
Under review as a conference paper at ICLR 2023

A NOTATION TABLE

Table 3: Important notations used in the paper.
Notations Description

d input dimension
n number of per desired label space class samples on the server
t local updating iterations
C number of clients in the FL, we index client by c 2 [C]
J number of classes in the other label space
K number of classes in the desired label space
T linear transformation of noisy labels on the server
Q linear transformation between two label spaces
R aggregation communication rounds
Nc size of samples on the c-th client
Sc the set of indices of observations on c-th client
X input space X ⇢ Rd

eY the other label space eY = {eY 1
, eY 2

, . . . , eY J}
Y desired label space Y = {Y 1

, Y
2
, . . . , Y

K}
Dc dataset Dc = {(xc

i , y
c
i) : i 2 Sc} on c-th client

Ds dataset on server Ds = {(xs
i , y

s
i) : i 2 [nK]} where y

s
i 2 Yfine

x inputs variable x 2 X
f(·) a classification model that assigns a score to each of the K classes for a given input x
`(·, ·) loss function for the classification task
bRc(·) empirical risk on c-th client
bRs(·) empirical risk on the server
⌘local local GD step size
⌘agg aggregation step size
⇠ the noise level in T

B TECHNICAL DETAILS OF THE NEURAL TANGENT KERNEL ANALYSIS

In this section, we present the technical details of the Neural Tangent Kernel Analysis on the
convergence of the algorithm of the label projection approach. We first present the NTK analysis of a
simple regression model with weighted loss. We then show how the conclusion be extended to our
classification case under FL.

B.1 NTK WITH WEIGHTED MSE LOSS FOR REGRESSION

Let us first consider an over-parameterized one-hidden layer neural network (NN) for regression. Let
f : X ! R be the output of the NN with the form

f(u,x) =
1p
M

MX

m=1

am�(u>
mx)

where �(z) = max{z, 0} is the ReLU activation function and u = [u1,u2, . . . ,uM] 2 Rd⇥M .
Let D = {(xi, yi) : i 2 [n]} be a set of training examples. We consider the learning f under the
following weighted MSE loss

L(u) = 1

2

nX

i=1

wi(f(u,xi)� yi)
2
.

13

Under review as a conference paper at ICLR 2023

Let ⌘ be the learning rate of gradient descent algorithm, the evolution of the parameters u and the f

via continuous time gradient descent satisfies
df(u(t),xi)

dt
=

@f(u(t),xi)

@u>
du(t)

dt
,

du(t)

dt
= �⌘

nX

i=1

@f(u(t),xi)

@u

@L
@f(u(t),xi)

(8)

based on the chain rule.

Let f(u,D) = (f(u,x1), f(u,x2), . . . , f(u,xn))T . Given the weighted MSE loss, we have
@L

@f(u,D)
= (w1(f(u,x1)� y1), w2(f(u,x2)� y2), . . . , wn(f(u,xn)� yn))

>

and
@f(u,D)

@u
=

✓
@f(u,x1)

@u> ,
@f(u,x2)

@u> , . . . ,
@f(u,xn)

@u>

◆>
.

Hence, we get

df(u,xi)

dt
= �⌘

nX

j=1

wj
@f(u,xi)

@u>
@f(u,xj)

@u
{f(u,xj)� yj}.

Then the full evolution dynamic of learning f is
df(u(t),D)

dt
= �⌘⇤(t)(f(u(t),D)� y)

where y = (y1, y2, . . . , yn)>, the Gram matrix ⇤(t) 2 Rn⇥n is

⇤(t) = ruf(u(t),D)Wr>
uf(u(t),D),

and W = diag(w1, w2, . . . , wn).

B.2 NTK UNDER WEIGHTED MSE LOSS FOR CLASSIFICATION

With the preparation in Section B.1, we now show the NTK kernel under the weighted MSE loss
for classification. We first consider the centralized version and then extend the conclusions to the
federated learning case.

Centralized Classification To make the presentation easier, we first introduce some notations. Let
D = {(xi,yi) : i 2 [n]} be a set of training examples where yi is the one-hot representation of the
label. Let f : X 7! RK be a K-class classifier and g(u,x) = �(f(u,x)). In this section, we show
the evolution dynamic of learning g under the following weighted MSE loss

L(u) =
nX

i=1

Li(u) =
1

2

nX

i=1

JX

j=1

KX

k=1

Q
�1
jk {yik � gk(u,xi)}2

where Q
�1 2 RJ⇥K is a known matrix and Q

�1
jk is the (j, k)-th element of Q�1.

Following (8), the evolution of the parameters u and the output g via continuous time gradient
descent satisfies

dgk(u(t),xi)

dt
=

@gk(u(t),xi)

@u>
du(t)

dt

du(t)

dt
= �⌘

nX

l=1

KX

=1

@g(u(t),xl)

@u

@Ll(u(t))

@g

(9)

Under the weighted MSE loss, we have

@Ll(u(t))

@g
=

JX

j=1

Q
�1
j {g(u,xl)� yl}.

14

Under review as a conference paper at ICLR 2023

Plugin the gradient to (9), we have

dgk(u(t),xi)

dt
= �⌘

nX

l=1

KX

=1

JX

j=1

@gk(u(t),xi)

@u>
@g(u(t),xl)

@u
Q

�1
j {g(u,xl)� yl}

Let g(u,D) = �(f(u,D)) = (g1(u,x1), . . . , g1(u,xn), . . . , gK(u,x1), . . . , gK(u,xn))
>, and

y = (y11, . . . , yn1, . . . , y1K , . . . , ynK)>.

Then in the matrix form, the full evolution dynamic of learning g becomes

dg(u(t),D)

dt
= �⌘H(t)(g(u(t),D)� y)

where the Gram matrix H(t) 2 RKn⇥Kn is a block matrix with K row partitions and K column
partitions. The (p1, p2)-th element of the block matrix in the l-th row and m-th column has the
following form

H
l,m
p1,p2

(t) =
JX

j=1

Q
�1
jm

@gl(u(t),xp1)

@u>
@gm(u(t),xp2)

@u
. (10)

Federated Classification We can now extend the study of the full evolution dynamic of learning
g under centralized version to federated classification. For federated learning case, we have the
following datasets: the set of training examples Dc = {(xc

i ,y
c
i) : i 2 Sc} on c-th client where

yi is the one-hot representation of the label in dimension K and the training data on the server
Ds = {(xs

i ,y
s
i) : i 2 [nK]} where y

s
i is the one-hot representation of the label. Let f : X 7! RK

be a K-class classifier. We consider the learning of f under the mean squared error loss

Lc(u) =
1

2

nX

i=1

JX

j=1

KX

k=1

Q
�1
jk {y

c
ik � gk(u,x

c
i)}2, Ls(u) =

1

2

nKX

i=1

KX

k0=1

KX

k=1

T
�1
k0k{y

s
ik � gk(u,x

s
i)}2.

The overall loss is

L(u) = Ls(u) +
CX

c=1

Lc(u). (11)

Same as the centralized case, let us consider the evolution of g via continuous time gradient descent.

dgk(u(t),xi)

dt
=

@gk(u(t),xi)

@u>
du(t)

dt

du(t)

dt
= �⌘

X

l

KX

=1

@g(u(t),xl)

@u

@Ll(u(t))

@g

The difference of our federated version from the centralized version is @L/@g. Under (11), we have

@Ll(u(t))

@g
=

(PJ
j=1 Q

�1
j {g(u,xl)� yl} if xl on c-th client,PK

k0=1 T
�1
k0{g(u,xl)� yl} if xl on the server.

Hence we have

dgk(u(t),xi)

dt
=� ⌘

nKX

i0=1

KX

=1

@gk(u(t),xi)

@u>
@g(u(t),xs

i0)

@u

KX

k0=1

T
�1
k0{g(u,x

s
i0)� y

s
i0}

� ⌘

CX

c=1

X

i02Sc

KX

=1

@gk(u(t),xi)

@u>
@g(u(t),xc

i0)

@u

JX

j=1

Q
�1
j {g(u,x

c
i0)� y

c
i0}.

To write the evolution of g in matrix form, let us first introduce some notations. Let

gk(u,D) = (gk(u,x
1
1), . . . , gk(u,x

1
N1

), . . . , gk(u,x
C
1), . . . , gk(u,x

C
NC

), gk(u,x
s
1), . . . , gk(u,x

s
nK))>

15

Under review as a conference paper at ICLR 2023

and g(u,D) =
�
g
>
1 (u,D), . . . , g>K(u,D)

�>. Note the vector g(u,D) is first
grouped by machines and then classes. Similarly, we also denote y

k =
(y11k, . . . , y

1
N1,k

, . . . , y
C
1k, . . . , y

C
NC ,k, y

s
1k, . . . , y

s
nK,k) and y = (y1

,y
2
, . . . ,y

K). Then in the
matrix form, the full evolution dynamic of learning g becomes

dg(u(t),D)

dt
= �⌘G(t)(g(u(t),D)� y)

where the Gram matrix G(t) 2 RK(nK+N)⇥K(nK+N) is a block matrix with K row partitions and
K column partitions. The block matrix in the l-th row and m-th column has the following form

G
l,m(t) =

0

BBBBBB@

Gl,m
1,1 (t) Gl,m

1,2 (t) . . . Gl,m
1,C(t) Gl,m

1,s (t)

Gl,m
2,1 (t) Gl,m

2,2 (t) . . . Gl,m
2,C(t) Gl,m

2,s (t)
...

...
. . .

...
...

Gl,m
C,1(t) Gl,m

C,2(t) . . . Gl,m
C,C(r) Gl,m

C,s (t)

Gl,m
s,1 (t) Gl,m

s,2 (t) . . . Gl,m
s,C (t) Gl,m

s,s (t)

1

CCCCCCA

for l 2 [K] and m 2 [K]. The block matrix G
l,m(r) is also consisted of block matrices. The block

matrix Gl,m
c1,c2(t) 2 RNc1⇥Nc2 , Gl,m

s,c (t) 2 RnK⇥Nc , and Gl,m
s,s (t) 2 RnK⇥nK for c1 2 [C], c2 2 [C],

and c 2 [C].

We now specify the elements in Gl,m
c1,c2(t), G

l,m
s,c (t), and Gl,m

s,s (t) respectively. The derivation is the
same as (10). We have

• The (p1, p2)-th element of Gl,m
c1,c2(t) has the following form

JX

j=1

Q
�1
jm

@gl(u,xc1
p1
)

@u>
@gm(u,xc2

p2
)

@u
.

• The (p1, p2)-th element of Gl,m
s,c (t) has the following form

JX

j=1

Q
�1
jm

@gl(u,xs
p1
)

@u>
@gm(u,xc

p2
)

@u
.

• The (p1, p2)-th element of Gl,m
s,s (t) has the following form

KX

k=1

T
�1
km

@gl(u,xs
p1
)

@u>
@gm(u,xs

p2
)

@u
.

B.3 PROOF OF COROLLARIES

In this section, we provide the proof for Corollary 3.5 and Corollary 3.6.

Proof for Corollary 3.6 The key for the proof is to find the form of T�1 when T = (1�K⇠/(K �
1))IK + ⇠/(K � 1) K

>
K . To find T

�1, we make use of the Woodbury matrix identity

(A+UCV)�1 = A
�1 �A

�1
U(C�1 + V A

�1
U)�1

V A
�1

where A, U , C, and V are matrices of proper sizes.

In our case, A = {1 �K⇠/(K � 1)}IK , U = K , C = ⇠/(K � 1), and V = >
K . By applying

Woodbury matrix identity, we get

T
�1 = (K � 1)/(K � 1�K⇠)IK � ⇠/(K � 1�K⇠) K

>
K .

Hence
KX

k=1

Tkk0 =
�
T

�1
K

�
k
= ((K � 1)/(K � 1�K⇠) K �K⇠/(K � 1�K⇠) K)k = (K)k = 1

16

Under review as a conference paper at ICLR 2023

which completes the proof.

Proof for Corollary 3.5 Let k1, k2, . . . , kJ be J non-negative integers such that K =
PJ

j=1 kj .
If the linear transformation from desired label space to the other label space is Q =
diag(1k1 ,1k2 , . . . ,1kJ) 2 [0, 1]K⇥J (i.e., the classes in the desired label space are sub-classes
of the class in the other label space), then the smaller the value of J , the lower the convergence rate.

We will use the following conclusion (Li et al., 2021) in the proof. For a block positive definite matrix
A = (Aij)n⇥n, we must have

�min(A) min
i

�min(Aii).

By recursively using this conclusion on G(t) given in (7). We have

� = �min(G(0)) min
k,c,s

{�min(Gk,k
c,c (0)),�min(Gk,k

s,s (0))} min
k,c

�min(Gk,k
c,c (0)).

Let �c
0 = �min(rugk(u(0),Dc)rug

>
k (u(0),Dc)) for c 2 [C]. Under the special case where the

two label spaces have hierarchical structures, we have Q
�1 = diag(k�1

1
>
k1
, k

�1
2

>
k2
, . . . , k

�1
J

>
kJ
)

Since Gk,k
c,c (0) =

nP
j Q

�1
jk

o
rugk(u(0),Dc)rug

>
k (u(0),Dc), it is easy to see that

�min(Gk,k
c,c (0))

⇢
min
j

k
�1
j

�
�
c
0.

where �
c
0 is a constant, the smallest eigen value of rugk(u(0),Dc)rug

>
k (u(0),Dc) (i.e., the

original kernel of FL-NTK Huang et al. (2021)), which does not depend on J .

Hence

� min
c

⇢
min
j

k
�1
j

�
�
c
0.

Since
P

j kj = K, and in our setting we have k1 ⇡ k2 ⇡ · · · ⇡ kJ , the smaller the value of J , the
smaller the value of � and hence the algorithm converges slower.

C EXPERIMENTAL DETAILS

We present our model architectures and training details of the benchmark and synthetic sEMG medical
dataset in this section.

C.1 MODEL ARCHITECTURE AND IMPLEMENTATION DETAILS ON BENCHMARK

The details of the experiments on the benchmark CIFAR100 dataset are presented in this section.

Model architecture For our benchmark experiments on CIFAR100, we use ResNet18 as our
backbone. The network details are listed in Tab. 4.

Data split and label Generation Here, we describe how to prepare the CIFAR100 training dataset
into sub-class but noisy data on the server and super-class datasets on the clients. We first select
n samples from each of the K = 100 sub-classes as the datasets on the server. To generate noisy
labeled data at noise level ⇠ 2 [0, 1], we assume that the noise matrix is known, symmetric, instance
independent, and reconstructable, represented as the matrix T⇠ = {1�K/(K � 1)⇠}IK + ⇠/(K �
1) K

>
K . Then the observed labels are sampled from this given matrix by random flipping, i.e., the

label in one class is flipped to the label in another class with probability ⇠/(K � 1). The higher
the value of ⇠, the larger the proportion of noise labels. Then for the rest of the observations in the
CIFAR100 training set, we randomly split then into C pieces each with Nc observations and each
client is assigned Nc samples. Hence in this case Q is a 200⇥ 100 matrix, its (j, i)-th element is 1 if
the i-th class is in j-th superclass and 0 otherwise.

17

Under review as a conference paper at ICLR 2023

Table 4: Model architecture of the benchmark experiment on CIFAR100. For convolutional layer
(Conv2D), we list parameters with sequence of input and output dimension, kernel size, stride and
padding. For max pooling layer (MaxPool2D), we list kernel and stride. For fully connected layer
(FC), we list input and output dimension. For BatchNormalization layer (BN), we list the channel
dimension.

Layer Details
1 Conv2D(3, 64, 7, 2, 3), BN(64), ReLU
2 Conv2D(64, 64, 3, 1, 1), BN(64), ReLU
3 Conv2D(64, 64, 3, 1, 1), BN(64)
4 Conv2D(64, 64, 3, 1, 1), BN(64), ReLU
5 Conv2D(64, 64, 3, 1, 1), BN(64)
6 Conv2D(64, 128, 3, 2, 1), BN(128), ReLU
7 Conv2D(128, 128, 3, 1, 1), BN(64)
8 Conv2D(64, 128, 1, 2, 0), BN(128)
9 Conv2D(128, 128, 3, 1, 1), BN(128), ReLU
10 Conv2D(128, 128, 3, 1, 1), BN(64)
11 Conv2D(128, 256, 3, 2, 1), BN(128), ReLU
12 Conv2D(256, 256, 3, 1, 1), BN(64)
13 Conv2D(128, 256, 1, 2, 0), BN(128)
14 Conv2D(256, 256, 3, 1, 1), BN(128), ReLU
15 Conv2D(256, 256, 3, 1, 1), BN(64)
16 Conv2D(256, 512, 3, 2, 1), BN(512), ReLU
17 Conv2D(512, 512, 3, 1, 1), BN(512)
18 Conv2D(256, 512, 1, 2, 0), BN(512)
19 Conv2D(512, 512, 3, 1, 1), BN(512), ReLU
20 Conv2D(512, 512, 3, 1, 1), BN(512)
21 AvgPool2D
22 FC(512, 100)

Training details We implement all the methods by PyTorch and conducted all the experiments on
an NVIDIA Tesla V100 GPU. For our FedMT, we use SGD optimizer Ruder (2016) with a learning
rate of 10�2, momentum 0.9, and weight decay 5 ⇥ 10�4. Each model updates one epoch then
aggregates with the others. The total communication iterations is set to be 100. The learning rate
is divided by 5 at 20, 30, and 40 iterations. We set the batch size to 16 and the number of training
examples on c-th client to Nc = 4000 if not specified otherwise. In Tab. 1, we consider various values
for the per number of observations n on the server under the noise-free setting. We also consider
various values for the noisy level ⇠ when n = 10. For additional results in the Appendix D, we
specify the hyper-parameters only when they are different.

We describe details of the baseline methods and corresponding hyper-parameters as follows.

• Single For this baseline method, we only use the limited data on the server to train a K-class
classifiers. Under the noisy label scenarios, we also apply the label projection and the
probability projection on the server and the learning objectives is

bR(f) = � 1

nK

nKX

i=1

KX

k=1

(ysi = Y
k) log

(
KX

k0=1

Tkk0�(fk0(xs
i))

)
,

for probability projection and

bR(f) = � 1

nK

nKX

i=1

KX

k=1

(
KX

k0=1

T
�1
kk0 (ysi = Y

k0
)

)
log �(fk(x

s
i)),

18

Under review as a conference paper at ICLR 2023

for label projection. We use the same optimizer as our FedMT.
• FedMatch We use the semi-supervised FedMatch proposed by (Lu et al., 2021). We treat

client samples as unlabeled data, perform pseudo-labeling on the unlabeled sets under the
supervision of labeled data on the server. The pseudo-labels are updated heuristically during
the training. The data augmentation strategy is also used. For fair comparison, we do not use
the pretrained backbone during training. We set learning rate to 0.01, batch size to 16, and
the rest of the hyperparameters are the same as the default setting in the implementation.

• FedRep (Collins et al., 2021) For this baseline method, all clients train a super-class classifier
and the server trains a sub-class classifier that differs in the last layer with different output
dimension. The learning objective is

bR(f) =
1

C

C+1X

c=1

n
bRc(f ;Dc) + bRs(f ;Ds)

o
,

where

bRc(f ;Dc) = � 1

Nc

X

i2Sc

JX

j=1

(yi = eY j) log �(fj(xi))

and bRs(f ;Ds) is the same as the objective function in the Single baseline approach. All
classifiers on the server and on the clients use the same ResNet18 backbone, but they have
different last layers. For the classifiers on clients, their last layer is FC(512,20); for the
classifier on the server, its last layer is FC(512,100). The last layers of classifiers on clients
are also not shared during the training. The rest of the parameters of all classifiers are
aggregated using FedAvg during training. We use the same optimizer as our FedMT.6

• FedTrans For this baseline method, we first pretrain a model using the client data to train
a J-class classifiers using FedAvg with probability projection or label projection. This
pretrained net is then fine-tuned on the server. During the fine-tuning, we add a new
linear layer with K classes with random initialization and backbone is initialized with the
pretrained model. We use the same optimizer as our FedMTduring the pretrain step and the
model is fine-tuned on the server for 100 epochs with SGD optimizer and learning rate 0.01.

C.2 MODEL ARCHITECTURE AND IMPLEMENTATION DETAILS ON MEDICAL DATASET

Model architecture We use a simple MLP as the model for the medical data, whose architecture is
listed in Table 5.

Table 5: Model architecture of the experiment on medical dataset sEMG. For fully connected layer
(FC), we list input and output dimension. For BatchNormalization layer (BN), we list the channel
dimension.

Layer Details
1 FC(12,128), BN(128), ReLU
2 FC(128, 10)

Data Preprocessing The raw sEMG data is collected from Qin et al. (2020), with the dimensionality
of 2048, i.e., 2048 time points per sample, x = [x1, . . . , x2048] . Following Qin et al. (2019), instead
of using the raw time series, we use the extracted features as described in Section 4.The features
twelve hand-crafted features, including mean absolute value (MAV), mean square value (MSV), root
mean square (RMS), variance (VAR), standard deviation (STD), waveform length (WL), Willison
amplitude (WAMP), log detector (LOG), slope sign change (SSC), zero crossing (ZC), mean spectral
frequency (MSF) and median frequency (MF). Denote Pj is the sEMG power spectrum at frequency
bin j, and fj is the frequency of the sEMG power spectrum at frequency bin j. Mathematically, these
features are defined in Tab. 6

6Note that the data labeling settings, models, and evaluation methods implemented in our work is adjusted to
make fair comparison with other methods and different from those in Collins et al. (2021).

19

Under review as a conference paper at ICLR 2023

Table 6: Mathematical representation of widely used sEMG feature extraction methods. The constant
⇣ is an user specified threshold and we set ⇣ = 1.

Feature Extraction Mathematical Equation

mean absolute value (MAV) 1
N

PN
n=1 |xn|

mean square value (MSV) 1
N

PN
n=1 x

2
n

root mean square (RMS)
q

1
N

PN
n=1 x

2
n

variance (VAR) 1
N�1

PN
n=1 x

2
n

standard deviation (STD)
q

1
N�1

PN
n=1 x

2
n

waveform length (WL)
PN�1

n=1 |xn+1 � xn|

Willison amplitude (WAMP)
PN�1

n=1 f(|xn+1 � xn|); f(x) =
⇢
1 if x � ⇣

0 otherwise
log detector (LOG) exp

⇣
1
N

PN
n=1 log |xn|

⌘

slope sign change (SSC)
PN�1

n=2 f [(xn � xn�1)⇥ (xn � xn+1)]; f(x) =
⇢
1 if x � ⇣

0 otherwise

zero crossing (ZC)
PN�1

n=1 [sgn(xn ⇥ xn+1)
T

|xn � xn+1| � ⇣]; sgn(x) =
⇢
1 if x � ⇣

0 otherwise

mean spectral frequency (MSF)
PM

j=1 fjPjPM
j=1 Pj

median frequency (MF) 1
2

PM
j=1 Pj X ⇢ Rd

We randomly sample 9000 samples as training data annotated with label from the other label space,
and 1000 samples as the held testing data. We set the number of clients C = 50, namely each client
has 180 samples. The data are labeling based on the severity value from 0 to 5. We equally partition
the values into 3 parts with the same intervals (i.e., [0,5/3), [5/3,10/3), and [10/3,5]) corresponding to
J = 3 labeled classes on the clients. Such class partition strategy can simulate the overlapped case
between two label spaces, where samples in the same Y

k class can belong to different eY j classes.
From the remaining sEMG samples, we randomly sample n observations per 5 class to represent
the data on server. Under the noisy label scenarios, the noisy labels are generated using the same
protocol as described in Section C.1.

Training details We implement all the methods by PyTorch and conducted all the experiments
on an NVIDIA Tesla V100 GPU. All the methods are trained for 100 round and each round, model
update once before aggregation. We use SGD optimizer Ruder (2016) with a learning rate of 10�2,
momentum 0.9, and weight decay 5 ⇥ 10�4. The learning rate is divided by 5 at 20, 30, and 40
epochs. We set the batch size to 16. We also consider various values for the noisy level ⇠ from 0 to
0.4. All the experiments are repeated with independent random seeds.

D MORE EXPERIMENTAL RESULTS ON CIFAR100

In this section, we present more experiment results on the benchmark CIFAR100 dataset. In Sec-
tion D.1, we show the convergence of the loss function as a function of batch sizes and the local
rounds. In Section D.2, we show the experiment results of our FedMT when different weighting
schemes are used for server and clients. In Section D.3, we show the experiment results as the number
of per client observation increases. In Section D.4, we study the performance of our proposed method
under label heterogeneous across clients. In Section D.5, we show the performance of our method
when limited data from desired label space are further split into more pieces.

D.1 EFFECTS OF LOCAL ROUNDS AND BATCH SIZE

To demonstrate the robustness of the proposed FedMT and validate our developed theoretical results
in Theorem 3.4, we investigate the effects of different local rounds t and the batch size B on training
losses (2) of FedMT with label projection in Section 4.1. For all experiments, the learning rate is
set to be 0.0001 and no learning rate scheduler is used during the training. In Fig. 3(a), we explore

20

Under review as a conference paper at ICLR 2023

loss as a function of the batch size B 2 {16, 64, 128} with C = 10 and without noise on super-class
labels. The larger the batch size, the faster the loss function converges. In Fig. 3(b), we explore loss
as a function of the local rounds t 2 {1, 4, 8} with C = 10 and without noise on super-class labels.
The larger the local rounds, the faster the convergence, which is consistent with the theoretical result
of Theorem 3.4. It is worth noting that all the training curves of different variants of the parameters
reach convergence.

(a) Loss curve for different batch sizes (b) Loss curve for different local rounds

Figure 3: Effects of (a) the batch size B and (b) the local rounds t on the rate of convergence on the
loss function.

D.2 BENCHMARK EXPERIMENTS WITH WEIGHTED FEDMT

In our main results, the loss on the each client and the loss on the server are equally weighted with
weight 1/(C + 1). To see the performance of our FedMT, we also investigate the case when these
losses are weighted unequally and report the classification accuracy of the corresponding trained
model on the held out test set in Tab. 7. For these experiment results, we consider different number
of n 2 {5, 10, 20, 40, 80} with ⇠ = 0.2. The sample size on c-th client Nc = 4000. For the unequal
weight case, the weight on the server is 0.5 regardless of the size of n and the weight on each client
is 0.5/C. As shown in the table, the test classification accuracy increases with n for both equally
weighted and unequally weighted cases. The performance of the unequally weighted case is not as
good as the equally weighted case.

Table 7: Comparison of the accuracy for 100-class classification using different FL aggregation
strategies on CIFAR100 benchmark dataset at different number of per K class training examples n
when noise level ⇠ = 0.2. We report mean (sd) from three trial runs.

Weights Methods 5 10 20 40 80

Equal Our (P) 19.70(0.30) 24.26(0.85) 27.48(0.48) 30.56(0.61) 34.85(0.12)
Our (L) 18.10(0.41) 21.26(0.32) 24.37(0.26) 28.28(0.18) 32.15(0.86)

Unequal Our (P) 19.27(0.20) 21.49(0.50) 23.83(0.12) 26.66(0.11) 29.25(0.25)
Our (L) 13.16(0.62) 14.40(0.21) 16.09(0.22) 19.15(0.25) 21.61(0.33)

D.3 BENCHMARK EXPERIMENTS WITH MORE CLIENTS

In Tab. 1, we check the performance of our proposed method for varying amount of data on the
server. In this section, we present the performance of our proposed method under varying amount
of data on the client when n = 10 and ⇠ = 0.2 on the server. We also set the per client number of
observations to be Nc = 800. We change the number of clients C 2 {10, 20, 30, 40, 50}. The larger
the number of clients C, more data we have. During the aggregation, we set the weights of the server
to be 0.5 and the rest of the client to be 0.5/C. In comparison, if the equal weight 1/(C + 1) is used,
the super-class data on the server plays a less importance role as C increases. We therefore use the
unequally weighted strategy to avoid. The classification result of the aggregated model on the held

21

Under review as a conference paper at ICLR 2023

out test set is given in Table 8. As shown in the table, the classification accuracy increases as the
number of clients increases.

Table 8: Our FedMT classification accuracy on benchmark CIFAR100 with different number of
clients.

Methods 10 20 30 40 50
Our (P) 13.61(0.16) 15.17(0.29) 15.28(0.11) 15.92(0.44) 16.32(0.27)

D.4 BENCHMARK EXPERIMENTS UNDER NON-IID DATA SPLIT

The heterogeneity of the training data across clients is a major challenge in FL Kairouz et al. (2021).
We therefore study the performance of our method under two different FL settings: IID and non-IID.
The overall label distribution across clients is the same in the IID setting, whereas clients have
different label distributions in the non-IID setting. For the IID setting, we split the sub-class label
training data evenly to all clients completely at random. For the non-IID setting, we split the dataset
to clients as follows:

• the classes are divided into the majority and minority classes, where the fraction of each
minority class is less than 0.08 while the fraction of each majority class is in the range [0.15,
0.25];

• the training data for every client are sampled from 2 majority classes and rest from minority
classes;

We compare our method with personalized FL method FedRep both under noise-free and label noise
on the server. We make the following comparisons: 1) the performance of our method under IID case

Table 9: Comparison of the accuracy for 100-class classification using our methods and FedRep on
the CIFAR100 benchmark dataset under IID and non-IID data split. We report mean (sd) from three
trial runs.

⇠ 0.0 0.1 0.2 0.3 0.4

IID
Our (P) 26.44(0.34) 25.88(0.67) 24.26(0.85) 22.25(0.41) 21.04(0.33)
FedRep 21.00(0.45) 19.34(0.57) 17.89(0.37) 16.16(0.08) 14.80(0.89)

Non-IID
Our (P) 21.40(0.21) 20.37(0.28) 20.14(0.26) 18.72(0.45) 17.44(0.39)
FedRep 20.71(0.58) 18.45(0.69) 17.11(0.35) 14.73(0.25) 13.74(0.13)

and non-IID case. 2) the performance of our method under non-IID case and FedRep under non-IID
case. 3) the performance of our method under non-IID case and other baselines under IID case. Since
our aggregation is based on FedAvg, it can be seen from the table that there is a 4-5% performance
drop of our proposed method when data on the clients are non-IID. However, it is worth noticing that
our proposed method under non-IID case works better than other baselines under IID case. Moreover,
our proposed method still outperforms FedRep when both approaches are applied on non-IID data
split. Therefore, the above experiment results show the robustness of our proposed method compared
with other approaches.

D.5 DIFFERENT NUMBER OF “SERVERS"

In our problem setting, we assume without loss of generality that there is one ‘specialized center’
with a small amount of data from desired label space and we call this center as the server. Such
a setting is motivated by the real clinical application in Section 1 that “the centers with the most
complex labeling criteria...has much less labeled samples due to labeling difficulty or cost". It is
technically trivial to generalize our problem to the case with several entities with data from desired

22

Under review as a conference paper at ICLR 2023

label space by simplify modifying Equation 11 as

Roverall(f) =
1

C + S

(
SX

s=1

bRs(f ; eDs) +
CX

c=1

bRc(f ; eDc)

)

where eDs is the noisy labeled data on s-th server and S is the total number of such servers. To show
the effectiveness of our proposed method under this setting, we run the following experiments on
CIFAR100. We have C = 10 clients with super-class clean data with each client having Nc = 4000
samples. We also have n = 20 noisy sub-class data. We consider the following 3 ways to store these
20⇥ 100 images: 1) we have one “server" with all noisy sub-class images. 2) we have 2 “server"s
with each containing n = 10 noisy sub-class images. 3) we have 4 “server"s with each containing
n = 5 noisy sub-class images. We change the level of noise ⇠ 2 {0.1, 0.2, 0.3, 0.4, 0.5} and show
the results for both FedMT(P) and FedMT(L). It can be seen from the table that an increase in the

Table 10: Comparison of the accuracy for 100-class classification using FedMT(P) on the CIFAR100
benchmark dataset with different split strategy of the sub-class label at different noise level ⇠. We
report mean (sd) from three trial runs.

Split 0.1 0.2 0.3 0.4

Our (P)
1x20 28.26(0.88) 27.48(0.48) 26.36(0.84) 24.36(1.47)
2x10 29.11(0.21) 27.88(0.62) 26.38(1.09) 24.16(0.27)
4x5 28.13(0.36) 27.26(0.37) 24.64(0.63) 23.37(0.36)

Our (L)
1x20 27.53(0.71) 24.37(0.26) 23.78(0.50) 22.45(0.73)
2x10 25.64(0.52) 24.08(0.29) 22.29(0.71) 20.67(0.43)
4x5 23.88(0.30) 22.58(0.50) 21.52(0.18) 20.51(0.20)

number of “server"s does not hurt the performance of FedMT(P) and there is a slight performance
drop for FedMT(L).

D.6 SENSITIVITY ANALYSIS OF PROJECTION MATRIX

In this section, we show the experiment on testing the robustness of our proposed method to the
perturbation of the transition matrix T . Following Lu et al. (2022), we let

eT = T � {(2✏� 1)P + 1}

where each element in P are IID random variables from [0, 1] and � is the elementwise product
between two matrices. We then standard T so that its column sum is 1. We have run the experiments
with ✏ 2 {0.1, 0.5, 0.9} for different noise levels and the experiment results is given in Tab. 11. The
last row of the table is the experiment result with the true T . It can be seen from the figure that our
proposed method FedMT is robust to a perturbation of the projection matrix T .

Table 11: Sensitivity analysis when the projection matrix T is perturbed under different noise levels
⇠ on CIFAR100. We let C = 10, Nc = 4000 and n = 10 in the experiment. The value of ✏ denotes
the degree of perturbation, the larger the value of ⇠, the higher the degree of perturbation. The last
row is the test accuracy with the true T .

✏ ⇠ = 0.0 ⇠ = 0.1 ⇠ = 0.2 ⇠ = 0.3

0.1 25.44 23.95 22.27 21.72
0.5 24.89 24.37 22.57 21.68
0.9 24.73 24.13 22.52 20.81
True T 25.99 25.15 22.95 21.71

23

Under review as a conference paper at ICLR 2023

E MORE EXPERIMENTAL RESULTS ON TREMOR SEVERITY PREDICTION

For the experiment on tremor severity prediction in Section 4.3, we let K = 5 and the Q matrix
between two label spaces is

Q =

"
3/5 2/5 0 0 0
0 1/5 3/5 1/5 0
0 0 0 2/5 3/5

#
.

There are 2 out of 5 classes in the desired space overlaps with one of the class in the other space, each
with degree of overlapping 1/5 = 20%. To investigate the performance of various approaches under
different degrees of overlapping, we create the labels on the servers as below. We equally partition
the values into 10 parts with the same intervals (i.e., [0.5k, 0.5k + 0.5) for k 2 {0, 2, . . . , 9}) and
keep J = 3 and the corresponding labels the same as before. In this case, the Q matrix between two
label spaces becomes

Q =

"
3/10 3/10 3/10 1/10 0 0 0 0 0 0
0 0 0 1/5 3/10 3/10 1/5 0 0 0
0 0 0 0 0 0 1/10 3/10 3/10 3/10

#

Under this case, there are 2 out of 10 classes in the desired space overlaps with one of the class in
the other space, each with degree of overlapping is 1/10 = 10%. As a comparison and additional
experiment results, we compare the performance of all methods for different values of K under the
case when there are noisy labels on the server. We let n = 3 and the rest of the settings the same as
before. The experiment results are given in Tab. 12. It is shown in the table that our method can beat
the rest of the methods regardless of the noise level.

Table 12: Comparison of the accuracy using our methods and alternative methods on the sEMG
dataset with n = 3 and K = 5 that has smaller degree of class overlapping and K = 10 that has
larger degree of class overlapping. We conduct the experiment when C = 50 at different noise level
⇠. We report mean (sd) from three trial runs. The best method is highlighted in boldface.

⇠ Single FedMatch FedRep FedTrans Ours: FedMT (P&L)

larger degree of overlapping

0.0 22.35(2.31) 13.04(1.79) 29.23(2.31) 28.75(1.21) 28.97(0.32) 32.59(1.81)
0.1 21.12(2.34) 13.14(0.76) 21.12(2.34) 27.73(1.72) 28.86(0.73) 30.60(1.16)
0.2 18.75(1.68) 12.51(2.19) 18.75(1.68) 25.95(0.99) 27.63(1.05) 30.26(1.69)
0.3 17.49(1.50) 10.54(1.07) 17.49(1.50) 21.56(2.04) 27.00(0.42) 28.16(1.53)
0.4 14.25(1.17) 11.64(1.17) 14.25(1.17) 18.00(2.15) 27.03(1.48) 28.96(1.39)

smaller degree of overlapping

0.0 34.39(2.86) 34.07(1.32) 41.12(1.34) 51.25(2.57) 67.34(0.56) 64.33(0.48)
0.1 31.04(2.69) 33.03(0.99) 39.64(1.62) 45.52(2.15) 61.80(0.24) 66.56(0.57)
0.2 30.77(1.89) 32.37(1.21) 37.66(1.80) 41.07(1.45) 61.34(0.30) 66.00(0.57)
0.3 27.41(3.02) 31.36(0.99) 34.37(3.38) 39.10(1.31) 61.26(0.31) 67.22(0.30)
0.4 24.66(2.59) 27.56(1.26) 27.09(2.03) 37.01(3.15) 66.44(0.41) 63.74(0.27)

F PROPERTIES OF BASELINES FOR COMPARISON

For the empirical experiments in the paper, we compare the performance of our proposed method
with several baseline approaches, namely Single, FedRep, FedMatch, and FedTrans. The details
of these approaches and their corresponding objective functions are given in Appendix C. As a
summary, we highlight their properties in Table 13 in terms of the type of labels they use on the
server and clients, their learning strategy, whether they are simple extensions of FedAvg, and whether
the theoretical guarantee on the convergence of the algorithm has been established. For the server
label, NA means the server label is not used and Desired means datasets are annotated with classes
from the desired label space. For the client label, NA means the client label is not used, Other means
datasets annotated with classes from the other label space are used, and Desired class prior means
only the information of the prior distribution of the desired label space class labels is used. The

24

Under review as a conference paper at ICLR 2023

Table 13: The conceptual comparison of the baseline approaches with our proposed method in
terms of the type of labeled information used on server and clients, the learning strategy, whether
the approach is a simple extension of FedAvg, and whether there is a theoretical guarantee on the
convergence of the algorithm.

Server Label Client Label Strategy Simple Theory
Single Desired NA supervised Yes Yes
FedMatch Desired Yes semi-supervised No No
FedRep Desired Other supervised Yes No
FedTrans Desired Other supervised Yes No
Ours Desired Other supervised Yes Yes

second last column means whether the proposed method is a simple extension of FedAvg and the last
column means whether the theoretical convergence of the method has been established under FL. For
methods that are simple extensions of FedAvg, the communication cost is in general much cheaper
than other more complicated approaches.

25

	Introduction
	Related Work
	Methods
	Preliminaries: Classical FL
	Problem Formulation
	Proposed Method
	Theoretical Analysis

	Experiments
	Benchmark Experiments Setup
	Benchmark Experiments Results
	Tremor Severity Prediction of Parkinson's Disease

	Conclusion
	Notation Table
	Technical Details of the Neural Tangent Kernel Analysis
	NTK with Weighted MSE Loss for Regression
	NTK under Weighted MSE Loss for Classification
	Proof of Corollaries

	Experimental Details
	Model Architecture and Implementation Details on Benchmark
	Model Architecture and Implementation Details on Medical Dataset

	More Experimental Results on CIFAR100
	Effects of Local Rounds and Batch Size
	Benchmark Experiments with Weighted FedMT
	Benchmark Experiments with More Clients
	Benchmark Experiments under Non-IID Data Split
	Different Number of ``Servers"
	Sensitivity analysis of projection matrix

	More Experimental Results on Tremor Severity Prediction
	Properties of Baselines for Comparison

