theorem 1

From (14), when 𝜃 =𝑅′
𝑘
,

log 𝑞(𝑅′
𝑘
) =𝐸𝑘,𝑟

′ [log𝑝(𝑘, 𝑟
′,𝑅′

𝑘
,1∶𝑘−1,𝑘)] + 𝑐. (A.1)

Using factorization with conditional probability,

log 𝑞(𝑅′
𝑘
) =𝐸𝑘,𝑟

′ log[𝑝(𝑘|𝑘, 𝑟
′,𝑅′

𝑘
,1∶𝑘−1)𝑝(𝑘|𝑟′,𝑅′

𝑘
,1∶𝑘−1)
𝑝(𝑟′|𝑅′
𝑘
,1∶𝑘−1)𝑝(𝑅′

𝑘
|1∶𝑘−1)𝑝(1∶𝑘−1)] + 𝑐



Digital Signal Processing 153 (2024) 104648S. Das, K. Kumar and S. Bhaumik

Fig. 11. (a) Bias norm, and (b) ANEES plots for time invariant measurement noise covariance, Scenario II.

Fig. 12. (a) Bias norm, and (b) ANEES plots for time varying measurement noise covariance, Scenario II.
=𝐸𝑘,𝑟
′ log[ (𝑘;ℎ(𝑘) + 𝑟′,𝑅′

𝑘
) (𝑘; ̂𝑘|𝑘−1, 𝑃𝑘|𝑘−1)

 (𝑟′; 𝑟̂𝑘−1, 𝛼̂𝑘−1𝑅
′
𝑘
)𝐼𝑊 (𝑅′

𝑘
; 𝑢̂′

𝑘−1, 𝑈̂
′
𝑘−1)] + 𝑐

= −
𝑢̂′
𝑘−1 +𝑚+ 3

2
log |𝑅′

𝑘
|− 1

2
𝑡𝑟(𝑈̂ ′

𝑘−1𝑅
′−1
𝑘
) −𝐸𝑘

[ 1
2
̃𝑇

𝑘
𝑃−1
𝑘|𝑘−1̃𝑘]

−𝐸𝑟′ [
1

2𝛼̂𝑘−1
𝑟𝑇 (𝑅′

𝑘
)−1𝑟] −𝐸𝑘,𝑟

′ [ 12
̃𝑇

𝑘
𝑅′−1

𝑘
̃𝑘] + 𝑐𝑅𝑘

, (A.2)

where ̃𝑘 = 𝑘− ̂𝑘|𝑘−1 and 𝑐𝑅𝑘
is a constant. As ̃𝑇

𝑘
𝑅′−1

𝑘
̃𝑘 is a scalar, 

using cyclic property of trace, we write,

̃𝑇
𝑘
𝑅′−1

𝑘
̃𝑘 = 𝑡𝑟[̃𝑇

𝑘
𝑅′−1

𝑘
̃𝑘] = 𝑡𝑟[̃𝑘̃𝑇

𝑘
𝑅′−1

𝑘
]. (A.3)

Similarly,

𝑟𝑇 (𝑅′
𝑘
)−1𝑟 = 𝑡𝑟[𝑟𝑟𝑇 (𝑅′

𝑘
)−1], (A.4)

and

̃𝑇
𝑘
𝑃−1
𝑘|𝑘−1̃𝑘 = 𝑡𝑟[̃𝑘̃𝑇

𝑘
𝑃−1
𝑘|𝑘−1]. (A.5)
11

As the expectation of (A.5) is a constant we can write using (A.2),
𝐸𝑘,𝑟
′ [log𝑝(𝑘, 𝑟

′,𝑅′
𝑘
,1∶𝑘)] = −

𝑢̂′
𝑘−1 +𝑚+ 3

2
log |𝑅′

𝑘
|− 1

2
𝑡𝑟(𝑈̂ ′

𝑘−1𝑅
′−1
𝑘
)

− 1
2
𝑡𝑟[(𝐵𝑘 +𝐷𝑘)𝑅′−1

𝑘
] + 𝑐𝑅𝑘

= −
𝑢̂′
𝑘−1 +𝑚+ 3

2
log |𝑅′

𝑘
|− 1

2
𝑡𝑟[(𝑈̂ ′

𝑘−1 +𝐵𝑘 +𝐷𝑘)𝑅′−1
𝑘
] + 𝑐𝑅𝑘

,

(A.6)

where 𝐵𝑘 =𝐸𝑘,𝑟
′ [̃𝑘̃𝑇

𝑘
], and 𝐷𝑘 =

1
𝛼̂𝑘−1

𝐸𝑟′ [𝑟𝑟𝑇 ]. Comparing 𝑞(𝑅′
𝑘
) =

𝐼𝑊 (𝑅′
𝑘
; ̂𝑢′

𝑘
, 𝑈̂ ′

𝑘
) with (A.6) we receive (20) and (21).

Appendix B. Proof of Lemma 1

Adding and subtracting ℎ(̂𝑘|𝑘−1), and 𝑟̂𝑘−1 and rearranging (22),

𝐵𝑘 =𝐸𝑘,𝑟
′ [(𝑘 − ℎ(𝑘) − 𝑟′ − ℎ(̂𝑘|𝑘−1) + ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘−1 + 𝑟̂𝑘−1)

(𝑘 − ℎ(𝑘) − 𝑟′ − ℎ(̂𝑘|𝑘−1) + ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘−1 + 𝑟̂𝑘−1)𝑇 ]
= (𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘−1)(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘−1)𝑇
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Fig. 13. RMSE in (a) position, and (b) velocity for time invariant measurement noise covariance, Scenario II.

Fig. 14. RMSE in (a) position, and (b) velocity for time varying measurement noise covariance, Scenario II.
+ (𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘−1)𝐸𝑘,𝑟
′ [(ℎ(̂𝑘|𝑘−1) − ℎ(𝑘) + 𝑟̂𝑘−1 − 𝑟′)𝑇 ]

+𝐸𝑘,𝑟
′ [(ℎ(̂𝑘|𝑘−1) − ℎ(𝑘) + 𝑟̂𝑘−1 − 𝑟′)](𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘−1)𝑇

+𝐸𝑘,𝑟
′ [(ℎ(̂𝑘|𝑘−1) − ℎ(𝑘) + 𝑟̂𝑘−1 − 𝑟′)(ℎ(̂𝑘|𝑘−1) − ℎ(𝑘)

+ 𝑟̂𝑘−1 − 𝑟′)𝑇 ]

= (𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘−1)(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘−1)𝑇

+𝐸𝑘,𝑟
′ [(ℎ(̂𝑘|𝑘−1) − ℎ(𝑘) + 𝑟̂𝑘−1 − 𝑟′)(ℎ(̂𝑘|𝑘−1) − ℎ(𝑘)

+ 𝑟̂𝑘−1 − 𝑟′)𝑇 ]. (B.1)

Now, the second term of the above equation can be written as,

𝐸𝑘,𝑟
′ [(ℎ(̂𝑘|𝑘−1) − ℎ(𝑘) + 𝑟̂𝑘−1 − 𝑟′)(ℎ(̂𝑘|𝑘−1) − ℎ(𝑘) + 𝑟̂𝑘−1 − 𝑟′)𝑇 ]

=𝐸𝑘
[(ℎ(̂𝑘|𝑘−1) − ℎ(𝑘))(ℎ(̂𝑘|𝑘−1) − ℎ(𝑘))𝑇 ]

+𝐸𝑘,𝑟
′ [(ℎ(̂𝑘|𝑘−1) − ℎ(𝑘))(𝑟̂𝑘−1 − 𝑟′)𝑇 ]
12

+𝐸𝑘,𝑟
′ [(𝑟̂𝑘−1 − 𝑟′)(ℎ(̂𝑘|𝑘−1) − ℎ(𝑘)𝑇 ] +𝐸𝑟′ [𝑟𝑟𝑇 ]
=
𝑁𝑠∑
𝑗=1

𝑤𝑗 [𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1)][𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1)]𝑇 + 𝛼̂𝑘−1𝑅̂𝑘, (B.2)

where, 𝛼̂𝑘−1 is the confidence parameter and its recursion is provided 
in Theorem 3. Substituting (B.2) in (B.1) we receive (24).

Appendix C. Proof of Lemma 2

Adding and subtracting 𝑟̂𝑘 in (23) we have,

𝐷𝑘 =
1

𝛼̂𝑘−1
𝐸𝑟′ [(𝑟′ − 𝑟̂𝑘−1 − 𝑟̂𝑘 + 𝑟̂𝑘)(𝑟′ − 𝑟̂𝑘−1 − 𝑟̂𝑘 + 𝑟̂𝑘)𝑇 ]

= 1
𝛼̂𝑘−1

𝐸𝑟′ [(𝑟′ − 𝑟̂𝑘)(𝑟′ − 𝑟̂𝑘)𝑇 + (𝑟′ − 𝑟̂𝑘)(𝑟̂𝑘 − 𝑟̂𝑘−1)𝑇

+ (𝑟̂𝑘 − 𝑟̂𝑘−1)(𝑟′ − 𝑟̂𝑘)𝑇 + (𝑟̂𝑘 − 𝑟̂𝑘−1)(𝑟̂𝑘 − 𝑟̂𝑘−1)𝑇 ]

=
𝛼̂𝑘

𝑅̂𝑘 +
1 (𝑟̂𝑘 − 𝑟̂𝑘−1)(𝑟̂𝑘 − 𝑟̂𝑘−1)𝑇 . (C.1)
𝛼̂𝑘−1 𝛼̂𝑘−1
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Appendix D. Proof for Theorem 2

Using (14), for 𝜃 = 𝑘 we have,

log 𝑞(𝑘) =𝐸𝑅′
𝑘
,𝑟′ log[ (𝑘;ℎ(𝑘) + 𝑟′,𝑅′

𝑘
) (𝑘; ̂𝑘|𝑘−1, 𝑃𝑘|𝑘−1)

 (𝑟′; 𝑟̂𝑘−1, 𝛼̂𝑘−1𝑅
′
𝑘−1)𝐼𝑊 (𝑅′

𝑘−1; 𝑢̂
′
𝑘−1, 𝑈̂

′
𝑘−1)] + 𝑐

= −1
2
𝐸𝑅′

𝑘
,𝑟′ [̃𝑇

𝑘
𝑅′−1

𝑘
̃𝑘] −

1
2
̃𝑇

𝑘|𝑘−1𝑃−1
𝑘|𝑘−1̃𝑘|𝑘−1 + 𝑐𝑘

, (D.1)

where ̃𝑘|𝑘−1 = 𝑘 − ̂𝑘|𝑘−1. Again using trace and cyclic property we 
can write,

𝐸𝑅′
𝑘
,𝑟′ [̃𝑇

𝑘
𝑅′−1

𝑘
̃𝑘] = 𝑡𝑟(𝐸𝑟′ [̃𝑘̃𝑇

𝑘
]𝐸[𝑅′−1

𝑘
])

= 𝑡𝑟(𝐸𝑟′ [(𝑘 − ℎ(𝑘) − 𝑟′ + 𝑟̂𝑘 − 𝑟̂𝑘)(𝑘 − ℎ(𝑘)

− 𝑟′ + 𝑟̂𝑘 − 𝑟̂𝑘)𝑇 ]𝐸[𝑅′−1
𝑘
])

= 𝑡𝑟((𝑘 − ℎ(𝑘) − 𝑟̂𝑘)(𝑘 − ℎ(𝑘) − 𝑟̂𝑘)𝑇

+ (𝑘 − ℎ(𝑘) − 𝑟̂𝑘)𝐸[(𝑟̂𝑘 − 𝑟′)𝑇 ]

+𝐸[(𝑟̂𝑘 − 𝑟′)](𝑘 − ℎ(𝑘) − 𝑟̂𝑘)𝑇 +𝐸[(𝑟̂𝑘 − 𝑟′)(𝑟̂𝑘 − 𝑟′)𝑇 ]𝐸[𝑅′−1
𝑘
]))

= 𝑡𝑟[((𝑘 − ℎ(𝑘) − 𝑟̂𝑘)(𝑘 − ℎ(𝑘) − 𝑟̂𝑘)𝑇 + 𝛼̂𝑘𝑅
′
𝑘
)𝐸[𝑅′−1

𝑘
]]. (D.2)

As 𝑡𝑟(𝐴 +𝐵) = 𝑡𝑟(𝐴) + 𝑡𝑟(𝐵) we can write,

𝐸𝑅′
𝑘
,𝑟′ [̃𝑇

𝑘
𝑅′−1

𝑘
̃𝑘] = 𝑡𝑟[(𝑘 − ℎ(𝑘) − 𝑟̂𝑘)(𝑘 − ℎ(𝑘) − 𝑟̂𝑘)𝑇 𝐸[𝑅′−1

𝑘
]]

+ 𝑡𝑟[𝛼̂𝑘𝑅
′
𝑘
𝐸[𝑅′−1

𝑘
]]. (D.3)

Using cyclic property of trace and removing trace as the content within 
trace becomes scalar, we have

log 𝑞(𝑘) = −1
2
(𝑘 − ℎ(𝑘) − 𝑟̂𝑘)𝑇 𝐸[𝑅′−1

𝑘
](𝑘 − ℎ(𝑘) − 𝑟̂𝑘)

− 1
2
̃𝑇

𝑘|𝑘−1𝑃−1
𝑘|𝑘−1̃𝑘|𝑘−1 + 𝑐𝑘

, (D.4)

or,

𝑞(𝑘) =
1
𝑐𝑘

𝑝(𝑘|𝑘)𝑝(𝑘|1∶𝑘−1), (D.5)

where the normalizing constant, 𝑐𝑘 = ∫ 𝑝(𝑘|𝑘)𝑝(𝑘|1∶𝑘−1)𝑑𝑘. As 
we know, 𝑝(𝑘|𝑘) = (𝑘; ℎ(𝑘) + 𝑟̂𝑘, 𝑅̂𝑘) we can write,

𝑅̂𝑘 =𝐸[𝑅′−1
𝑘
]−1 =𝐸[𝑅′

𝑘
] =

𝑈̂ ′
𝑘

𝑢̂′
𝑘
−𝑚− 1

. (D.6)

Using (21), (24) and (25) in (D.6) can arrive at (26).

Appendix E. Proof for Theorem 3

Evaluating the solution of (14), when 𝜃 = 𝑟′ and following (A.2),

log 𝑞(𝑟′) =𝐸𝑘,𝑅
′
𝑘
log[ (𝑘;ℎ(𝑘) + 𝑟′,𝑅′

𝑘
) (𝑘; ̂𝑘|𝑘−1, 𝑃𝑘|𝑘−1)

 (𝑟′; 𝑟̂𝑘−1, 𝛼̂𝑘−1𝑅
′
𝑘
)𝐼𝑊 (𝑅′

𝑘
; 𝑢̂′

𝑘−1, 𝑈̂
′
𝑘−1)] + 𝑐𝑟. (E.1)

Using (A.5), we can write

log 𝑞(𝑟′) =𝐸𝑘,𝑅
′
𝑘
log[ (𝑘;ℎ(𝑘) + 𝑟′,𝑅′

𝑘
) (𝑟′; 𝑟̂𝑘−1, 𝛼̂𝑘−1𝑅

′
𝑘
)] + 𝑐𝑟

= −1
2
𝐸𝑘,𝑅

′
𝑘
[̃𝑇

𝑘
𝑅′−1

𝑘
̃𝑘] −

1
2𝛼̂𝑘−1

𝑟𝑇 𝐸𝑅′
𝑘
[(𝑅′

𝑘
)−1]𝑟+ 𝑐𝑟, (E.2)

where ̃𝑘 = (𝑘 −ℎ(𝑘) − 𝑟′) and 𝑟 = (𝑟′ − 𝑟̂𝑘−1). Using (A.3) the expec-

tation in the first term of (E.2) can be evaluated as

𝐸𝑘,𝑅
′
𝑘
[̃𝑇

𝑘
𝑅′−1

𝑘
̃𝑘] = 𝑡𝑟{𝐸𝑘

[̃𝑘̃𝑇
𝑘
]𝐸𝑅′

𝑘
[𝑅′−1

𝑘
]}

= 𝑡𝑟{𝐸𝑘
[(𝑘 − ℎ(𝑘) − 𝑟′ + ℎ(̂𝑘|𝑘−1) − ℎ(̂𝑘|𝑘−1))(𝑘 − ℎ(𝑘) − 𝑟′

A

e

𝐸

W

s

l

A

p

(
a

𝑟̂

E

c

𝛼

A

𝛼

A

w

d

m

d

w

a

p

𝐴

13

+ ℎ(̂𝑘|𝑘−1) − ℎ(̂𝑘|𝑘−1))𝑇 ]𝐸𝑅′
𝑘
[𝑅′−1

𝑘
]}
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= 𝑡𝑟{(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟′)(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟′)𝑇 −𝐸𝑘
[(𝑘 − ℎ(̂𝑘|𝑘−1)

− 𝑟′)(ℎ(𝑘) − ℎ(̂𝑘|𝑘−1))𝑇 ] −𝐸𝑘
[(ℎ(𝑘) − ℎ(̂𝑘|𝑘−1))(𝑘 − ℎ(̂𝑘|𝑘−1)

− 𝑟′)𝑇 ]

+𝐸𝑘
[(ℎ(𝑘) − ℎ(̂𝑘|𝑘−1))(ℎ(𝑘) − ℎ(̂𝑘|𝑘−1))𝑇 ]𝐸[𝑅′−1

𝑘
]}

= 𝑡𝑟{[(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟′)(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟′)𝑇 ]𝐸[𝑅′−1
𝑘
]} + 𝑐. (E.3)

gain from (E.3) using cyclic property of trace we can rewrite the above 
quation as

𝑘,𝑅
′
𝑘
[̃𝑇

𝑘
𝑅′−1

𝑘
̃𝑘] = 𝑡𝑟{(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟′)𝑇 𝐸[𝑅′−1

𝑘
](𝑘 − ℎ(̂𝑘|𝑘−1)

− 𝑟′)} + 𝑐.

(E.4)

e can remove the trace from the right hand side as the expression is a 
calar. So, (E.2) becomes

og 𝑞(𝑟′) = −1
2
(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟′)𝑇 𝐸[𝑅′−1

𝑘
](𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟′)

− 1
2𝛼̂𝑘−1

𝑟𝑇 𝐸[𝑅′−1
𝑘
]𝑟+ 𝑐𝑟. (E.5)

s we know the product of two Gaussian pdfs will be another Gaussian 
df with a resultant mean, (𝑚1𝜎

2
2 + 𝑚2𝜎

2
1 )∕(𝜎

2
1 + 𝜎2

2 ) and covariance, 
𝜎2
1𝜎

2
2 )∕(𝜎

2
1 + 𝜎2

2 ), where (𝑚1, 𝑚2) and (𝜎2
1 , 𝜎

2
2 ) are the mean and covari-

nce of the two Gaussian pdfs, from (E.5) we receive

𝑘 =
𝑟̂𝑘−1(𝐸[𝑅′−1

𝑘
])−1 + (𝑘 − ℎ(̂𝑘|𝑘−1))(𝛼̂−1𝑘−1𝐸[𝑅′−1

𝑘
])−1

(𝐸[𝑅′−1
𝑘
])−1 + (𝛼̂−1

𝑘−1𝐸[𝑅′−1
𝑘
])−1

=
(𝐸[𝑅′−1

𝑘
])−1(𝑟̂𝑘−1 + (𝑘 − ℎ(̂𝑘|𝑘−1))𝛼̂𝑘−1)

(𝐸[𝑅′−1
𝑘
])−1(1 + 𝛼̂𝑘−1)

=
𝑟̂𝑘−1 + (𝑘 − ℎ(̂𝑘|𝑘−1))𝛼̂𝑘−1

(1 + 𝛼̂𝑘−1)
. (E.6)

valuating ̂𝑘|𝑘−1 with the help of deterministic sample points we re-

eive (27).

Similarly from (E.5) we get the estimated confidence parameter,

̂𝑘𝑅̂𝑘 =
(𝐸[𝑅′−1

𝑘
])−1(𝐸[𝑅′−1

𝑘
]𝛼̂−1

𝑘−1)
−1

(𝐸[𝑅′−1
𝑘
])−1(1 + 𝛼̂𝑘−1)

=
(𝐸[𝑅′−1

𝑘
])−1𝛼̂𝑘−1

1 + 𝛼̂𝑘−1
. (E.7)

s, we know 𝑅̂𝑘 = (𝐸[𝑅′−1
𝑘
])−1 from (D.6), so,

̂𝑘 =
𝛼̂𝑘−1

𝛼̂𝑘−1 + 1
. (E.8)

ppendix F. Proof for Theorem 4

The Eqn. (D.4) can be considered as a merit function such that if 
e maximize it, the likelihood 𝑝(𝑘|𝑘) and the prediction probability 
ensity, 𝑝(𝑘|1∶𝑘−1) will be maximized thus we shall receive an opti-

al or suboptimal (for nonlinear system) posterior estimate. The first 
erivative of (D.4) becomes,

𝑑 log 𝑞(𝑘)
𝑑𝑘

= −𝑃−1
𝑘|𝑘−1(𝑘 − ̂𝑘|𝑘−1) + ∇𝑘

ℎ𝑇 (𝑘)𝑅̂−1
𝑘
(𝑘 − ℎ(𝑘) − 𝑟̂𝑘),

(F.1)

here ∇𝑘
=
[

𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
⋯ 𝜕

𝜕𝑥𝑛

]𝑇
. Let us say, Δ𝑘

= 𝑘 − ̂𝑘|𝑘−1
nd Δℎ(𝑘) = ℎ(𝑘) −𝐸[ℎ(𝑘)]. Using statistical linearization, as in [67, 
p. 172], ℎ(𝑘) =𝐴𝑘 + 𝑏, where

=𝐸[Δ𝑘
Δ𝑇

ℎ(𝑘)
]𝑇 𝑃−1

𝑘|𝑘−1, (F.2)
and 𝑏 =𝐸[ℎ(𝑘)] −𝐴̂𝑘|𝑘−1. Therefore,
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∇𝑘
ℎ𝑇 (𝑘) = [∇𝑘

Δ𝑇𝑘
](𝑃−1

𝑘|𝑘−1)𝑇 𝐸[Δ𝑘
Δ𝑇

ℎ(𝑘)
]

= (𝑃−1
𝑘|𝑘−1)𝑇 𝐸[Δ𝑘

Δ𝑇
ℎ(𝑘)

].
(F.3)

Using these in (F.1), we have

𝑑 log 𝑞(𝑘)
𝑑𝑘

= −𝑃−1
𝑘|𝑘−1Δ𝑘

+ (𝑃−1
𝑘|𝑘−1)𝑇 𝐸[Δ𝑘

Δ𝑇
ℎ(𝑘)

]𝑅̂−1
𝑘

(𝑘 −𝐸[Δ𝑘
Δ𝑇

ℎ(𝑘)
]𝑇 𝑃−1

𝑘|𝑘−1𝑘 −𝐸[ℎ(𝑘)]

+𝐸[Δ𝑘
Δ𝑇

ℎ(𝑘)
]𝑇 𝑃−1

𝑘|𝑘−1̂𝑘|𝑘−1 − 𝑟̂𝑘)

= −𝑃−1
𝑘|𝑘−1Δ𝑘

+ (𝑃−1
𝑘|𝑘−1)𝑇 𝐸[Δ𝑘

Δ𝑇
ℎ(𝑘)

]𝑅̂−1
𝑘

(𝑘 −𝐸[Δ𝑘
Δ𝑇

ℎ(𝑘)
]𝑇 𝑃−1

𝑘|𝑘−1Δ𝑘
−𝐸[ℎ(𝑘)] − 𝑟̂𝑘)

= −𝑃−1
𝑘|𝑘−1Δ𝑘

+ (𝑃−1
𝑘|𝑘−1)𝑇 𝐸[Δ𝑘

Δ𝑇
ℎ(𝑘)

]𝑅̂−1
𝑘
(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘)

− (𝑃−1
𝑘|𝑘−1)𝑇 𝐸[Δ𝑘

Δ𝑇
ℎ(𝑘)

]𝑅̂−1
𝑘

𝐸[Δ𝑘
Δ𝑇

ℎ(𝑘)
]𝑇 𝑃−1

𝑘|𝑘−1Δ𝑘
. (F.4)

To find the maxima of log 𝑞(𝑘) we have to equate the above equation 
to zero,

(𝑃−1
𝑘|𝑘−1 + (𝑃−1

𝑘|𝑘−1)𝑇 𝐸[Δ𝑘
Δ𝑇

ℎ(𝑘)
]𝑅̂−1

𝑘
𝐸[Δ𝑘

Δ𝑇
ℎ(𝑘)

]𝑇 𝑃−1
𝑘|𝑘−1)Δ𝑘

= (𝑃−1
𝑘|𝑘−1)𝑇 𝐸[Δ𝑘

Δ𝑇
ℎ(𝑘)

]𝑅̂−1
𝑘
(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘). (F.5)

Substituting Δ𝑘
= 𝑘 − ̂𝑘|𝑘−1

or, 𝑘 = ̂𝑘|𝑘−1
+ (𝑃−1

𝑘|𝑘−1 + (𝑃−1
𝑘|𝑘−1)𝑇 𝐸[Δ𝑘

Δ𝑇
ℎ(𝑘)

]𝑅̂−1
𝑘

𝐸[Δ𝑘
Δ𝑇

ℎ(𝑘)
]𝑇 𝑃−1

𝑘|𝑘−1)−1
(𝑃−1

𝑘|𝑘−1)𝑇 𝐸[Δ𝑘
Δ𝑇

ℎ(𝑘)
]𝑅̂−1

𝑘
(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘). (F.6)

Taking expectation on both the sides we could write,

̂𝑘|𝑘 = ̂𝑘|𝑘−1 +𝐾𝑘(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘), (F.7)

where

𝐾𝑘 = (𝑃−1
𝑘|𝑘−1 + (𝑃−1

𝑘|𝑘−1)𝑇 𝐸[Δ𝑘
Δ𝑇

ℎ(𝑘)
]𝑅̂−1

𝑘
𝐸[Δ𝑘

Δ𝑇
ℎ(𝑘)

]𝑇 𝑃−1
𝑘|𝑘−1)−1

(𝑃−1
𝑘|𝑘−1)𝑇 𝐸[Δ𝑘

Δ𝑇
ℎ(𝑘)

]𝑅̂−1
𝑘

. (F.8)

Further, using (F.2), the expression of 𝐾𝑘, the Kalman gain, reduces as,

𝐾𝑘 = (𝑃−1
𝑘|𝑘−1 +𝐴𝑇 𝑅̂−1

𝑘
𝐴)−1𝐴𝑇 𝑅̂−1

𝑘
,

or, 𝐾−1
𝑘

= 𝑅̂𝑘(𝐴𝑇 )−1𝑃−1
𝑘|𝑘−1 + 𝑅̂𝑘(𝐴𝑇 )−1𝐴𝑇 𝑅̂−1

𝑘
𝐴,

or, 𝐾𝑘 = 𝑃𝑘|𝑘−1𝐴𝑇 (𝑅̂𝑘 +𝐴𝑃𝑘|𝑘−1𝐴𝑇 )−1. (F.9)

Considering the first factor of the above equation

𝑃𝑘|𝑘−1𝐴𝑇 = 𝑃𝑘|𝑘−1(𝐸[Δ𝑘
Δ𝑇

ℎ(𝑘)
]𝑇 𝑃−1

𝑘|𝑘−1)𝑇
= 𝑃𝑘|𝑘−1(𝑃−1

𝑘|𝑘−1)𝑇 𝐸[Δ𝑘
Δ𝑇

ℎ(𝑘)
]

=𝐸[Δ𝑘
Δ𝑇

ℎ(𝑘)
] = 𝑃 . (F.10)

For Gaussian filters, the expression of 𝑃 can be written using support 
points and weights as

𝑃 =
𝑁𝑠∑
𝑗=1

𝑤𝑗 (𝚇𝑗,𝑘|𝑘−1 − ̂𝑘|𝑘−1)(𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1))𝑇 . (F.11)

The second factor of (F.9) can be evaluated as,

𝑅̂𝑘 +𝐴𝑃𝑘|𝑘−1𝐴𝑇 = 𝑅̂𝑘 +𝐸[(𝐴𝑘 −𝐴̂𝑘|𝑘−1)(𝐴𝑘 −𝐴̂𝑘|𝑘−1)𝑇 ]
= 𝑅̂𝑘 +𝐸[(ℎ(𝑘) − 𝑏−𝐴̂𝑘|𝑘−1)(ℎ(𝑘) − 𝑏−𝐴̂𝑘|𝑘−1)𝑇 ]
= 𝑅̂𝑘 +𝐸[(ℎ(𝑘) − ℎ(̂𝑘|𝑘−1))(ℎ(𝑘) − ℎ(̂𝑘|𝑘−1))𝑇 ]
= 𝑅̂𝑘 +

𝑁𝑠∑
𝑗=1

𝑤𝑗 (𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1))(𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1))𝑇 = 𝑃 .

Th

an

𝑃

=

+

=

(
+

=

+

−

−

=

+

−

=

+

=

=

=

=

A

̂
−

=

−

=

Ta

𝐸

+

=

=

=

=

or

A
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e first statement of the theorem is proved. The posterior error covari-

ce,

𝑘|𝑘 =𝐸[(𝑘 − ̂𝑘|𝑘)(𝑘 − ̂𝑘|𝑘)𝑇 ]
𝐸[(𝑘 − (̂𝑘|𝑘−1 +𝐾𝑘(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘)))(𝑘 − (̂𝑘|𝑘−1
𝐾𝑘(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘)))𝑇 ]

𝐸[(𝑘 − ̂𝑘|𝑘−1)(𝑘 − ̂𝑘|𝑘−1)𝑇 ] −𝐾𝑘𝐸[(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘)

𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘)𝑇 ]𝐾𝑇
𝑘
+𝐸[(𝑘 − ̂𝑘|𝑘−1)(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘)𝑇 ]𝐾𝑇

𝑘

𝐾𝑘𝐸[(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘)(𝑘 − ̂𝑘|𝑘−1)𝑇 ]
𝑃𝑘|𝑘−1 +𝐾𝑘𝐸[(ℎ(𝑘) + 𝜈𝜃𝑘

− ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘)(ℎ(𝑘)

𝜈𝜃𝑘
− ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘)𝑇 ]𝐾𝑇

𝑘
−𝐸[(𝑘 − ̂𝑘|𝑘−1)(ℎ(𝑘) + 𝜈𝜃𝑘

ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘)𝑇 ]𝐾𝑇
𝑘
−𝐾𝑘𝐸[(ℎ(𝑘) + 𝜈𝜃𝑘

− ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘)(𝑘

̂𝑘|𝑘−1)𝑇 ]
𝑃𝑘|𝑘−1 +𝐾𝑘(𝐸[(ℎ(𝑘) − ℎ(̂𝑘|𝑘−1))(ℎ(𝑘) − ℎ(̂𝑘|𝑘−1))𝑇 ]
𝐸[(𝜈𝜃𝑘 − 𝑟̂𝑘)(𝜈𝜃𝑘 − 𝑟̂𝑘)𝑇 ])𝐾𝑇

𝑘
−𝐸[(𝑘 − ̂𝑘|𝑘−1)(ℎ(𝑘)

ℎ(̂𝑘|𝑘−1))𝑇 ]𝐾𝑇
𝑘
−𝐾𝑘𝐸[(ℎ(𝑘) − ℎ(̂𝑘|𝑘−1))(𝑘 − ̂𝑘|𝑘−1)𝑇 ]

𝑃𝑘|𝑘−1 +𝐾𝑘(
𝑁𝑠∑
𝑗=1

𝑤𝑗 (𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1))(𝚈𝑗,𝑘|𝑘−1 − ℎ(̂𝑘|𝑘−1))𝑇

𝑅̂𝑘)𝐾𝑇
𝑘
− 𝑃𝐾𝑇

𝑘
−𝐾𝑘𝑃

𝑃𝑘|𝑘−1 +𝐾𝑘𝑃𝐾𝑇
𝑘
− 𝑃𝐾𝑇

𝑘
−𝐾𝑘𝑃

𝑃𝑘|𝑘−1 + 𝑃 (𝑃𝑃−1 )𝑇 − 𝑃 (𝑃−1 )𝑇 𝑃 𝑇 − 𝑃𝑃−1𝑃
𝑃𝑘|𝑘−1 + 𝑃𝑃−1𝑃 − 𝑃𝑃−1𝑃 (𝑃𝑃−1 )𝑇 − 𝑃𝑃−1𝑃
𝑃𝑘|𝑘−1 −𝐾𝑘𝑃𝐾𝑇

𝑘
. (F.13)

ppendix G. Proof of Lemma 3

𝑘|𝑘 −𝑘 = ̂𝑘|𝑘−1 +𝐾𝑘(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘)

(𝐹𝑘−1 +𝜔𝑘−1 −℧𝑘−1,𝑘)

𝐹 ̂𝑘−1|𝑘−1 −℧𝑘−1,𝑘 +𝐾𝑘(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘)

(𝐹𝑘−1 +𝜔𝑘−1 −℧𝑘−1,𝑘)

𝐹 (̂𝑘−1|𝑘−1 −𝑘−1) −𝜔𝑘−1 +𝐾𝑘(𝑘 − ℎ(̂𝑘|𝑘−1) − 𝑟̂𝑘). (G.1)

king expectations on both sides and using (27) we get,

[̂𝑘|𝑘 −𝑘] = 𝐹 (̂𝑘−1|𝑘−1 −𝐸[𝑘−1]) −𝐸[𝜔𝑘−1]

𝐾𝑘(𝐸[𝑘] − ℎ(̂𝑘|𝑘−1) −𝐸[𝑟̂𝑘])

𝐾𝑘(ℎ(̂𝑘|𝑘−1) + 𝑟− ℎ(̂𝑘|𝑘−1) −𝐸[
𝑟̂𝑘−1 + 𝛼̂𝑘−1(𝑘 − ℎ(̂𝑘|𝑘−1))

𝛼̂𝑘−1 + 1
])

𝐾𝑘(𝑟−
𝑟̂𝑘−1 + 𝛼̂𝑘−1(𝐸[𝑘] − ℎ(̂𝑘|𝑘−1))

𝛼̂𝑘−1 + 1
)

𝐾𝑘(𝑟−
𝑟̂𝑘−1 + 𝛼̂𝑘−1(𝑟)

𝛼̂𝑘−1 + 1
)

𝐾𝑘

𝛼̂𝑘−1𝑟+ 𝑟− 𝑟̂𝑘−1 − 𝛼̂𝑘−1𝑟

𝛼̂𝑘−1 + 1
,

, 𝐸[̂𝑘|𝑘 −𝑘] =𝐾𝑘

𝑟− 𝑟̂𝑘−1
𝛼̂𝑘−1 + 1

. (G.2)

s the approximate mean, 𝑟̂𝑘−1 approaches the true mean, 𝑟 using fixed 

point iteration (G.2) equates to zero.
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