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Abstract

Real-world datasets often follow a long-tailed dis-
tribution, making generalization to tail classes dif-
ficult. Recent methods resorted to long-tail vari-
ants of Sharpness-Aware Minimization (SAM),
such as ImnbSAM and CC-SAM, to improve gen-
eralization by flattening the loss landscape. How-
ever, these attempts face a trade-off between com-
putational efficiency and control over the loss
landscape. On the one hand, ImbSAM is efficient
but offers only coarse control as it excludes head
classes from the SAM process. On the other hand,
CC-SAM provides fine-grained control through
class-dependent perturbations but at the cost of ef-
ficiency due to multiple backpropagations. Seeing
this dilemma, we introduce Focal-SAM, which
assigns different penalties to class-wise sharpness,
achieving fine-grained control without extra back-
propagations, thus maintaining efficiency. Fur-
thermore, we theoretically analyze Focal-SAM’s
generalization ability and derive a sharper gener-
alization bound. Extensive experiments on both
traditional and foundation models validate the ef-
fectiveness of Focal-SAM.

1. Introduction

In the past decades, deep learning has achieved remarkable
success in various fields, including image classification (
s ), medical image processing ( s
), and object detection ( s ). However, this
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success often relies on carefully curated, balanced datasets.
In real-world scenarios, data often exhibits a long-tailed
distribution, where a few categories have abundant sam-
ples while most categories contain only a small number
of examples. Long-tailed learning focuses on effectively
training models on such imbalanced datasets ( s

; ). Numerous approaches have been proposed to
address this challenge, including re-sampling ( ,

), re-balancing ( , ; s ;

, ), representation learning ( s ;

s ), ensemble learning ( s ;

R ), and fine-tuning foundation models ( s

; , ).

Recently, ( ) visualized the loss land-
scape of different classes and observed that tail classes of-
ten suffer from saddle points. Since the loss landscape is
closely related to the generahzatlon of modern neural net-
works ( , ), they apply
Sharpness-Aware M1n1m1zat10n (SAM) ( , )
to help tail classes escape from saddle points. Later, since
the original SAM operates on all classes, InbSAM (

s ) excludes the head classes to better focus on flat-
tening the landscape of the tail classes. However, when com-
bined with popular re-balancing methods ( , ;

s ; R ), this coarse-grained
approach often overemphasizes the tail classes, leading to
poor head and overall performance. To achieve fine-grained
control, CC-SAM ( s ) uses class-dependent
perturbation. However, the per-class perturbation requires at
least C' additional backpropagations, where C' denotes the
number of classes, making it rather computationally expen-
sive. This raises a natural question: Can we design a method
that achieves both fine-grained control and computational
efficiency?

Targeting this goal, we integrate the focal mechanism (

, ) with SAM, inducing a novel approach named
Focal-SAM. Specifically, we introduce the focal sharpness
term, which is defined as the weighted sum of class-wise
sharpness, where the weights decrease in a focal-like man-
ner from head to tail classes. On the one hand, Focal-SAM
controls the flatness of different classes in a fine-grained
way, better balancing the performance between head and tail
classes than ImbSAM, as shown in Fig.1(a). On the other
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Figure 1: (a) InbSAM applies the sharpness penalty only to tail classes, leading to a sharp loss landscape for head classes.
In contrast, Focal-SAM assigns class-specific weights to the sharpness penalty, resulting in smooth loss landscapes for both
head and tail classes. (b) Focal-SAM replaces per-class perturbations in CC-SAM with class-specific sharpness penalties,
significantly enhancing computational efficiency while achieving better performance.

hand, Focal-SAM replaces the per-class perturbations in CC-
SAM with per-class sharpness penalties, making it much
more efficient than CC-SAM, as illustrated in Fig.1(b). Fur-
thermore, we provide an informative generalization bound
based on the PAC-Bayesian theory. This bound not only
decreases at a faster rate than those of SAM and CC-SAM
(O(1/n) vs. O(1/+/n), where n is the number of training
samples) but also demonstrates the influence of the hyper-
parameters and trace of the Hessian.

Finally, we conduct extensive experiments on various bench-
mark datasets to validate the effectiveness of Focal-SAM,
including training ResNet models from scratch and fine-
tuning the foundation model CLIP (Radford et al., 2021).
The results show that Focal-SAM consistently outperforms
other SAM-based methods across multiple datasets and mod-
els in long-tailed recognition tasks. Prior arts (Zhou et al.,
2022; Khattak et al., 2023; Park et al., 2024) have demon-
strated that fine-tuning CLIP often performs well on the
target domain but struggles with domain shifts. Therefore,
we also assess model performance on OOD test sets when
fine-tuning foundation models, referred to as long-tailed
domain generalization tasks. The results indicate that Focal-
SAM improves performance by approximately 0.5%~4.3%
when combined with baselines on OOD test sets. These
further suggest that Focal-SAM can enhance generalization,
leading to better performance under domain shifts.

In summary, our key contributions are as follows:

» Systematic studies illustrate the limitations of ImbSAM
and CC-SAM. ImbSAM fails to flatten the loss landscape
for head classes, while CC-SAM is highly computation-
ally expensive.

* We propose Focal-SAM, a simple yet effective method
that provides fine-grained control of loss landscape and
maintains computational efficiency. Theoretical analysis
further offers a sharp generalization bound of Focal-SAM.

» Extensive experiments validate the effectiveness of the
proposed Focal-SAM, ranging from training ResNet mod-
els from scratch to fine-tuning foundation models.

2. Related Work
2.1. Long-Tailed Learning

Several approaches address long-tailed learning challenges,
such as re-sampling (Buda et al., 2018; Wang et al., 2019b;
Liu et al., 2022), re-balancing (Cui et al., 2019; Ren et al,
2020; Wang et al., 2023; 2022; Han et al., 2024; Hou et al.,
2022; Lyu et al., 2025; Yang et al., 2023b;a; 2022; Zhao
et al., 2024a; Dai et al., 2023; Shao et al., 2023; Hong et al.,
2024), data augmentation (Kim et al., 2020; Hong et al.,
2022; Ahn et al., 2023; Wang et al., 2024b;a), representa-
tion learning (Cui et al., 2021; Zhu et al., 2022; Cui et al.,
2024; Gao et al., 2023; Zhang et al., 2024b), ensemble learn-
ing (Wang et al., 2021; Zhang et al., 2022; Li et al., 2022;
Aimar et al., 2023; Yang et al., 2024; Zhao et al., 2024b),
and fine-tuning foundation models (Dong et al., 2023; Shi
et al., 2024). This paper focuses on loss modification, a tech-
nique that modifies the loss function to guide the model’s
attention towards tail classes, consequently improving their
performance. Various methods have been proposed, such
as LDAM (Cao et al,, 2019), which enlarges the margin
for tail classes to enhance their generalization performance.
Cao et al. (2019) further introduce a training scheme called
Deferred Re-weighting (DRW) used in conjunction with



Focal-SAM: Focal Sharpness-Aware Minimization for Long-Tailed Classification

LDAM to improve model performance. However,

( ) argue that previous loss modification techniques
sacrifice consistency in minimizing the balanced error. They
propose the LA ( s ) loss, which introduces
adjustments to the standard cross-entropy loss to ensure
Fisher consistency for balanced error minimization. Build-
ing on this work, the VS ( s ) loss further
improves upon the LA loss by incorporating both additive
and multiplicative adjustments, beneficial during the initial
and terminal phases of training respectively. Most recently,

( ) provide a comprehensive generalization
analysis of these losses.

In this paper, we leverage these loss functions while aiming
to specifically improve their generalization ability for long-
tailed classification tasks.

2.2. Sharpness of Loss Landscape

Generalization in deep neural networks has always been a
crucial focus in machine learning research. Recent stud-
ies ( s ; , ) have empirically
and theoretically demonstrated that flatter minima in the loss
landscape typically lead to better generalization. Inspired
by this, Sharpness-Aware Minimization (SAM) ( ,

) is developed to find flatter minima, achieving superior
performance across various tasks.

In the context of long-tailed learning, Rangwani et al. (

, ) suggest combining SAM with re-balancing
techniques to help the model escape saddle points and im-
prove generalization. Imbalanced SAM (ImbSAM) (

, ) incorporates class priors into SAM by di-
viding classes into head and tail groups. It applies SAM
exclusively to the tail classes while maintaining standard op-
timization for head classes, aiming to specifically enhance
the generalization of tail classes. Class-Conditional SAM
(CC-SAM) ( , ) applies SAM to each class
individually, using class-specific perturbation radii. These
radii increase from head to tail classes, enabling fine-grained
control over the loss landscape for each class.

This work also extends the SAM framework for long-tailed
classification. Our method aims to achieve fine-grained con-
trol over the loss landscape while maintaining computational
efficiency.

3. Motivation
3.1. Problem Setup

We define the sample space as X and the label space as
Y = {1,2,---,C}. In the long-tailed recognition task,
the training set follows an imbalanced distribution D and
consists of data pairs denoted as S = {(x;,y;)}7,, where
y; € Y is the label for sample x; € X, and n is the to-

tal number of training samples. Let Dy,; denote the uni-
form test distribution. Following prior work ( ,

; R ), given a class y, D and Dy
share the same class-conditional distribution, denoted as
D, £ P(x|y). We use n, to represent the number of sam-
ples in the y-th class and 7w, = n,/n to denote the ratio of
the y-th class in the training set. Without loss of generality,
We assume ni > ng > - -+ > ng, withng > ng.

The model parameters are denoted by w, with a total of & pa-
rameters. The loss for sample (x, y) is defined as £(w; x, ).
The training loss over dataset S is given by Lg(w) £
LS l(w;x;,y;). Similarly, the loss specifically for
samples from the y-th class within S is defined as LY (w) =

% Ey:y L(w; x;, y;). We further define the expected loss
over D, Dyq; and Dy, as Lp(w) £ E (g ) op[l(w; @, y)],
LDbal(w> 2 ]E(zyy)NDba,l [£<w7 :c,y)] and LDy (w) £
Eg~p, [((w; x,y)], respectively. Our goal is to optimize pa-
rameters w on dataset S such that Lp,,, (w) is minimized,
leading to good performance on the balanced test set.

3.2. Limitations in InbSAM and CC-SAM

ImbSAM. ImbSAM divides classes into head and tail
groups, denoted as H and 7. It applies SAM only to the tail
group to focus on flattening loss landscape for these classes.
Its objective function is:

L (w) £ L¥ (w) + max Li(w+e) (1

€ll2>

From Eq.(1), ImbSAM excludes all head classes from SAM.
As a result, the loss landscape for head classes becomes
sharper, which may reduce their generalization perfor-
mance. To validate this, we analyze the spectral density
of the Hessian H ( s ), a common mea-
sure for the flatness of the loss landscape. We also consider
two key metrics: the largest eigenvalue A, and the trace
Tr(H). Higher values of A4, and T'r(H) generally indi-
cate a sharper loss landscape. Following prior work (

, ), we compute the eigen spectral density of
the Hessian for head and tail classes on the CIFAR-10 LT
dataset using the VS loss function. The results are shown in
Fig.2.

A comparison between Fig.2(e) and Fig.2(f) reveals that
ImbSAM effectively reduces T'r(H) and A4, for the tail
classes, suggesting a flatter loss landscape. However, when
comparing Fig.2(a) and Fig.2(b), we observe that with Imb-
SAM, the values of Tr(H) and \,,,, for head classes
are significantly higher. This indicates that ImnbSAM’s
exclusion of head classes from SAM sharpens their loss
landscape, potentially degrading their generalization perfor-
mance.

CC-SAM. CC-SAM applies SAM to each class individu-
ally, using class-specific perturbation radii. The objective
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Figure 2: Eigen Spectral Density of Hessian for head and tail classes of ResNet models trained with various SAM variants
on CIFAR-10 LT using VS loss. A smaller A,,,, and T'r(H) generally indicate a flatter loss landscape.

Table 1: Average training time per epoch (in seconds) for different SAM variants across four long-tailed datasets using
ResNet models. For CC-SAM, we follow its protocol by perturbing only the last few layers to improve its efficiency.

Methods | CIFAR-10LT CIFAR-100 LT ImageNet-LT iNaturalist
SAM 5.66s (1.00x)  4.81s(1.00x)  170.04s (1.00x) 831.67s (1.00x)
ImbSAM 7.80s (1.37x)  6.68s(1.39%x)  293.11s(1.72x)  1088.61s (1.31x)
CC-SAM 11.61s (2.05%)  19.70s (4.10x)  1626.54s (9.57x)  12869.89s (15.47x)

Focal-SAM (Ours) 7.67s (1.36%)

6.71s (1.40x)

291.05s (1.71x)  1068.92s (1.29%)

function is defined as:
c

LSS (w) £ max 1. Ls(w + €) )

= llell2<p} i
The optimal perturbation €;(w) for each class i is also class-
wise and estimated as p} Vo, L (w)/||Vw L (w)||2. The
model parameters are updated with the learning rate 7 as:

c
1 .
wew—n)y —  Vuls(w)lwre w) 3
i=1 "

This fine-grained method flattens the loss landscape of head
and tail classes more effectively, as shown in Fig.2(c) and
Fig.2(g). However, CC-SAM is much more computa-
tionally demanding than SAM. According to Eq.(3), per
parameters update requires computing the gradient for each
class i’s loss at w+€;(w), i.e., Vo L (W) |1p+¢, (). There-
fore, CC-SAM requires at least C' backpropagations per
update, whereas SAM only needs two. Thus, CC-SAM has
a much higher computational cost than SAM. For details on
the backpropagation requirements for SAM and ImbSAM,
please see App.B.

To confirm this, we measure the average training time per
epoch for various SAM variants across four datasets using
ResNet models. For CC-SAM, we follow its protocol by
perturbing only the last few layers to enhance efficiency. As
shown in Tab.1, despite perturbing fewer parameters, CC-
SAM takes about 2~15x more time than SAM, depending
on the dataset. The training time ratio of CC-SAM to SAM
grows with the number of classes in the batch. These high
computational costs make CC-SAM particularly impractical
for large-scale datasets or fine-tuning foundation models.

4. Methodology

4.1. Focal Sharpness-Aware Minimization

Motivated by the analysis in Sec.3, we develop a new
method called Focal-SAM. This approach achieves fine-
grained control over the flatness between head and tail
classes while maintaining computational efficiency, as
shown in Tab.1 and Fig.2.

To this end, we first introduce the concept of class-wise
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sharpness, defined as the loss difference between the origi-
nal model parameters w and the perturbed ones, to quantify
the sharpness of loss landscapes across different classes:

Li(w,e) 2 Ls(w+¢€) — Ly(w),i €Y. (4

Next, we propose a new sharpness term called focal sharp-
ness:
c
(1 - Wi)’y‘z’g(wv 6)7
1

&)

max
llell2<p =
where (1—;)” is the focal weight that provides fine-grained
control over class-wise sharpness, and ~y is a tunable hy-
perparameter. When < increases, the distribution of focal
weight (1 — ;)" will skew more to tail classes. Fig.3 illus-
trates how the probability density distributions of (1 — 7;)”
varies with respect to v on various long-tailed datasets.

Then, the objective of Focal-SAM is defined by the combi-
nation of the training loss and the focal sharpness term:

LES(w) = Lg(w) + X - LE® (w), (6)

where )\ is a hyperparameter controlling the importance of
focal sharpness. This formulation highlights how Focal-
SAM overcomes ImbSAM’s limitations. When v = 0
and A = 1, Eq.(5) penalizes the sharpness of each class
equally, reverting to standard SAM. Conversely, when v
is sufficiently large, focal weights for head classes rapidly
approach 0, while the weights for tail classes remain rel-
atively large. In this scenario, Focal-SAM approximates
ImbSAM. Typically, we select a moderate -, such that the
focal weights increase smoothly from head to tail classes.
This fine-grained control over loss landscape improves the
flatness of tail classes while maintaining that of head classes,
ultimately enhancing generalization for both traditional and
foundation models.

4.2. Optimizing the Focal-SAM Objective Function

In this section, we discuss how to optimize the Focal-SAM

objective LES (w). Let L (w) 2 Y (1 — m) L (w).

Using a first-order Taylor expansion, we approximate the
solution of the inner maximization problem for L£* (w):

Vap Lg (w)

- T v -
€(w) = argmaxe' VyLi(w) = pis—22—— (7
) L)l 7

llell2<p

Then, we can substitute € and compute the gradients of
LES(w) to solve the outer minimization problem:

VuwL§® (w) & Vi (Ls(w) + A[LL(w + é(w)) — L (w)))
~ Vi (Ls(w) — ALL(w)) |w + /\Vng(w)|w+é(w)
(®)
From Eq.(7) and Eq.(8), computing V,, L (w) to update
model parameters requires only three backpropagations:
one for Vo, L (w), one for Vo, (Lg(w) —ALL(w))]ew, and
one for Vo LY (W) ay+eé(aw)- Therefore, Focal-SAM is more
computationally efficient than CC-SAM, making it more
suitable for large-scale datasets or fine-tuning foundation
models.

Overall, Alg.1 gives the pseudo-code to optimize the Focal-
SAM objective, using SGD as the base optimizer.

Algorithm 1 Focal-SAM algorithm

Input: Training set S, perturbation radius p, hyperparame-
ter A, v, learning rate n

Output: Model trained with Focal-SAM

1: Initialize weights wg, t = 0;

2: while not converged do

3:  Sample batch B = {(x1,y1), -, (Tp, ¥p) };
4:  Compute L} (w);
5.
6

Compute V,, L}, (w) and €(w) according to Eq.(7);
Perturb w with é(w), and compute gradient g; =
VwL’é(w)‘w+é(w);

7:  Compute gradient go = Vo [Lg(w)— AL} (W)]]w;
8:  Update weights: w; 1 = wy — n(Ag1 + g2);

9: t=t+1;
10: end while
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4.3. Generalization Ability of Focal-SAM

Previous works have established the generalization bound
for SAM ( , ) and CC-SAM ( ,

). However, these bounds are relatively loose (with
an order of 1/4/n) and could bias the training process. For
example, the perturbation radius of CC-SAM (i.e., p; in
Eq.(2)) is set as the solution to minimizing its PAC-Bayesian
bound. Since the generalization is not sharp enough, the
estimated perturbation radius p; could deviate from the
optimal one, thus leading to inferior performance. In this
section, we develop a sharper generalization bound with an
order of 1/n for Focal-SAM.

We assume the loss function ¢(w; x, y) has an upper bound
of B, which is a common and practical assumption. Then,
we derive the following generalization bound based on the
PAC-Bayesian theorem proposed in ( ,

). For conciseness, we present an informal formula-
tion in the main content, leaving the formal one and the
corresponding proof in App.A.

Theorem 4.1 (Informal). Assume that ¥(x,y) € D,0 <
l(w;x,y) < B. For any p > 0, any uniform distribution
Dyai and any distribution D, with high probability over the
choice of the training set S ~ D,

2LE% (w) Ap?
Dtw) < 250 0 (L2 ni(w) )
N——
@ an
B (A [k log(lwll3/p) + w}) |
n
(111)
®

wheren = |S|, U & Ziczl(l — m;)Ym;, k is the number of
parameters, H(w) represents the Hessian matrix of L}, (w)
at point w and tr(-) represents the matrix trace.

From the theorem, we have the following insights:

* The generalization bound consists of three components.
Specifically, (I) is the empirical loss on the training set
LES(w), which can be minimized via large-scale mod-
els. (II) reveals how the generalization performance is
affected by multiple factors, including A, p, tr(H (w)).
(ITT) decreases at a faster rate of O(1/n).

* The hyperparameters A and y play a crucial role. On the
one hand, a larger A can increase both components (IT)
and (ITT) of the bound. Therefore, careful tuning of A
can induce a tighter bound. On the other hand, a larger ~y
leads to a smaller W, also leading to a tighter bound. This
suggests that assigning greater weights to the sharpness
of the tail classes can improve the overall generalization
ability.

* Focal-SAM enables a more effective optimization of
Lp,,, (w). Specifically, we can reformulate Eq.(9) to

Lp,,,(w) + (IT) < (I) + (IID). (10)

Typically, (II) tends to be large without SAM-based tech-
niques. As a result, minimizing the right-hand side (RHS)
of Eq.(10) in such cases may not induce a small Lp, , (w).
In contrast, Focal-SAM reduces the trace tr(H (w)) by
effectively flattening the loss landscape, leading to a small
(II). This makes it more effective to minimize Lp, , (w)
when we optimize the RHS of Eq.(10). This insight again
validates the necessity of Focal-SAM.

5. Experiments

This section evaluates the effectiveness of Focal-SAM
through a series of experiments. Detailed experimental
settings and additional results are provided in App.C
and App.D due to space constraints.

5.1. Experiment Protocols

Datasets. We use four widely adopted long-tailed datasets
for long-tailed recognition tasks: CIFAR-10 LT ( ,

), CIFAR-100 LT ( , ), ImageNet-LT (

, ) and iNaturalist ( , ). The CIFAR-
LT datasets include variants with imbalance ratios of {200,
100, 50, 10}. In addition to evaluating model performance
on ID test sets, we also assess it on QOD test sets, referred
to as long-tailed domain generalization tasks. Specifically,
we train the model on ImageNet-LT and evaluate it on three
OOD datasets: ImageNet-Sketch ( s ), Ima-
geNetV2 ( s ), and ImageNet-C (

, ). For more details, see App.C.1.

Competitors. When training ResNet models on the CIFAR-
LT dataset, we assess several loss functions. These meth-
ods are further combined with SAM ( , ),
ImbSAM ( , ), and CC-SAM ( ,
) as baselines. For the ImageNet-LT and iNatural-
ist datasets, we employ a range of representative meth-
ods as baseline methods. When fine-tuning the foundation
model CLIP ( s ), we evaluate both full
fine-tuning with LA loss (denoted as FFT) and parameter-
efficient fine-tuning using the LIFT method ( s ),
along with their performance when combined with different
SAM variants. For more details, please refer to App.C.2.

Evaluation Protocol. For long-tailed recognition tasks, we
assess model performance using balanced accuracy (

, ). To provide deeper insights, we split the classes
into three groups: Head, Medium, and Tail, and report ac-
curacy for each group individually. For long-tailed domain
generalization tasks, we evaluate performance on OOD bal-
anced test sets, including top-1 accuracy and accuracy for
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Table 2: Performance comparison on CIFAR-100 LT datasets with various imbalance ratios (IR). FFT denotes fully fine-
tuning the foundation model with LA loss. Due to space limitations, additional CIFAR-100 LT results combining more
methods, as well as the CIFAR-10 LT results, are shown in Tab.6 and Tab.5.

Method IR100 IR200 IR50 IR10
etho Head Med Tail All | Al Al Al
Training from scratch
CE 692 416 90 415 | 375 456 58.1
CE+SAM 7277 418 70 422 | 389 468 59.7
CE+ImbSAM 685 460 9.6 43.0 | 387 47.8 60.1
CE+CC-SAM 70.1 442 9.0 427 | 39.1 474  60.0
CE+Focal-SAM 73.8 442 89 44.0 | 396 481 60.9
LA ( , )| 613 423 286 449 | 41.8 503 594
LA+SAM 63.1 522 322 500 | 455 52.8 62.6
LA+ImbSAM 574 51.1 31.0 473 | 434 522 624
LA+CC-SAM 63.7 519 323 50.1 45.6 53.0 63.0
LA+Focal-SAM 639 53.0 325 50.7 | 460 545 63.8
Fine-tuning foundation model
FFT 882 793 66.1 785 | 763 81.2 855
FFT+SAM 879 825 70.8 809 | 777 834 86.8
FFT+ImbSAM 875 820 702 804 | 772 819 867
FFT+CC-SAM 87.8 829 709 81.0| 782 835 87.0
FFT+Focal-SAM 838.1 828 724 81.6| 79.0 839 873
LIFT ( , ) 853 81.1 792 820 | 79.6 82.8 850
LIFT+SAM 850 815 794 821 | 79.6 83.0 85.1
LIFT+ImbSAM 847 819 789 82.0 | 798 831 852
LIFT+CC-SAM 848 81.8 79.0 82.0| 79.7 831 852
LIFT+Focal-SAM 854 819 794 824 | 80.0 832 854

each class group. For more details of the evaluation protocol,
please refer to App.C.3.

Implementation Details. For CIFAR-LT datasets, we train
ResNet models using ResNet-32 ( R ) as the
backbone. For ImageNet-LT and iNaturalist datasets, we
employ ResNet-50 ( , ). Training is conducted
for 200 epochs. For fine-tuning foundation models, we

follow the protocols outlined in LIFT ( , ).
Specifically, we fine-tune the image encoder of CLIP (
, ) with a ViT-B/16 ( , )

backbone. The training lasts for 20 epochs. For further
implementation details, please refer to App.C.4.

5.2. Performance Comparison

Tab.2 summarizes the experimental results on the CIFAR-LT
datasets with different imbalance ratios. From these results,
we have the following observations: 1) Focal-SAM consis-
tently performs better than SAM, ImbSAM, and CC-SAM
across various loss functions. 2) Focal-SAM significantly
outperforms ImbSAM on head classes, while maintaining

or surpassing ImbSAM on tail classes. Additionally, Focal-
SAM generally outperforms CC-SAM on both head and
tail classes, showing its ability to achieve a finer balance
between head and tail classes performance.

Tab.3 presents results on the larger ImageNet-LT and iNatu-
ralist datasets. Combining the baseline LA with Focal-SAM
improves performance by approximately 1.9%~2.3% when
training ResNet models. Similarly, pairing the baseline
FFT or LIFT with Focal-SAM yields a performance gain of
0.3%~2.4% when fine-tuning foundation models, outper-
forming several competitors.

5.3. Long-tailed Domain Generalization

In Tab.4, we evaluate the model trained on the ImageNet-LT
dataset across three OOD datasets. The results show the
following: 1) SAM-based methods, when combined with
FFT or LIFT, generally achieve more performance gain on
OOD datasets than on the ID dataset (ImageNet-LT). This
observation aligns with prior studies ( , ;
), which suggest that

> 5 i
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Table 3: Performance comparison on ImageNet-LT and iNaturalist. The results for methods marked with { are taken from
indicates that the original paper didn’t report the corresponding results.

T3]

the original paper.

Method ImageNet-LT iNaturalist

Head Med Tail All | Head Med Tail All

Training from scratch
CB ( , )T 39.6 327 168 332 | 534 548 532 54.0
cRT ( , )+ 61.8 462 273 49.6 | 690 660 632 652
DiVE ( , )T 64.1 504 307 494 | 706 700 676 69.1
DRO-LT ( , )+ | 640 498 33.1 535 - - - 69.7
DisAlign ( , )T 61.3 522 314 529 | 690 71.1 702 70.6
WB ( , )t 625 504 415 539 | 712 704 697 702
CC-SAM ( , )t 614 495 371 524 | 654 709 722 709
LA( , ) 62.8 490 318 520 | 684 694 692 69.2
LA+SAM 63.1 517 331 536 | 683 708 719 71.0
LA+ImbSAM 62.6 503 326 526 | 680 70.2 70.2 69.9
LA+Focal-SAM 639 522 344 543 | 684 720 725 718
Fine-tuning foundation model

Decoder ( , )t - - - 73.2 - - - 59.2
LPT ( , )t - - - - - - 79.3 76.1
FFT 799 705 510 715 | 69.7 719 717 71.6
FFT+SAM 809 729 543 735 | 69.5 744 744 738
FFT+ImbSAM 80.6 726 522 729 | 68.5 734 738 73.1
FFT+CC-SAM 806 73.6 542 1736 | 692 741 742 736
FFT+Focal-SAM 80.8 739 544 739 | 69.1 747 743 74.0
LIFT ( , ) 79.7 762 728 77.1 | 741 794 815 79.7
LIFT+SAM 799 764 727 772 | 73.5 79.7 816 79.8
LIFT+ImbSAM 798 764 725 772 | 732 795 814 79.6
LIFT+CC-SAM 798 764 733 773 | 740 794 815 79.7
LIFT+Focal-SAM 797 176.6 73.6 774 | 739 79.8 81.7 80.0

fine-tuning foundation models often perform well on target
(ID) datasets but struggles with unseen (OOD) datasets. 2)
Focal-SAM achieves a performance improvement of 0.5%
to 4.3%, surpassing SAM, ImbSAM, and CC-SAM. This
is because Focal-SAM effectively enhances the model’s
generalization ability by flattening the loss landscape, which
mitigates performance issues on OOD test sets.

5.4. Training Speed of Focal-SAM

To assess the computational efficiency of Focal-SAM, we
evaluate the training time per epoch across various long-
tailed datasets, as shown in Tab.1. Focal-SAM requires
about 50% more running time than SAM and has a similar
running time to ImbSAM. Given that our method consis-
tently outperforms SAM and ImbSAM, thus the compu-
tational cost is acceptable for the performance gain. Fur-
thermore, Focal-SAM is significantly faster than CC-SAM
while delivering better performance, aligning with our goal

of improving CC-SAM’s efficiency.

5.5. Sharpness of Loss Landscape for Focal-SAM

To examine the impact of Focal-SAM on the loss landscape,
Fig.2(d) and Fig.2(h) show the eigenvalue spectrum of Hes-
sian for head and tail classes of models trained with Focal-
SAM on CIFAR-10 LT using the VS loss function. Com-
paring Fig.2(e) and Fig.2(h), the trace T'r(H ) and the max-
imum eigenvalue A, for tail classes in Focal-SAM are
significantly lower than those in SAM. Similarly, Fig.2(b)
and Fig.2(d) reveal that Tr(H) and A, for head classes in
Focal-SAM are much smaller than those in ImbSAM. These
results suggest that Focal-SAM achieves a fine-grained bal-
ance in the flatness between head and tail classes.

5.6. Ablation Study About v and \

We analyze the influence of hyperparameters v and A to
Focal-SAM on the CIFAR-LT datasets.
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Table 4: Performance comparison for domain generalization. The source models are trained on the ImageNet-LT dataset and

evaluated on out-of-distribution datasets, including ImageNet-Sketch, ImageNetV2, and ImageNet-C.

Method ImageNet-Sketch ImageNetV2 ImageNet-C
Head Med Tail All | Head Med Tail All | Head Med Tail All
FFT 429 355 214 364 | 70.1 602 452 620 | 503 414 26.1 428
FFT+SAM 449 393 261 396 | 71.2 62.6 48.0 639 | 525 446 293 456
FFT+ImbSAM 452 395 248 397 | 71.0 622 465 635 | 520 447 283 452
FFT+CC-SAM 450 410 268 40.6 | 71.3 632 484 643 | 520 451 294 456
FFT+Focal-SAM 455 412 273 41.0 | 71.8 63.6 488 648 | 52.6 455 29.8 46.1
LIFT ( , )| 464 433 457 448 | 704 659 647 675 | 52.6 487 473 500
LIFT+SAM 469 435 464 452 | 704 660 655 67.6| 529 492 48.1 505
LIFT+ImbSAM 46.4 435 46.0 449 | 70.0 66.2 655 676 | 52.6 49.0 47.7 502
LIFT+CC-SAM 46.8 44.1 47.6 456 | 704 662 654 67.7 | 53.0 49.7 492 509
LIFT+Focal-SAM 469 447 494 462 | 700 66.8 669 68.0 | 531 499 498 51.1
83 50 834 504
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é 801 é 474 § 801 g
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Figure 4: Ablation Study of Focal-SAM w.r.t. v

Impact of +: Fig.4 explores the effect of v. As +y increases,
performance initially improves, suggesting that assigning
greater weight to the class-wise sharpness of tail classes
benefits performance. However, a further increase in - leads
to declining accuracy, indicating that assigning excessive
weight to the class-wise sharpness of tail classes can harm
performance.

Impact of \: Fig.5 investigates the effect of A\. As A in-
creases, accuracy initially improves but subsequently de-
creases. This indicates a trade-off between minimizing the
training loss and minimizing the sharpness of the loss land-
scape.

6. Conclusion

This paper examines the limitations of ImbSAM and CC-
SAM in long-tailed learning. ImbSAM excludes all head
classes from SAM, often overemphasizing tail classes when
combined with rebalancing methods. CC-SAM’s per-class
perturbation strategy provides fine-grained control over the
loss landscape but is computationally costly. To address
these issues, we propose Focal-SAM, a method that effi-
ciently balances loss landscape flatness between head and
tail classes. Additionally, we offer a theoretical analysis of

0% 0% ok of o® A0 15 90 0% o ok of o® A0 15 90
A A
(a) CIFAR-10 LT (b) CIFAR-100 LT

Figure 5: Ablation Study of Focal-SAM w.r.t. A

Focal-SAM’s generalization ability, deriving a tighter bound.
Extensive experiments validate Focal-SAM’s effectiveness.
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Focal-SAM: Focal Sharpness-Aware Minimization for Long-Tailed Classification

A. Proof of Theorem
A.1. Framework of the Proof

Goal. To bound the balanced loss Lp,,, (w) using our objective loss:

LES(w) 2 [Le(w) — X - Li(w)] + X+ max LY(w +e) (11)

llell2<p

(@) (b)

Framework of the proof.

1. Essentially, the generalization bound describes how empirical values (L5 (w)) deviate from the expected one (Lp,,, (w)).

To bound such deviations, Bernstein’s inequality ( s ) and PAC-Bayesian theorem ( s

) are convenient tools. Notice that these tools require the empirical values to be sampled i.i.d. from the

distribution on which the expectation is based. Since the training set S ~ D, we first transform the distribution from
Dpq; to D building on the work of ( ), L.e.,

Lp,,, () S Lp(w) "= [Lp(w) = X+ L}, @)] + X - L], (w) (12)

———
(c) (d)

2. Get (¢) < (a) via Bernstein’s inequality (Lem.A.2).
3. Get (d) < (b):

* Bound (d) using a intermediate value E¢[L7},(w + €)] via Taylor expansion (Lem.A.4).
* Bound E¢[L},(w + €)] by (b) via PAC Bayesian bound (Lem.A.3).

Combine all, we get Thm.A.5 as follow:

Lp,,.(w) £ (¢) + (d) < (a) + (b) = L§® (w) (13)

A.2. Proof of Lem.A.2

We begin by introducing Bernstein’s inequality to prove the first part.

Lemma A.1 (Bernstein’s Inequality ( , ). Let X1, -, X, be i.id. random variables, u = E[X;] and
Vi, | X; — p| < b. Let 0 = Var(X;). With probability at least 1 — 6,

402 log(%) N 4blog(3)

X, —ul <
| pl < - ™

(14)

where X,, = % Yo X

Employing Lem.A.1, we can derive the following lemma to bound Lp(w) — A - L} (w) by Lg(w) — A - L (w).

Lemma A.2. Assume thatV(x,y) € D,0 < {(w;x,y) < B. With probability 1 — § over the choice of the training set
S~D

N 40+ (B + AB') -log(2)

PN (w) < 2- Py 1
p(w) < s(w) 3n 15)
where B' £ Ziczl(l —m;)'m; B, 3 (w) £ Lp(w) — A - L} (w) and @3 (w) £ Lg(w) — X - L (w).
Proof. Since V(x,y) € D,Yw € W, L(w;x,y) < B, we have

0<Ls(w)<B,0< Lp(w) < B (16)
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Focal-SAM: Focal Sharpness-Aware Minimization for Long-Tailed Classification

and
< ‘ C
0< Ly(w)=> (1-m)Ls(w) <Y (1-m)'mB2B
- e (a7
0< Ly (w) =Es[Ly(w)] <> (1 -m)'mB £ B
=1
By the above two inequalities, we can obtain
@3 (w)| < B+ AB' "
[®3(w)| < B+ AB'
Thus, we have
|y (w) — ®p(w)| <2 (B+AB') (19)

To simplify the analysis, we assume ®3 (w) > 0. This assumption is reasonable because our experiments in Sec.5.6
typically show that the best value for A is slightly less than 1, where this assumption holds true. With this assumption, the
variance of ®3(w) can be bounded as:

Var(®5(w)) < E[(@3(w))’] <2+ (B+AB') - 2p(w) (20)

Using Lem.A.1, with probability at least 1 — §, we have

P (w) < PY(w) + ¢ 8- (B+AB) ~n<1%<w> log(2)
8B+ AD) - lor(}) o

20 (B+ AB') -log(3)
3n

1
< Ps(w) + 5 - Dp(w) +

. . . . b
where the last inequality leverages the property that for any positive numbers a and b, vVab < § + 3.

Reformulate the inequality, we can obtain that with probability at least 1 — 9,

40 - (B + AB’) -log(2)

p(w) < 2- BY(w) + iy

(22)

A.3. Proof of Lem.A.3 and Lem.A.4

The following lemmas utilize the PAC-Bayesian theorem to prove the second part. We first derive an intermediate result in
the following lemma.

Lemma A.3. Assume thatV(x,y) € D,0 < {(w;x,y) < B. Then, for any p > 0 and any distribution D, with probability
1 — 6 over the choice of the training set S ~ D

EeiNN(O’UQﬂL%(’UJ +¢€)] < max 2L%(w +€)

llell2<p
2+2B’+2klog<1+%)+4k1og(¢§+,/21nn)+41og% (23)
* n
_ . 1A O o\ A p
where n = |S|, k is the number of parameters, B' = 5"~ (1 — m;)Ym; B and 0 Yy e
Proof. Inspired by the proof technique in SAM ( , ), we provide the following proof.
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Since V(z,y) € D,Vw € W, l(w;x,y) < B, we have:

C C
Li(w) =Y (1-m) Ls(w) <> (1-m)'mB=5B (24)
=1 =1
C
L) (w) = Eg[LL(w)] <Y (1 —m)"mB =B’ (25)

=1

Hsz

Thereby, the right-hand side of the bound in the theorem is lower bounded by Elog(1 + ) which is greater than B’
when ||w||3 > kp?[exp(nB’/k) — 1] and in this case the inequality holds trivially. Thereby, we only consider the case when

|lw||3 < kp?lexp(nB’/k) — 1] in the rest of the proof.

Using PAC-Bayesian generalization bound in ( , ), for any fixed prior P over parameters, with
probability 1 — § over training set .S, for any posterior Q over parameters, the following generalization bound holds:

NG
EumolLh(w)] < EupeolLL(w)] + \/ 9E o[ L}(w)] KL(Q”PL“ g%

KL(Q||P) +log 24" (26)
n

+ 2

KL(Q|P) + log 24~
n

< 2B, ol L(w)] + 4

where the last inequality leverages the property that for any positive numbers a and b, vVab < a + b.

Following SAM ( , ), we assume P = N (pp,0%1) and @ = N (pq, U%I), then the KL divergence can be
written as:
1 | kol + - 3 2
KL(QP) = = | —2 ||#§ olz y . jiog <J§>] @7)
2 0P o)

Let T = {cexp((1 — j)/k)|j € N} be the predefined set of values for o%. If for any j € N, the bounds holds with
probability 1 — ¢; with §; = Wg—iz, then by the union bound, all above bounds hold simultaneously with probability

1-32, 8 —1-4.

Jj=1 m2j

— P — — .
Letog = JMW’“Q = w and pup = 0. We have:

!

2 2 B
. w
2 M <p+ % <p? eXp(nT) .

Letj = |1 — klog((p* + ||w||3/k)/c)]. We can ensure j € N by setting ¢ = p* exp(nB'/k). For 0% = cexp((1 — j)/k),
we have:
w]3 105 Jwl3

k

) (29)
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Focal-SAM: Focal Sharpness-Aware Minimization for Long-Tailed Classification

Building on Eq.(28) and Eq.(29), we can obtain an upper bound for the KL divergence:

1 [ko? + — 2 2
KL(Q|P) = = |22 HN;’ Hollz k+ klog <0§> (30)
2 op 75
1 -k‘(p2 + IIW|\§) exp(L)(p? + HWI@)
<35 W]ﬁszﬂrklog B k (31)
2 L p2 + T 2 UQ
T 12 4 Ll
=~ |klog (eXp(k)(p2+ r) (32)
i ’Q
1 [ 1 2 ”ng k /21 2
—  |klog exp(k)(p + )(fJV nn) (33)
2 p2
1 r 2
=5 |1+ klog <1+ I;”L'Q) + 2%k log (\/E+ \/2lnn)] (34)
L p
Given the bound that corresponds to j holds with probability 1 — d; for J; = Wé—j.g, the log term can be bounded as:
2 2 2,2
log vn = log ﬂ + log J (35)
d; ) 6
2 2(141 ))?
< log \/ﬁHOg7r (1+ Oﬁg(C/P ) (36)
2 2(1+4 k1 B’ 2
< log \(s/ﬁHog?r (1+k Og(zxp(n /k))) 37)
2 %(14nB')?
= log \5/5 +log % (38)
2 1 B’ 2
34
where the first inequality is derived from the fact that j < 1+ klog(c/(p? + |[wl3/k)) < 1 + klog(c/p?).
Therefore, the generalization bound can be written as:
EEi""N(O,O’Q) [L’ZYJ (w + 6)} < 2E61~N(0,JQ) [Lg (w + 6)]
2 ’
. 2 + 2k log (1 + ”,’;‘;'2‘2) + 4k log (\/E +2M n) + 4log TVR(1LEnE)? (40)
n
Since ||€||3 has chi-square distribution, for any positive ¢, we have:
P(|lel|3 — kogy > 20622\/H+ 2t0)) < exp(—t) 41)
Therefore, with probability 1 — 1/n, we have:
lell2 < o2, [k +2/kIn(n) + 21n(n)} 42)
2
<o M 2 1n(n>} 43)
<p’ “4

Therefore, we have:
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2B’

Be;nn(0,00)[Lp(w + €)] < 2(1—1/n) hax Li(w+e)+
2>

2+ 2klog (1+ 128) + aklog (VE + v2Inn) + 4log T/nE 1"
" (45)

< max 2L%(w + €)
lell2<p

2+ 2B+ 2klog (14 2B ) + 4k log (VA + V2Tun) + dlog T/

n

+

O

Combining the above lemma with the Taylor expansion, we can derive the following lemma to bound X - L}, (w) by
A maxje||,<p Lg(w + 6).

Lemma A4. Assume thatV(x,y) € D,0 < (w;x,y) < B. Then, for any p > 0 and any distribution D, with probability
1 — d over the choice of the training set S ~ D

v v ’ kp?
L (w) < max 2L (w +€) —

p
“tr(H(w)) —o
 lell2<p 2(VE + /21n(n))2 (H (w)) ((\/E—i— 21n(n))2)
2+ 2B+ 2k1log (1+ [R) + aklog (VE+ v2Tun) + dlog T/ERH0

n

(46)

+

where n = |S|, k is the number of parameters, B' = 210:1 (1 — m;)Ym; B, H(w) represents the Hessian matrix of L}, (w)
at point w and tr(-) represent the matrix trace.

Proof. By expanding E, 70,00 [L} (w + €)] around w using a second-order Taylor Series expansion, we can obtain

LT H(w)e + o(ell2)]

Eesz(O,oQ)[LWD(w + 6)] = Eein(O,aQ)[L%(w) + GTVL%('LU) + D)

(47)
1
= Lp(w) + SEenn(0.00) [ H(w)e] + Eeonno,00)[oll€]3)]
A P . . ¥ .
where o = Y oy and H (w) represents the Hessian matrix of L], (w) at point w.
Thereby, we have:
1
Eeonn0.00) LD (w + €)] = L (w) + SEe. o (0.00)[€" H(w)e] + Ee,n(0.0) 0|l€]|3)]
tr(H (w))
= L%(w) + f : E61~N(070Q)[6%} + O(k : EElNN(O,O'Q)[E%]) (48)
A R — () + ol )
P 2(Vk + /2In(n))? (VEk 4+ 1/2In(n))?
Combining Eq.(48) with Lem.A.3, with probability 1 — J, we have
v v P’ kp?
L(w) < max 2LL(w +€) — -tr(H(w)) —o
o) lell2<p s ) 2(vVk + 1/21n(n))? (H (w)) ((\/E+ \/2ln(n))2) )
2+ 2B + 2k log (1+ B2 ) + aklog (VE + v2Tnn ) + 4log /2L
* n
O
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A.4. Proof of Thm.4.1

Combining the above two parts, we can finally derive the following theorem.

Theorem A.5 (Restate of Thm.4.1). Assume that ¥(x,y) € D,0 < l(w;z,y) < B. For any p > 0, any uniform
distribution Dy, and any distribution D, with probability 1 — & over the choice of the training set S ~ D,

2LES(w) 40 (B + AB') - log(4 \p?
LDbal (w) < = ( ) ( ) (6) — p t?"(H(’UJ))
Cme 3n-Cre 2(Vk + v/2In(n))? - Crc
2+ 2B + 2klog (1+ LR + dklog (VA + v2Tun) + dlog 2Y/aioslr
+A- 0 (50)
n-Cro
\kp?

((\/E—l— v/2In(n))? - C?TC)
C

where n = |S|, k is the number of parameters, B' =" (1 — m;)Ym; B, H(w) represents the Hessian matrix of L}, (w)
at point w and tr(-) represent the matrix trace.

Proof. Combining Lem.A.2 and Lem.A.4 and using union bound, with probability at least 1 — §, we have

40 - (B + AB') -log(%) o2
Lp(w) < 2055 (w) + s — H(w
p(w) < 2L5° (w) = ST A W)
2+ 2B + 2k log (1+ B2 ) + dklog (VE + v2Tnn ) + 4log 220010 51
A-
+ n
( Ak p?
(VE+y/2I(n))?
We further recognize that:
c
ZmLD Z rcLp,(w) = Crc - Lp,,, (w) (52)
Substituting Eq.(52) into Eq.(51) leads to Thm.A.5.
O

B. Analysis of Backpropagation Requirements for SAM and ImbSAM
B.1. Backpropagation Requirements for SAM

SAM aims to find flatter minima, ensuring the entire neighborhood around the model parameters has consistently low
training loss. The objective loss function is defined as:

LM (w) £ max Lg(w + €) (53)
llellz<p

The optimal perturbation €g 4 s (w) for the inner maximization problem is estimated as follow:

Vst('w)

3 TN TaY 54
€sam(w) pHVst(w)H2 (54)

Thus, the gradient of LgAM (w) can be approximated as:
VL™ (w) ~ VyLs(w)| (55)

w+é(w)
To update parameters once using SAM, two backpropagations are required: one for V,,Lg(w), and another for

VaLs (w) ‘eré('w)
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B.2. Backpropagation Requirements for InbSAM

ImbSAM divides classes into head and tail groups, denoted as H and T, and applies SAM only to the tail group. Its objective

function is: 15 A -
Lg’(w) = Lg(w) + max Lg(w+e) (56)

The optimal perturbation é€rs(w) for the inner maximization problem is estimated as follow:

. VL (w)
ers(w) ® pro0—7 (57
IV L (w)]2
Thus, the gradient of LL%(w) can be approximated as:
Vo L (w) % Vi LY (w) + Vi L (w)] (58)

w+é(w)

To update parameters once using ImbSAM, three backpropagations are required: one for Vng(w), one for V., L# (w),

and another for V,, L7 (w) }w+é(w)

C. More Experiment Protocols
C.1. Datasets

For long-tailed recognition tasks, we conduct experiments on four widely used long-tailed datasets: CIFAR-10 LT, CIFAR-
100 LT, ImageNet-LT, and iNaturalist. For long-tailed domain generalization tasks, we train the model on ImageNet-LT and
evaluate it on three OOD datasets: ImageNet-Sketch, ImageNetV2, and ImageNet-C. Below is a detailed description of
these datasets:

¢ CIFAR-100 LT and CIFAR-10 LT ( , ). The original CIFAR-100 ( , ) and
CIFAR-10 ( , ) datasets contain 50,000 training images and 10,000 testing images for 100 and
10 classes, respectively. We utilize their various long-tailed versions with different imbalance ratios of {100, 50, 10}.

* ImageNet-LT ( R ). The ImageNet-LT dataset is derived from the ImageNet ( R ) dataset
according to a Pareto distribution, containing 1000 categories. The dataset includes 115,846 training images and 50,000
test images. The dataset has an imbalance ratio of 256.

* iNaturalist ( , ). The iNaturalist dataset is a real-world large-scale dataset, consisting of 8142 categories.
The training set contains approximately 430,000 images, while the test set contains about 24,000 images. The dataset’s
imbalance ratio is 500.

* ImageNet-Sketch ( , ). The ImageNet-Sketch dataset is an OOD test set derived from the ImageNet
( , ) dataset, comprising 50,000 images across 1000 classes. Each image is a sketch, introducing a
domain shift relative to ImageNet.

* ImageNetV2 ( , ). The ImageNetV?2 dataset consists of 10,000 images spanning the same 1000 classes
as ImageNet. The images are sourced differently from the original ImageNet ( , ), resulting in a slight
domain shift.

¢ ImageNet-C ( , ). The ImageNet-C dataset includes the same 1000 classes as ImageNet
( , ) but features corrupted versions of the original validation set. Each image undergoes one of 15
corruption types at 5 severity levels, resulting in 75 dataset variations.

C.2. Competitors

When training ResNet models from scratch, we evaluate serveral competitive methods on different datasets. For the CIFAR-

LT dataset, we assess multiple loss functions, including CE loss, LDAM+DRW ( s ), LA loss ( s
), and VS loss ( , ). These methods are further combined with SAM ( , ), ImMbSAM (
, ), and CC-SAM ( s ) as baseline comparisons. For the ImageNet-LT and iNaturalist datasets, we
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employ a range of representative methods, including CB ( , ) for class re-balancing, cRT ( , ) for
decoupled training, DiVE ( s ) for transfer learning, DRO-LT ( s ) for representation
learning, DisAlign ( , ) for class re-balancing, and WB ( s ) for regularization. When
fine-tuning the foundation model CLIP ( s ), we use Decoder ( s ) and LPT ( s

) as baselines. We also evaluate both fully fine-tuning the models with LA loss (denoted as FFT), and parameter-efficient
fine-tuning using the LIFT method ( , ), as well as their performance when combined with different SAM
variants.

C.3. Evaluation Protocol

For long-tailed recognition tasks, we assess model performance using top-1 accuracy on balanced test sets. This ensures all
classes contribute equally to the evaluation. To provide a more detailed analysis, we follow the approach in ( ,

, ) by splitting the classes into three subsets: Head, Medium, and Tail. Accuracy is then reported for each
subset individually. For CIFAR-10 LT (IR = 100), the Head classes contain more than 1000 samples, the Medium classes
have 200~-1000 samples, and the Tail classes have less than 200 samples. For CIFAR-100 LT (IR = 100), ImageNet-LT,
and iNaturalist, the Head classes contain more than 100 samples, the Medium classes have 20~100 samples, and the Tail
classes have less than 20 samples. Prior arts ( s ; s ; s ) have demonstrated
that fine-tuning CLIP ( , ) often performs well on the target domain but struggles with domain shifts.
Therefore, when fine-tuning the foundation models, we also assess model performance on OOD test sets, referred to
as long-tailed domain generalization tasks. Specifically, models are trained on the ImageNet-LT dataset and evaluated
on out-of-distribution datasets, including ImageNet-Sketch ( , ), ImageNetV2 ( , ), and
ImageNet-C ( , ). We evaluate model performance on these OOD balanced test sets, including
top-1 accuracy and accuracy for each class subset.

C.4. Implementation Details

We follow the procedures described below to train ResNet models from scratch. For the CIFAR-LT datasets, we use
ResNet-32 ( , ) as the backbone. We employ stochastic gradient descent (SGD) as the base optimizer, with an
initial learning rate of 0.1, a batch size of 64, and a momentum of 0.9. Training spans 200 epochs, using a cosine annealing
scheduler to reduce the learning rate from 0.1 to O gradually. For the larger-scale ImageNet-LT and iNaturalist datasets, we
employ ResNet-50 ( , ) as the backbone. SGD is again used as the base optimizer with a momentum of 0.9.
For ImageNet-LT, the initial learning rate is set to 0.1, with a batch size of 256, while for iNaturalist, the initial learning
rate is 0.2, and the batch size is increased to 512. Training for these datasets also lasts 200 epochs with a cosine annealing
scheduler. Additionally, We employ a step scheduler for p, following the approach of Rangwani et al. ( ). This scheduler
initializes p until the 160th epoch and then increases its value towards the end of training.

For fine-tuning foundation models, we follow the protocols outlined in LIFT ( s ). A cosine classifier is added
after the image encoder of CLIP ( s ), with its weights initialized using the text encoder, which is then
discarded. We fine-tune the image encoder of CLIP with a ViT-B/16 ( s ) backbone. Stochastic gradient
descent (SGD) is used as the base optimizer, with a batch size of 128 and momentum of 0.9. The initial learning rate is
0.01 for parameter-efficient fine-tuning and 0.001 for full fine-tuning. Unlike LIFT ( , ), all models in our
experiments are fine-tuned for 20 epochs across datasets and methods. In LIFT, models are trained for 10 epochs on the
CIFAR-LT and the ImageNet-LT datasets, and 20 epochs on the iNaturalist dataset. We extend the training to 20 epochs
because the models do not fully converge under the original settings.

C.5. Experimental Hardware Setup

All the experiments are conducted on Ubuntu servers equipped with Nvidia(R) RTX 3090 GPUs and RTX 4090 GPUs.
Fine-tuning the foundation models is performed using a single GPU for all datasets. The number of GPUs used for training
the ResNet models from scratch varies based on dataset size: a single GPU for the CIFAT-LT datasets, 2 GPUs for the
ImageNet-LT dataset, and 4 GPUs for the iNaturalist dataset.
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D. More Experiment Results
D.1. Additional Results on the CIFAR-LT Datasets

In this section, we show additional results on the CIFAR-LT datasets. Specifically, Tab.6 presents additional experimental
results on the CIFAR-100 LT dataset with more combined methods. Tab.5 provides the experimental results on the CIFAR-10
LT dataset. The results suggest that Focal-SAM consistently outperforms SAM, ImbSAM, and CC-SAM across all methods
and datasets, regardless of whether ResNet models are trained from scratch or foundation models are fine-tuned. This
indicates that Focal-SAM offers better fine-grained control over the loss landscape for both head and tail classes, leading to
improved overall performance. This further highlights the effectiveness of Focal-SAM.

Table 5: Performance comparison on CIFAR-10 LT datasets with various imbalance ratios (IR). FFT denotes fully fine-tuning
the foundation model with LA loss.

Method IR100 . IR200 IR50 1IRI10
Head Med Tail All All All All
Training from scratch
CE 870 736 540 731 | 686 783 874
CE+SAM 895 739 567 750 | 698 79.6 88.8
CE+ImbSAM 88.0 79.0 60.1 769 | 72.6 81.1 89.3
CE+CC-SAM 889 741 613 762 | 713 80.0 89.2
CE+Focal-SAM 89.3 754 629 772 | 717 820 90.0
LDAM+DRW ( , )| 8.5 746 690 773 | 738 80.8 873
LDAM+DRW+SAM 889 783 732 810 | 786 845 894
LDAM+DRW+ImbSAM 86.5 79.7 737 806 | 773 840 889
LDAM+DRW+CC-SAM 884 792 733 81.1 | 789 844 894
LDAM+DRW+Focal-SAM 88.7 795 742 816 | 792 845 895
LA ( , ) 87.6 726 701 779 | 743 81.6 878
LA+SAM 86.7 806 782 823 | 789 854 902
LA+ImbSAM 84.1 81.6 80.1 822 | 78.6 847 895
LA+CC-SAM 86.6 80.8 785 825 | 79.1 855 902
LA+Focal-SAM 869 812 792 829 | 796 855 90.5
VS ( , ) 881 77.1 684 789 | 747 815 883
VS+SAM 85.6 827 76.6 820 | 79.0 854 903
VS+ImbSAM 853 821 773 819 | 787 848 90.0
VS+CC-SAM 856 820 782 823 | 793 855 904
VS+Focal-SAM 877 806 788 829 | 795 858 90.7
Fine-tuning foundation model
FFT 979 958 959 96.7| 957 97.1 979
FFT+SAM 97.5 965 970 970 | 966 975 98.0
FFT+ImbSAM 97.0 97.0 974 97.1 | 965 97.7 979
FFT+CC-SAM 976 962 970 970 | 966 97.6 98.0
FFT+Focal-SAM 975 964 975 972 | 96.6 975 98.2
LIFT ( , ) 96.6 957 974 966 | 963 96.8 972
LIFT+SAM 96.6 956 97.8 967 | 964 967 97.0
LIFT+ImbSAM 96.5 959 977 967 | 964 967 972
LIFT+CC-SAM 965 956 979 966 | 964 967 973
LIFT+Focal-SAM 96.6 956 981 968 | 964 969 973
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Table 6: Performance comparison on CIFAR-100 LT with more combined methods

Method IR100 IR200 IR50 1IRI10
Head Med Tail All All All All
Training from scratch
LDAM+DRW ( , )| 63.1 444 18,6 432 | 403 46.1 573
LDAM+DRW+SAM 67.6 517 259 495 | 458 526 6l.1
LDAM+DRW+ImbSAM 625 488 264 469 | 425 513 598
LDAM+DRW+CC-SAM 66.5 522 262 494 | 457 523 610
LDAM+DRW+Focal-SAM 67.9 5277 269 503 | 462 538 623
VS ( , ) 583 438 311 451 | 41.6 493 594
VS+SAM 62.7 520 293 490 | 455 535 625
VS+ImbSAM 56.1 533 299 472 | 447 526 626
VS+CC-SAM 622 522 303 49.1 | 452 537 629
VS+Focal-SAM 62.7 526 310 49.7 | 458 545 63.7

D.2. CE and mCE Metrics on ImageNet-C for Long-tailed Domain Generalization

ImageNet-C ( s ) contains the corrupted versions of ImageNet ( s ) dataset, with
15 corruption types applied at 5 severity levels, resulting in 75 dataset variations. In addition to the model’s average accuracy
across these 75 datasets, as shown in Tab.4, ImageNet-C introduces two additional metrics: Corruption Error (CE) and
Mean Corruption Error (mCE). These metrics systematically assess the robustness of models against image corruption.
CE measures the accuracy drop of a model on a specific type and severity of corruption compared to a baseline model,
typically AlexNet ( , ). mCE aggregates the CE values across all corruption types and severity levels,
providing a single robustness score for the model. Tab.7 presents the CE and mCE results on the ImageNet-C dataset
when fine-tuning the foundation models. The results show that Focal-SAM generally achieves significantly lower CE and
mCE values across the entire dataset and for each corruption type. This further demonstrates Focal-SAM’s effectiveness in
improving generalization.

Table 7: The CE and mCE values for different methods on the ImageNet-C dataset. The source models are trained on
ImageNet-LT and evaluated on ImageNet-C. Lower values indicate better performance.

Method mCE/ Blur Noise Digital Weather

Motion Defoc Glass Zoom | Gauss Impul Shot | Contr Elast JPEG Pixel | Bright Snow Fog Frost
FFT 72.6 72.8 746 782 794 73.6 74.1 75.1 | 667 80.0 784 713 63.7 66.6 657 68.5
+SAM 69.0 69.2 722 769 769 68.9 69.7 707 | 63.6 775 745 668 | 592 62.6 60.6 65.7
+ImbSAM 69.5 69.4 722 768  77.1 70.2 70.7 720 | 629 776 764 685 59.6 625 602 657

+CC-SAM 69.0 69.0 74.1 76.6  77.8 69.5 693 712 | 640 76,6 752 67.0 | 58.1 61.3 59.6 65.0
+Focal-SAM | 68.3 68.2 72.7 766 76.6 | 68.3 688 70.1 | 632 762 742 66.0 | 58.0 61.5 59.7 65.1

LIFT 63.6 61.7 67.6 759 724 61.0 612 627 | 541 808 727 603 52.1 57.0 522 621
+SAM 63.0 61.1 672 757 715 60.4 60.6 62.0 | 536 80.6 721 594 | 51.7 563 517 617
+ImbSAM 63.4 61.6 675 758 721 60.9 609 626 | 53.8 80.6 725 599 | 519 56.7 519 618

+CC-SAM 62.5 61.0 66.5 753 709 59.5 599 613 | 537 799 717 582 | 513 555 516 612
+Focal-SAM | 62.2 60.6 663 752 711 59.3 599 610 | 531 796 710 582 | 50.7 553 511 61.0

D.3. Results for Aligning Computational Cost

Focal-SAM requires about 50% more training time than SAM. To fairly evaluate the benefit of Focal-SAM, we conduct
experiments where we extend the training epochs of SAM to match Focal-SAM’s total computational cost. Specifically,
we increase the training epochs to 300 or 30 (1.5 X the original 200 or 20) for SAM, while keeping Focal-SAM at 200 or
20 epochs. In this setting, the total computational cost of SAM and Focal-SAM becomes comparable. We conduct these
experiments on CIFAR-100 LT, ImageNet-LT, and iNaturalist datasets. The results are shown in Tab.8, Tab.9, and Tab.10.
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Table 8: Performance comparison on CIFAR-100 LT with aligned computational cost.

IR100 IR200 IR50 IRI0

Method Epoch | " Al Al Al
Training from scratch
CE+SAM 300 43.0 392 469 60.0
CE+Focal-SAM 200 44.0 39.6 481 60.9
LDAM+DRW+SAM 300 50.4 464 530 612
LDAM+DRW+Focal-SAM | 200 50.3 46.2 538 623
VS+SAM 300 49.2 455 530 633
VS+Focal-SAM 200 49.7 458 545 63.7
LA+SAM 300 50.1 455 538 63.0
LA+Focal-SAM 200 50.7 46.0 545 638
Fine-tuning foundation model
FFT+SAM 30 81.2 783 836 869
FFT+Focal-SAM 20 81.6 790 839 873
LIFT+SAM 30 82.1 80.2 831 852
LIFT+Focal-SAM 20 824 80.0 832 854

Table 9: Performance comparison on ImageNet-LT with aligned computational cost.

ImageNet-LT

Method Epoch | ead  Medium Tail Al

Training from scratch

LA+SAM 300 63.2 51.6 348 53.8
LA+Focal-SAM 200 63.9 52.2 344 543

Fine-tuning foundation model

FFT+SAM 30 80.6 73.1 56.1 73.6
FFT+Focal-SAM 20 80.8 73.9 544 1739
LIFT+SAM 30 79.8 76.1 73.5 T77.2

LIFT+Focal-SAM 20 79.7 76.6 73.6 774

Table 10: Performance comparison on iNaturalist with aligned computational cost.

iNaturalist

Method EPOCh Head Medium Tail All

Training from scratch

LA+SAM 300 68.0 71.4 724 715
LA+Focal-SAM | 200 68.4 72.0 72.5 718

D.4. Visualization of Loss Landscape

Fig.6 and Fig.7 visualize the loss landscape for head and tail classes of ResNet models trained with SAM, ImbSAM,
CC-SAM, and Focal-SAM on the CIFAR-100 LT and CIFAR-10 LT datasets using VS loss respectively. From the results,
we can observe that the loss landscape for tail classes with InbSAM generally appears flatter and smoother than with SAM,
suggesting that ImbSAM better flattens the loss landscape for tail classes. However, the head class loss landscape with
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ImbSAM is generally sharper than with SAM, indicating that InbSAM’s exclusion of all head classes from the SAM term
can sharpen the loss landscape for head classes, which might reduce their generalization performance. In contrast, CC-SAM
and Focal-SAM provide fine-grained class-wise control, leading to a flatter loss landscape for both head and tail classes.

(b) ImbSAM: Head (¢) CC-SAM: Head (d) Focal-SAM: Head

aa
N :

(e) SAM: Tail (f) ImbSAM: Tail (g) CC-SAM: Tail (h) Focal-SAM: Tail

Figure 6: Visualization of loss landscape for head and tail classes of ResNet models trained with SAM, ImbSAM, CC-SAM,
and Focal-SAM on CIFAR-100 LT using VS loss respectively.

(a) SAM: Head (b) ImbSAM: Head (c) CC-SAM: Head (d) Focal-SAM: Head

(e) SAM: Tail (f) ImbSAM: Tail (g) CC-SAM: Tail (h) Focal-SAM: Tail

Figure 7: Visualization of loss landscape for head and tail classes of ResNet models trained with SAM, ImbSAM, CC-SAM,
and Focal-SAM on CIFAR-10 LT using VS loss respectively.

D.5. Ablation Study About Perturbation Radius p

Fig.8 illustrates the impact of the hyperparameter p on the performance of Focal-SAM when combined with LDAM+DRW,
LA, and VS methods on the CIFAR-LT datasets during ResNet models training. As p increases, Focal-SAM’s performance
initially improves but then declines. This indicates a trade-off between achieving flatter minima and reducing training loss.
The optimal value of p for Focal-SAM is approximately 0.3, which is higher than the commonly optimal value for SAM on
balanced training datasets, as reported by Foret et al. (2021). This observation is consistent with Rangwani et al. (2022),
who suggest that a larger p can enhance performance in long-tailed learning.
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Figure 8: Ablation Study of Focal-SAM w.r.z. p

D.6. Additional Results for Eigen Spectral Density of Hessian

This section presents additional results of the spectral density of hessian for ResNet models trained with SAM, ImbSAM,
CC-SAM, and Focal-SAM. We analyze models trained on CIFAR-10 LT and CIFAR-100 LT datasets using VS and CE loss
functions. The results are visualized in Fig.9, Fig.10 and Fig.11.

The results indicate that the largest eigenvalue A, and the trace ¢r( H ) of the Hessian for tail classes are generally smaller
with InbSAM than with SAM. This suggests that InbSAM flattens the loss landscape for tail classes more effectively.
However, A,,q. and tr(H) for head classes are typically larger with InbSAM than with SAM, indicating that InbSAM’s
coarse-grained strategy of excluding all head classes from SAM terms sharpens the loss landscape for those classes. In
contrast, CC-SAM applies finer control over the loss landscape by using class-dependent perturbation radii, generally
achieving lower \,,q, and ¢r(H) for head and tail classes. Overall, both A, and ¢r(H) for head and tail classes
are relatively lower with Focal-SAM than other SAM-based methods. This further suggests that Focal-SAM provides
fine-grained control over the loss landscape, leading to a flatter landscape for both head and tail classes.
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Figure 9: Eigen Spectral Density of Hessian for head and tail classes of ResNet models trained with SAM, ImbSAM,
CC-SAM, and Focal-SAM on CIFAR-100 LT using VS loss respectively. A smaller A, 4, and Tr(H) generally indicate a
flatter loss landscape.
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Figure 10: Eigen Spectral Density of Hessian for head and tail classes of ResNet models trained with SAM, ImbSAM,
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CC-SAM, and Focal-SAM on CIFAR-10 LT using CE loss respectively. A smaller \,,,,. and Tr(H) generally indicate a

flatter loss landscape.

. 102
& Amax: 7.94
S 100 Tr(H): 178.65
(%2}
> -2
g 10
> 107
@
g 10°°
a

-10>-10' 101 10! 10?

Eigenvalue
(a) SAM: Head Classes

T Amax: 26.98
© 100 THH): 652.76
(%2}
2 1072
2
> 107
@
$ 106
la)

-10>-10* -10 1 10 102

Eigenvalue

(e) SAM: Tail Classes

. 10?
o Amax: 10.16
C 100 TH(H): 263.61
(2]
g 102
=
> 10
2
o 107
a
-10%-10* -1 01 10 102
Eigenvalue

(b) ImbSAM: Head Classes

) Amax: 24.36
c 10° Tr(H): 581.37
%]
2 1072
=
> 107
@
$ 1076
a
-10-10* -10 1 10! 102
Eigenvalue

(f) InbSAM: Tail Classes

. 102
O) Amax: 8.67
S 100 Tr(H): 169.62
(%]
D -2
g 10
> 1074
G
$ 1076
fat
—102-101 -10 1 10! 102
Eigenvalue

(c) CC-SAM: Head Classes

o Amax: 25.65
T 10° Tr(H): 486.08
(%]
g 1072
=
> 107
Q
$ 1076
a
-10>-10' -10 1 10' 107
Eigenvalue

(g) CC-SAM: Tail Classes

— 102
o) Amax: 8.43
S 100 Tr(H): 183.01
(9]
D -2
g 10
> 107
G
$ 107
fat
—-102-107 -1 0 1 10! 102
Eigenvalue

(d) Focal-SAM: Head Classes

@ Amax: 25.61
T 10° Tr(H): 561.13
(%]
2 1072
=
> 107
@
$ 10-6
a
-10>-10* -10 1 10* 107
Eigenvalue

(h) Focal-SAM: Tail Classes

Figure 11: Eigen Spectral Density of Hessian for head and tail classes of ResNet models trained with SAM, ImbSAM,
CC-SAM, and Focal-SAM on CIFAR-100 LT using CE loss respectively. A smaller A, and Tr(H) generally indicate a

flatter loss landscape.
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