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A TRAINING SCHEME
During the training process, for the Pi-SAM of each ViT version,
we divide the training into two stages. In the first stage, we freeze
the original parameters of SAM [2] and train the proposed High-
Resolution Mask Decoder to produce straight-forward prediction,
without introducing interaction. In the second stage, we keep all
other modules frozen and only train the proposed Precise Interactor
through simulating user clicks (details of which are presented in
Appendix B). The schematic diagram of the two-stage training
process is illustrated in Fig. 1.

Since the proposed Precise Interactor aims to further correct
prediction errors that are difficult for the model to handle when
performing straight-forward prediction, training the Precise In-
teractor could be meaningless when the model’s straight-forward
predictions have not converged. Thus, we propose the above two-
stage training strategy. It allows the model to acquire the ability
to make straight-forward predictions as strong as possible in the
first stage, and then in the second stage, to learn to correct the
challenging erroneous predictions.

Note that, to ensure the optional nature of the Precise Interactor,
we designed a residual connection to merge the features outputted
by the Precise Interactor into the HR-Conv Head, as shown in
Fig. 1b. This design also allows us to freeze HR-Conv Head during
the second training stage, enabling the independent training of the
Precise Interactor to enhance the features.

In the first training stage, we train the Pi-SAM on a combined
high-resolution dataset, which consists of DIS5K [4], HRSOD [6],
UHRSD [5], and ThinObject5K [3]. While in the second stage, we
train the Precise Interactor only on the DIS5K dataset, since the
other three datasets are relatively simple, resulting in few erroneous
predictions by the model and corresponding simulated interaction
clicks. Other training settings remain consistent across the two
stages, including using a learning rate of 1e-3 and a cosine-decay
learning rate schedule, as well as training for 100 epochs each.

B USER-CLICK SIMULATION
During the training and quantitative evaluation of the Precise In-
teractor, getting input points through manually clicking is clearly
impractical. Therefore, we propose the following method, which
simulates the user clicks by comparing the difference between the
straight-forward prediction and the ground truth.

Object 
Embedder

HR-Conv 
Head

Mask
Decoder

SAM
Encoder

High-Resolution Mask DecoderRGB 
Embedding

(a) Training Stage 1.

Object
Embedder

HR-Conv 
Head

Precise
Interactor

Mask
Decoder

SAM
Encoder

RGB 
Embedding

(b) Training Stage 2.

Figure 1: An overview of the proposed two-stage train-
ing strategy. The first stage is emplyed to train the High-
Resolution Mask Decoder to produce straight-forward pre-
diction. While the second stage is employed to only train the
proposed Precise Interactor.

Specifically, we first subtract the predicted mask from the ground
truth mask to obtain the areas of erroneous predictions. The erro-
neous prediction areas are then categorized into two cases: fore-
ground misclassified as background, and vice versa. Subsequently,
we decompose both types of areas into several connected regions
and represent each region as a single point located within its in-
terior. Considering users’ habits, clicks on erroneous prediction
regions tend not to appear precisely at the center of each region
nor at its extreme boundary. Therefore, in the process of obtaining
the points mentioned above, we first remove the boundary portion
within each region and then randomly sample a point from the
remaining part as the representation of the corresponding region.
In Fig. 2, we present a schematic diagram of the entire pipeline to
provide an intuitive understanding.

C INTERACTION EVALUATION
In order to effectively evaluate the interaction capability of Pi-SAM
and fairly compare it with SAM [2] and HQ-SAM [1], it is necessary
to establish a set of input images and click coordinates that are
applicable to all these three models.

Therefore, our first step is to select the images which have com-
mon erroneous predictions among the three models. Specifically,
we first get the overlapping erroneous prediction regions for all
the three models. Then, we tally the total number of incorrect
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Figure 2: A schematic diagram of the pipeline for simulating
the users’ clicks. We first get the erroneous prediction area
and then sample points from each connected region of the
erroneous prediction area as the simulated users’ clicks.

pixels across these regions. Next, we rank the images according
to the number of incorrect pixels and select the top 200 images
that have the highest number of incorrect pixels. This approach
effectively filters out images with significant erroneous predictions,
avoiding cases where the predictions are close to perfect and do
not require interaction for correction. As a result, such a subset
provides a better reflection of the corrective effect of the models
on erroneous predictions after interaction. This entire process is
shown in Algorithm 1.

Algorithm 1 Selecting images for interaction evaluation.

Input: Dataset D = {I,M}𝑁
𝑖=1, predictions of SAM, HQ-SAM

and Pi-SAM {𝑃𝑆 , 𝑃𝐻 , 𝑃𝑃 }𝑁𝑖=1
Output: Selected images I𝑜𝑢𝑡
EMPTY LIST→I𝑜𝑢𝑡
EMPTY LIST→ E ⊲ Record the number of incorrect pixels.
for I,M in D do

W𝑆 = 𝑃𝑆 xor M
W𝐻 = 𝑃𝐻 xorM
W𝑃 = 𝑃𝑃 xor M ⊲ Erroneous regions.
W𝐴 = 𝑃𝑆 & 𝑃𝐻 & 𝑃𝑃 ⊲ Overlapping erroneous region.∑W𝐴 →err ⊲ Area of overlapping erroneous region.
I → I𝑜𝑢𝑡
err → E

end for
Sort I𝑜𝑢𝑡 by E
return The first 200 images in I𝑜𝑢𝑡

Subsequently, we get the input clicks from the overlapping erro-
neous predictions of the selected images, as shown in Appendix B.
In more detail, we exclude the too small regions that contain fewer
than 8 pixels. To avoid the difficulty of representing excessively
large region with a single point, the number of points selected from
each component is determined as:

𝑁 = max

(
1,min

(
10,

√
𝑆

10

))
(1)

where 𝑆 represents the area of the connected components. The
entire process of sample points is shown in Algorithm 2.

Algorithm 2 Simulation of user clicks.
Input: Erroneous regions in images 𝐸, max number of points𝑀
Output: Selected points P for interaction model
Get connected regions 𝐸 → C
EMPTY LIST→ P
for 𝑐 in C do

if |𝑐 | > 8 then∑
𝑐 → 𝑆

max
(
1,min

(
10,

√
𝑆

10

))
→ 𝑁

repeat
𝑁 − 1 → 𝑁

Random select point from 𝑠 → 𝑝

𝑝 append to P
until 𝑁 = 0

end if
end for
Shuffle P
first𝑀 elements of P → P
return List of selected points P

D ADDITIONAL QUALITATIVE RESULTS
In this section, we provide more qualitative comparisons. In Fig. 3,
we provide qualitative results of the straight-forward predictions
from the proposed Pi-SAM, SAM and HQ-SAM in some challenging
samples with complex structures. In these samples, our Pi-SAM
showcases a remarkable capability to capture the extremely fine
details and perceive the complex topological structures, achieving
significantly superior results compared to SAM and HQ-SAM. In
Fig. 4, we provide qualitative comparisons between the results
before and after interaction. It can be observed that, our Pi-SAM
demonstrates robust error correction capability, while SAM andHQ-
SAM produce insignificant correction effects, and even exhibited
deteriorated predictions in some samples.
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Figure 3: Qualitative comparisons between the proposed Pi-SAM with SAM and HQ-SAM. In these challenging samples of
high-resolution images, our Pi-SAM showcases a remarkable capability to capture the extremely fine details and perceive the
complex topological structures, achieving high-precision segmentation results.
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Figure 4: Qualitative comparisons between the results before and after interaction. Here, green points represent foreground
clicks, while red points represent background clicks. It can be observed that both SAM and HQ-SAM produce insignificant
correction effects, and even exhibited deteriorated predictions after interaction. While our Pi-SAM can effectively correct
erroneous predictions.
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