
1 2 3 4 5
Input Nodes

0

50

100

150

Se
gm

en
ts

Input Nodes Per Segment

1 2 3 4 5
Output Nodes

0

50

100

150

Se
gm

en
ts

Output Nodes Per Segment

1 2 3 4 5
In Degree

0

50

100

150

Se
gm

en
ts

In Degree Per Segment

1 2 3 4 5
Out Degree

0

50

100

150

Se
gm

en
ts

Out Degree Per Segment

1 3 5 7 9 11 13 15
Nodes per Segment

0

20

40

60

80

100

Se
gm

en
ts

Node Histogram

0 2 4 6 8 10 12 14 16
Edges per Segment

0

20

40

60

80

100

Se
gm

en
ts

Edge Histogram

1 3 5 7 9 11 13 15
Nodes per Segment

0

5

10

15

20

Un
iq

ue
 To

po
lo

gi
es

Topologies Per Segment Size

Co
nv

De
pt

hw
ise

Lin
ea

r
Ba

tc
hN

or
m

Re
LU

Av
e.

Po
ol

Ma
x P

oo
l

Ad
d

Co
nc

at

0

100

200

300

Se
gm

en
ts

Operation Frequency

Figure 5: Histograms of segment database statistics including number of input and output
nodes/degrees, nodes/edges per segment, unique segment topologies and operation frequency.

A Supplementary Material410

A.1 Additional Database Statistics411

Figure 5 provides histograms regarding our segment database. Additionally, we enumerate the412

primitive operations that are only present in specific NAS-Benchmark families:413

• Depthwise: Inception.414

• Max Pool: NB-101, Inception and Two-Path.415

• Concat: NB-101, Inception and Two-Path.416

All other operation primitives, e.g., Conv, ReLU, BatchNorm, etc., are present across all 5 CIFAR-10417

NAS-Benchmarks.418

A.2 Predictor and Dataset Details419

We further elaborate on the baseline GNN and PSC predictors from Section 4.1. We provide420

implementation details, dataset statistics and data pre-processing techniques. We train our predictors421

for 40 epochs with a batch size of 32 and an initial learning rate of 1e−4.422

A.2.1 Baseline and PSC Predictor Setup423

We use the same baseline GNN predictor as GENNAPE [43]. First, CGs are given as input into424

an initial set of embedding layers that transform discrete node features, such as operation type,425

input/output tensor resolution, kernel size, and bias, into a continuous vector. The node embeddings426

are then fed through a series of 6 k-GNN [46] layers. Next, an overall graph embedding is computed427

by taking the mean of all node embeddings. A simple MLP with 4 hidden layers uses graph embedding428

to predict performance.429

The PSC predictor differs in that each CG sample is first split into its respective Predecessor, Segment,430

and suCcessor subgraphs before being fed into the predictor. All three subgraphs are processed as431

separate CGs by the node embedding and k-GNN layers to produce three distinct graph embeddings.432

We concatenate these graph embeddings feature-wise and feed them into an MLP to generate a433

prediction. Also, the weights of the node embedding and k-GNN layers are shared for each subgraph434

type.435

A.2.2 Dataset Statistics and PSC Preprocessing436

10

Table 7: Number of Computation Graphs
(CG), segment samples and test SRCC
folds for each family. We randomly sam-
ple 5k NB-101 architectures and only con-
sider NB-201 networks that do not have
the ‘none’ operation.

Arch. Family CGs Segments Folds
NB-101 5.0k 404.9k 42
NB-201 4096 252.8k 34
HiAML 4.6k 65.1k 10
Inception 580 222.4k 129
Two-Path 6.9k 193.1k 10

We train and evaluate the baseline GNN predictor on ev-437

ery unique CG sample. Additional steps are required438

to train the PSC predictor since each CG comprises439

many segments and can decompose into many distinct440

{P, S,C} subgraph sets.441

For the intermediate baseline, PSC 1:1 Ratio in Table 1,442

we randomly sample 1 {P, S,C} representation from443

each segmented CG in our training dataset. Hence, the444

number of samples equals the original number of training445

instances. For the full PSC predictor, we remove this446

restriction and consider all possible {P, S,C} decompo-447

sitions which drastically increases the number of samples.448

Table 7 lists the number of CGs and {P, S,C} samples449

per family. While each {P, S,C} sample for a given CG focuses on a different network segment, they450

still describe the same overall architecture and thus retain the same accuracy label. Therefore, when451

measuring test SRCC on the PSC predictor, we divide the test data into folds. Each fold contains only452

one {P, S,C} instance of a given CG. This avoids introducing additional ties in the ground-truth453

labels when calculating SRCC. The number of folds is equal to the minimum number of segments in454

any test CGs or 10, whichever is smaller. Therefore, we calculate the overall test SRCC by gauging455

SRCC across each fold and averaging the results.456

A.3 Segment Extraction with BPE457

ReLU-1

BN-16

Add-0

Pool-4

Pool-10

Conv-2

BN-3

BN-11

ReLU-6

Conv-7

BN-8

Add-9

Pool-15

BN-5

Add-14

Pool-12

BN-13

Add-17

(a) WL-kernel

ReLU-1

BN-16

Add-0

Pool-4

Pool-10

Conv-2

BN-3

BN-11

ReLU-6

Conv-7

BN-8

Add-9

Pool-15

BN-5

Add-14

Pool-12

BN-13

Add-17

(b) BPE

Figure 6: Comparison between subgraphs ex-
tracted with WL-kernel and BPE on a NAS-Bench-
201 cell. Nodes are numerically labeled by a topo-
logical ordering. Best viewed in color. Specifi-
cally, WL-kernel extracts one large subgraph con-
sisting of all highlighted nodes (greyed-out nodes
are omitted). For BPE, all nodes are extracted into
one subgraph, denoted by a unique color.

We compare our BPE subgraph extraction ap-458

proach to the Weisfeiler-Leman (WL) Kernel459

method adopted by NAS-BOWL [51] in terms460

of efficiency. NAS-BOWL applied it on the orig-461

inal, shallow cell-based network representation462

of NAS-Bench-201 with a depth of 2. We use the463

WL-kernel on the CG-level and enumerate all464

subgraphs with a maximum depth of 5. The time465

and RAM costs of using the WL-kernel scale466

poorly as we increase the number of graphs and467

nodes per graph. For example, it takes at least 6468

hours to extract and count subgraphs from each469

NAS-Benchmark family. Moreover, we could470

not use more than 1k CGs from the HiAML or471

NB-201 families (∼110 and ∼250 nodes per472

CG, respectively) without facing memory issues473

on the rack server described in Section A.9.474

By contrast, our approach brings several benefits475

over mining on large graphs with WL-kernels.476

The extraction process on sequences is efficient.477

Using BPE enables segment extraction from all478

benchmark families (over 21k CGs per Tab. 7)479

simultaneously in less than 20 minutes using480

around 10GB of RAM. Also, BPE provides seg-481

ments that are easier to mutate and alleviates lim-482

itations with WL-kernel extraction process by483

topologically ordering the nodes. Figure 6 com-484

pares WL and BPE segmentations on a part of a485

CG from the NAS-Bench-201 family. The sub-486

graph extracted from the WL method (Fig. 6(a))487

cannot cover several nodes within its context488

(grey nodes of BN-8, Pool-10, BN-11, and Add-489

14) due to a limited depth of 5 and several resid-490

11

ual connections. This exacerbates the mutation process. In contrast, segmentation with BPE (Fig. 6(b))491

spans different subgraph sizes denoted by separate colors.492

A.4 Architecture Training Hyperparameters493

We elaborate on the training recipes we use to evaluate input baseline architectures as well as those494

found by AutoGO.495

A.4.1 CIFAR-10 Families496

We use the CG representation of the initial and mutated architectures to instantiate networks and train497

them using TensorFlow. We evaluate CIFAR-10 networks by training them 3 times for 200 epochs498

with a batch size of 256. We optimize the models using RMSProp with an initial learning rate of499

1e−3 and a momentum factor of 0.9. We anneal the learning rate according to a cosine schedule.500

A.4.2 ImageNet, Segmentation and Pose Estimation501

When evaluating ResNet and VGG2 architectures, we first train on ImageNet [53] using timm [62]502

with a batch size of 1024. We use an initial learning rate of 0.1 which we anneal using a cosine503

schedule. We optimize the model using Stochastic Gradient Descent (SGD) with a momentum factor504

of 0.9 and a weight decay of 1e−4. We set a gradient clipping value of 5.0 and use label smoothing505

with ϵ = 0.1. We train ResNets for 200 epochs and VGG-16 for 100 epochs. We save the trained506

weights to fine-tune on other tasks.507

We evaluate Semantic Segmentation performance using semseg [70]. The PSPNet [71] head requires508

two inputs to implement properly. The first is the final latent tensor that originally feeds into the509

classifier head, while the second requires grafting an auxiliary residual connection 3/4ths of the way510

through the network feature extractor. Furthermore, we adjust the dilation factor and strides of all511

convolution and pooling operations in the later part of the network to limit downsampling. After512

loading the pretrained ImageNet weights, we fine-tune on Cityscapes [14] images cropped to 7132 for513

200 epochs using a batch size of 16. We use SDG with an initial learning rate of 0.01, a momentum514

factor of 0.9, and a weight decay of 1e−4.515

We implement 2D Human Pose Estimation using [73]. To convert an ImageNet network, we remove516

the classifier layers and then append a series of ‘Deconvolution-BatchNorm-ReLU’ blocks which517

gradually upsample the latent tensors from 82 to 642. We train on MPII [4] images cropped to 2562518

for 140 epochs with a batch size of 32. We optimize our networks using Adam, setting an initial519

learning rate of 1e−3 for ResNet-50 and VGG-16, and 5e−4 for ResNet-101. We reduce the learning520

rate by a factor of 10 at epochs 90 and 120. Finally, we report performance in terms of the Percentage521

of Correct Keypoints (PCK), specifically the Percentage of Correct Keypoints at a head-neck distance522

of 0.5 (PCK@h0.5) [72].523

A.4.3 Super Resolution524

We train networks on DIV2K in the 2x upsampling setting for 1000 epochs with a batch size of 16.525

We set an input patch size of 64 for EDSR and 48 for FSRCNN. We minimize the L1 loss using the526

Adam optimizer with an initial learning rate of 1e−4, which we reduce using a cosine decay schedule.527

A.4.4 Image Denoising528

We train networks on a custom in-house image-denoising dataset with 7k images. We set an input529

patch size of 128 for all networks. We train each network for 2k epochs under a batch size of 128.530

We minimize the L1 loss using the Adam optimizer with an initial learning rate of 1e−3 and a final531

learning rate of 1e−6, reduced over a polynomial schedule.532

A.5 CIFAR-10 FLOPs Restraint Ablation533

Table 8 provides a full ablation study of AutoGO on all 5 CIFAR-10 families in terms of FLOPs534

reduction constraint. We consider two settings where AutoGO can reduce FLOPs by at most -20%535

2Base model uses batch normalization

12

Table 8: Full ablation study of AutoGO on all 5 CIFAR-10 families considering choice of mutation
unit {Operation, Segment}, predictor {GNN, PSC} and FLOPs [1e6] reduction (δ) constraint {-20%,
-100%}, extending the results of Table 2. For each experiment, we report the accuracy [%] and FLOPs
[1e6] (raw and ∆ relative to the baseline). We bold and italicize the best and second best result per
family, respectively.

Baseline Operator + GNN Segment + GNN Segment + PSC
Family (δFLOPs) Acc. FLOPs Acc. FLOPs Acc. FLOPs Acc. FLOPs
NB-101 (-20%) 95.18% 11722 95.16% 9407 95.31% 10817 95.06% 9606
∆ -0.02% -19.75% +0.13% -7.72% -0.12% -18.02%
NB-101 (-100%) 93.12% 1591 95.25% 10513 95.45% 11118
∆ -2.06% -86.42% +0.07% -10.31% +0.27% -5.15%

NB-201 (-20%) 93.50% 313 93.28% 250 92.86% 250 93.32% 251
∆ -0.22% -20.00% -0.34% -20.00% -0.18% -19.82%
NB-201 (-100%) 93.37% 232 93.57% 294 93.84% 303
∆ -0.13% -25.77% +0.07% -6.08% +0.34% -3.21%

HiAML (-20%) 92.32% 246 92.00% 198 92.08% 198 92.22% 230
∆ -0.32% -19.60% -0.24% -19.76% -0.10% -6.82%
HiAML (-100%) 84.63% 28 92.62% 168 92.75% 198
∆ -7.69% -88.47% +0.30% -31.62% +0.43% -19.76%

Inception (-20%) 93.50% 494 92.97% 399 93.12% 399 93.52% 474
∆ -0.23% -19.23% -0.08% -19.28% +0.32% -3.96%
Inception (-100%) 92.97% 319 93.31% 461 93.30% 478
∆ -0.23% -35.35% +0.11% -6.72% +0.10% -3.20%

Two-Path (-20%) 87.90% 116 88.63% 106 88.31% 93 88.68% 94
∆ +0.73% -8.61% +0.41% -20.00% +0.78% -19.36%
Two-Path (-100%) 88.63% 106 89.16% 48 88.94% 91
∆ +0.73% -8.61% +1.26% -58.58% +1.04% -21.29%

relative to the baseline architecture, or can reduce them freely (-100%), while always limiting FLOPs536

increases to be at most +10%. We again note how the best architecture for each family was found537

using segment mutations.538

We observe that the segment-level mutation is a better fit for finding high-performance architectures539

under wider FLOPs constraints. For example, on HiAML, the segment-mutation cannot improve540

the accuracy of the base architecture when we impose a FLOPs reduction limit of -20%, yet it can541

increase the accuracy by up to 0.43% on average when we remove the restriction, even though542

the best architecture only reduces FLOPs by -19.76%. From this result, we infer that FLOPs543

restrictions hamper the exploration of the segment-level mutation. The only family where the -20%544

FLOPs constraint produces a better architecture than the no-constraint setting is Inception, which is545

already the second-largest family with a base model size of nearly 500 MegaFLOPs. By contrast,546

the operation-level mutations require FLOPs reduction constraints to break even with the baseline547

architectures. For example, when no FLOPs constraint is imposed, the operation-level mutation will548

find HiAML and NB-101 architectures that remove enough convolution nodes to reduce the model549

size by more than 85%. These changes drastically reduce the accuracy by over 7.5% on HiAML.550

A.6 Additional AutoGO Search Details551

We provide additional details on the AutoGO search algorithm from Section 3.2.552

A.6.1 Node Labeling553

Before segmentation with BPE, we label nodes in the CG in the form of [current operation, incoming554

operations, outgoing operations]. We encode each unique node label with a single Chinese character555

symbol, as they span a wide range of symbols compared to other languages.556

A.6.2 Selecting a Sparse BPE Vocabulary557

When generating V ′ as a vocabulary set utilized by BPE to segment CGs, we include all single-node558

segments as these represent the irreducible primitive operations that must exist within the vocabulary559

in some form and only filter out multi-node segments.560

13

A.6.3 Selecting Non-Pareto Optimal Architectures561

Table 9: Example of the minimum sum of ranks selection
algorithm with a deficit of 3 architectures.

Acc. [%] Rank FLOPs Rank Rank Sum Selected?
91.21 0 260 5 5 No
91.10 1 215 2 3 Yes
91.02 2 200 0 2 Yes
90.75 3 210 1 4 Yes
90.35 4 220 3 7 No
89.05 5 250 4 9 No

When transitioning from iteration e to562

e + 1, we select k architectures from563

the Pareto frontier O and search history564

to serve as parents. If we have suffi-565

cient architectures on the Pareto fron-566

tier, |O| ≥ k, we randomly sample from567

it. However, if |O| < k, there is an ar-568

chitecture deficit. We compensate for569

this deficit by selecting non-Pareto opti-570

mal architectures that aim to achieve our571

search objective. We select these archi-572

tectures by ranking them in terms of predicted accuracy and FLOPs, where higher and lower are better,573

respectively. We then sum these ranks and select the non-Pareto optimal architectures with the lowest574

rank sum. Table 9 provides a simple example of this process. Note how the selection mechanism575

excludes architectures that have high performance but are too large, as well as underperforming576

architectures.577

A.6.4 Segment Selection578

Pool
32,32,16

ReLU
32,32,16

BN
32,32,16

BN
32,32,16

Conv
16,16,32

BN
16,16,32

ReLU
32,32,16

Conv
16,16,32

BN
16,16,32

Add
16,16,32

Conv
16,16,32

Input resolutions:
(32,32,16) and
(32,32,16)

Expected output
resolutions:
(16,16,32)

SuCcessor

Predecessor

Replacement
Segment

Figure 7: Resolution propagation adjusts the res-
olution of mutable operations in the replacement
segment. The Height, Width, and Channel sizes
are adjusted in both ‘Conv’ operations so that the
replacement segment yields the expected output
resolution at the ‘Add’ operation.

For each CG g, we sample a set of m source579

segments si. We sort the segments Sg by FLOPs580

and then we select the m/2 segments with the581

lowest FLOPs while randomly sampling the rest.582

A.6.5 Accuracy583

Predictions and FLOPs Constraints584

Once we have a set of valid source and replace-585

ment segments, we use the PSC predictor to586

select mutations that yield the most significant587

accuracy gain. We use a FLOPs calculator (or588

a proprietary profiling tool for measuring NPU589

latency/power) to further filter these mutations590

by rejecting child architectures whose FLOPs591

deviate too far from the FLOPs of the input ar-592

chitecture.593

A.6.6 Resolution Propagation594

Adjustment can not always lead to a solution,595

meaning the replacement segment can not be596

used for mutation at this position and generate a597

valid CG. We cast this task as a search problem598

over the height, width, and channel resolution599

values on the replacement segment operations.600

The search spans mutable operations such as601

convolutions and pooling. The rest of the op-602

erations are immutable and only forward the603

resolution without changing its sizes, such as604

add, activation functions, and batch normaliza-605

tion. During the search, we limit the adjustments606

on the values of height, width, and channel sizes607

to doubling, halving, or keeping the same.608

Our solution is based on Mixed Integer Linear609

Programming (MILP). MILP is an optimiza-610

tion problem formulated with linear objectives,611

linear constraints, and integer-valued variables.612

The input to MILP is the replacement segment613

14

DAG. Each node has two variables per each height, width, and channel dimension, denoting input614

and output resolutions. Each edge is associated with a "flow" variable. We define MILP constraints615

that regulate the correct flow of resolution. Immutable nodes have input resolutions equal to output616

resolutions. The output resolution for mutable nodes is less than or equal to the input resolution.617

The model is optimized to achieve the expected resolution at the output nodes. The model is proven618

infeasible if the search fails to achieve expected output resolutions.619

We briefly illustrate the resolution propagation process. Figure 7 shows a replacement segment620

(yellow) that is being put together with the Predecessor (blue) and Successor (green) partitions of the621

network. We provide the output resolution of each operation in the form of (height, width, channel).622

Notice how the number of input and output nodes of the replacement segment matches the number623

of output and input nodes of the Predecessor and Successor, respectively. Initially, the replacement624

segment expects input dimension sizes for its ‘Conv’ and ‘BN’ operations of (32, 32, 16), which625

are the resolutions of the Predecessor’s output nodes. Also, the Succesor expects an input size of626

(16, 16, 32), which demands the replacement segment to output a feature map with this dimension at627

the ‘Add’ operation. This requires adjusting the resolution of the 2 mutable ‘Conv’ operations in the628

replacement segment (highlighted with red borders). Notice that adjusting one of them or leaving629

resolutions unadjusted will result in incorrect propagation because the ‘Add’ operations require its630

incoming tensors to have the exact same dimensions. We use MILP to solve this problem by finding631

the correct adjustment to mutable operations by halving, doubling, or maintaining resolution sizes.632

A.7 AutoGO Components Evaluation633

We evaluate the search efficiency on the benchmark families by measuring the speed of each com-634

ponent. The time to execute the search largely depends on the choice of input architecture, i.e.,635

architectures with more nodes and complex topologies like Inception form large search spaces. On636

the HiAML and NB-201 families, it takes 15 minutes on average to execute a search iteration using637

the PSC predictor and segment-level mutation. AutoGO visits over 1000 unique architectures per638

iteration and can find high-performance architectures in around an hour or less.639

Specifically, it takes around 1.5 to 2 minutes to segment a parent architecture using BPE, select source640

and replacement segments, perform resolution propagation, and rank the mutations using the predictor.641

The bulk of this time is spent between searching the database for replacement segments, confirming642

their validity and measuring the performance of each mutation, while the BPE segmentation and643

source segment selection processes take less than 1 millisecond each. When gauging execution time,644

we sequentially mutate each parent architecture per iteration, but note that this process can be sped645

up with parallelization.646

Resolution propagation with MILP takes, on average 0.11 seconds to find a solution or determine647

that the problem is infeasible. We compare it to an exhaustive search approach by enumerating all648

candidate solutions. It takes, on average, 0.4 seconds to find a solution and more than 4 seconds for649

infeasible solutions. Our subgraph extraction process for generating the segment vocabulary is very650

efficient as the BPE operates on a sequence representation of the CGs. It takes less than 20 minutes651

to sort all CG topologically, and extract subsequences with BPE.652

To provide specific examples of the search time, consider the ResNet-50 Arch 2 and EDSR Arch653

2 architectures from Tables 3 and 4, respectively. Mutating the initial ResNet-50 and EDSR CGs654

takes 1.8 and 1.5 minutes, respectively, on our hardware. It takes longer to mutate ResNet-50 simply655

because the CG contains more nodes (108) than EDSR, whose CG only has 67 nodes. Moreover,656

since the base EDSR architecture only uses Convolutions and ReLU operations, we exclude segments657

that contain batchnorm and pooling operations, which reduces the number of replacement segments658

to consider during mutation.659

The first iteration of AutoGO mutates the initial architecture while all subsequent iterations mutate 10660

parent architectures. Given that ResNet-50 Arch 2 was found in iteration 3, it took AutoGO around661

1.8min + 2iter ∗ 10arch/iter ∗ 1.8min/arch = 37.8min

to discover that architecture. Likewise, EDSR Arch 2 was found in iteration 5, which took662

1.5min + 4iter ∗ 10arch/iter ∗ 1.5min/arch = 61.5min

15

3
Converting

middle
blocks

Conv

Conv

ReLU

Add

Conv

ReLU

Conv

ReLU

Conv

EDSR Block

EDSR Block

ReLU

Add

Conv

ConvED
SR

 B
lo

ck

3
Converting

output
blocks

ReLU

Conv

Add

Conv

ReLU

Conv

ReLU

Conv

ReLU

Conv

ReLU

Conv

EDSR Block

Network Output

ReLU

Add

Conv

ConvED
SR

 B
lo

ck

2
Converting

input
 blocks

Conv

ReLU

ReLUConv

Conv

Conv

ReLU

Conv

Add

Network Input

EDSR Block

ReLU

Add

Conv

ConvED
SR

 B
lo

ck

Figure 8: Example mutations performed by AutoGO to create an EDSR mutant by swapping out 8
EDSR blocks. Specifically, AutoGO will swap out multiple, simple ‘Conv-ReLU-Conv’ residual
blocks for larger blocks that have operations on both branches.

to find. Finally, we note that these calculations assume sequential processing of parent architectures.663

However, it is possible to use multi-processing techniques to mutate multiple parent architectures664

simultaneously to further speedup the process.665

A.8 EDSR Mutation Example666

Figure 8 illustrates three distinct mutations that take place to produce an EDSR AutoGO architecture.667

Initially, the EDSR backbone contains 16 ‘Conv-ReLU-Conv’ residual blocks. To create the mutant668

network, AutoGO removed 8 of these blocks, denoting half the backbone structure, and replaced669

them with three double-branch structures that also consist of just convolutions and ReLU activations.670

A.9 Hardware and Software Setup671

We run our experiments on rack servers using Intel Xeon Gold 6140 CPUs. Each server is equipped672

with 8 NVIDIA V100 32GB GPUs and 756GB RAM. We execute our search and experiments on673

Python 3 using PyTorch==1.8.1 and TensorFlow==1.15.0. We implement our predictors using674

PyTorch-Geometric==1.7.1. We use SentencePiece [33] to perform BPE. Finally, we implement675

our MILP using a Coin-CBC solver [18] and pyomo==6.4.0 [23].676

References677

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu678

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for679

large-scale machine learning. In OSDI, number 2016, pages 265–283. Savannah, GA, USA,680

2016.681

[2] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:682

Dataset and study. In The IEEE Conference on Computer Vision and Pattern Recognition683

(CVPR) Workshops, July 2017.684

[3] Kiyoharu Aizawa, Azuma Fujimoto, Atsushi Otsubo, Toru Ogawa, Yusuke Matsui, Koki Tsub-685

ota, and Hikaru Ikuta. Building a manga dataset “manga109” with annotations for multimedia686

applications. IEEE MultiMedia, 27(2):8–18, 2020.687

[4] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d human pose688

estimation: New benchmark and state of the art analysis. In IEEE Conference on Computer689

Vision and Pattern Recognition (CVPR), June 2014.690

[5] Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network exchange. https://github.691

com/onnx/onnx, 2019.692

[6] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng, Pieter-Jan Kindermans,693

and Quoc V Le. Can weight sharing outperform random architecture search? an investigation694

with tunas. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern695

Recognition, pages 14323–14332, 2020.696

16

[7] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smaïl Niar, Martin Wistuba,697

and Naigang Wang. A comprehensive survey on hardware-aware neural architecture search.698

CoRR, abs/2101.09336, 2021.699

[8] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-Morel. Low-700

complexity single-image super-resolution based on nonnegative neighbor embedding. 2012.701

[9] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once for all: Train one702

network and specialize it for efficient deployment. In International Conference on Learning703

Representations, 2020.704

[10] Daoyuan Chen, Yaliang Li, Minghui Qiu, Zhen Wang, Bofang Li, Bolin Ding, Hongbo Deng, Jun705

Huang, Wei Lin, and Jingren Zhou. Adabert: Task-adaptive bert compression with differentiable706

neural architecture search. arXiv preprint arXiv:2001.04246, 2020.707

[11] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search:708

Bridging the depth gap between search and evaluation. In Proceedings of the IEEE International709

Conference on Computer Vision, pages 1294–1303, 2019.710

[12] Krishna Teja Chitty-Venkata, Murali Emani, Venkatram Vishwanath, and Arun K Somani.711

Neural architecture search for transformers: A survey. IEEE Access, 2022.712

[13] Yuanzheng Ci, Chen Lin, Ming Sun, Boyu Chen, Hongwen Zhang, and Wanli Ouyang. Evolving713

search space for neural architecture search. 2021 IEEE/CVF International Conference on714

Computer Vision (ICCV), pages 6639–6649, 2021.715

[14] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo716

Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic717

urban scene understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern718

Recognition (CVPR), 2016.719

[15] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei, Kan Chen,720

Yuandong Tian, Matthew Yu, Péter Vajda, and Joseph E. Gonzalez. Fbnetv3: Joint architecture-721

recipe search using predictor pretraining. 2021 IEEE/CVF Conference on Computer Vision and722

Pattern Recognition (CVPR), pages 16271–16280, 2021.723

[16] Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution convolu-724

tional neural network. In European conference on computer vision, pages 391–407. Springer,725

2016.726

[17] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural727

architecture search. In International Conference on Learning Representations, 2020.728

[18] John Forrest and Robin Lougee. CBC User Guide, pages 257–277. 09 2005.729

[19] Philippe Fournier-Viger, Chao Cheng, Chun-Wei Lin, Unil Yun, and Rage Uday Kiran. Tkg:730

Efficient mining of top-k frequent subgraphs. In BDA, 2019.731

[20] Philip Gage. A new algorithm for data compression. C Users Journal, 12(2):23–38, 1994.732

[21] Ehsan Goodarzi, Mina Ziaei, and Edward Zia Hosseinipour. Introduction to optimization733

analysis in hydrosystem engineering. Springer, 2014.734

[22] Fred X. Han, Keith G. Mills, Fabian Chudak, Parsa Riahi, Mohammad Salameh, Jialin Zhang,735

Wei Lu, Shangling Jui, and Di Niu. A general-purpose transferable predictor for neural736

architecture search. In Proceedings of the 2023 SIAM International Conference on Data Mining737

(SDM). SIAM, 2023.738

[23] William E. Hart, Carl D. Laird, Jean-Paul Watson, and David L. Woodruff. Pyomo — optimiza-739

tion modeling in python. Springer Optimization and Its Applications, 2012.740

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image741

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,742

pages 770–778, 2016.743

17

[25] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun744

Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In745

Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1314–1324,746

2019.747

[26] Jun Huan, Wei Wang, Jan Prins, and Jiong Yang. Spin: mining maximal frequent subgraphs748

from graph databases. Proceedings of the tenth ACM SIGKDD international conference on749

Knowledge discovery and data mining, 2004.750

[27] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from751

transformed self-exemplars. In Proceedings of the IEEE conference on computer vision and752

pattern recognition, pages 5197–5206, 2015.753

[28] Andrey Ignatov, Radu Timofte, et al. Pirm challenge on perceptual image enhancement on754

smartphones: report. In European Conference on Computer Vision (ECCV) Workshops, January755

2019.756

[29] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken.757

Taso: optimizing deep learning computation with automatic generation of graph substitutions.758

In Proceedings of the 27th ACM Symposium on Operating Systems Principles, pages 47–62,759

2019.760

[30] Chuntao Jiang, Frans Coenen, and Michele A. A. Zito. A survey of frequent subgraph mining761

algorithms. The Knowledge Engineering Review, 28:75 – 105, 2012.762

[31] Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova, Mikhail Salnikov, Maxim Fedorov,763

Alexander Filippov, and Evgeny Burnaev. Nas-bench-nlp: neural architecture search benchmark764

for natural language processing. IEEE Access, 10:45736–45747, 2022.765

[32] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.766

Technical Report, 2009.767

[33] Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword768

tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference769

on Empirical Methods in Natural Language Processing: System Demonstrations, pages 66–71,770

Brussels, Belgium, November 2018. Association for Computational Linguistics.771

[34] Zhuo Li, Hengyi Li, and Lin Meng. Model compression for deep neural networks: A survey.772

Computers, 12(3):60, 2023.773

[35] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep774

residual networks for single image super-resolution. In Proceedings of the IEEE conference on775

computer vision and pattern recognition workshops, pages 136–144, 2017.776

[36] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In777

International Conference on Learning Representations (ICLR), 2019.778

[37] Shun Lu, Yu Hu, Peihao Wang, Yan Han, Jianchao Tan, Jixiang Li, Sen Yang, and Ji Liu. Pinat:779

A permutation invariance augmented transformer for nas predictor. In Proceedings of the AAAI780

Conference on Artificial Intelligence (AAAI), 2023.781

[38] Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Semi-supervised782

neural architecture search. Advances in Neural Information Processing Systems, 33:10547–783

10557, 2020.784

[39] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human seg-785

mented natural images and its application to evaluating segmentation algorithms and measuring786

ecological statistics. In Proceedings Eighth IEEE International Conference on Computer Vision.787

ICCV 2001, volume 2, pages 416–423. IEEE, 2001.788

[40] Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto, Toru Ogawa, Toshihiko Yamasaki,789

and Kiyoharu Aizawa. Sketch-based manga retrieval using manga109 dataset. Multimedia790

Tools and Applications, 76(20):21811–21838, 2017.791

18

[41] Gaurav Menghani. Efficient deep learning: A survey on making deep learning models smaller,792

faster, and better. CoRR, abs/2106.08962, 2021.793

[42] Keith G Mills, Fred X Han, Mohammad Salameh, Seyed Saeed Changiz Rezaei, Linglong794

Kong, Wei Lu, Shuo Lian, Shangling Jui, and Di Niu. L2nas: Learning to optimize neural795

architectures via continuous-action reinforcement learning. In Proceedings of the 30th ACM796

International Conference on Information & Knowledge Management, pages 1284–1293, 2021.797

[43] Keith G. Mills, Fred X. Han, Jialin Zhang, Fabian Chudak, Ali Safari Mamaghani, Mohammad798

Salameh, Wei Lu, Shangling Jui, and Di Niu. Gennape: Towards generalized neural architecture799

performance estimators. In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.800

[44] Keith G. Mills, Fred X. Han, Jialin Zhang, Seyed Saeed Changiz Rezaei, Fabián A. Chudak,801

Wei Lu, Shuo Lian, Shangling Jui, and Di Niu. Profiling neural blocks and design spaces for802

mobile neural architecture search. Proceedings of the 30th ACM International Conference on803

Information & Knowledge Management, 2021.804

[45] Keith G. Mills, Di Niu, Mohammad Salameh, Weichen Qiu, Fred X. Han, Puyuan Liu, Jialin805

Zhang, Wei Lu, and Shangling Jui. Aio-p: Expanding neural performance predictors beyond806

image classification. In Proceedings of the AAAI Conference on Artificial Intelligence, 2023.807

[46] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,808

Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural809

networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages810

4602–4609, 2019.811

[47] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,812

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas813

Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,814

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-815

performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-816

Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,817

pages 8024–8035. Curran Associates, Inc., 2019.818

[48] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image819

classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,820

volume 33, pages 4780–4789, 2019.821

[49] Seyed Saeed Changiz Rezaei, Fred X Han, Di Niu, Mohammad Salameh, Keith Mills, Shuo Lian,822

Wei Lu, and Shangling Jui. Generative adversarial neural architecture search. In Proceedings of823

the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pages 2227–824

2234. International Joint Conferences on Artificial Intelligence Organization, 8 2021. Main825

Track.826

[50] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks827

for biomedical image segmentation. In Medical Image Computing and Computer-Assisted828

Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9,829

2015, Proceedings, Part III 18, pages 234–241. Springer, 2015.830

[51] Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael A. Osborne. Interpretable neural831

architecture search via bayesian optimisation with weisfeiler-lehman kernels. In ICLR, 2021.832

[52] Robin Ru, Pedro Esperança, and Fabio Maria Carlucci. Neural architecture generator optimiza-833

tion. In Advances in Neural Information Processing Systems, volume 33, pages 12057–12069,834

2020.835

[53] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng836

Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual837

recognition challenge. International journal of computer vision, 115(3):211–252, 2015.838

[54] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.839

Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference840

on computer vision and pattern recognition, pages 4510–4520, 2018.841

19

[55] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal842

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.843

[56] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words844

with subword units. ArXiv, abs/1508.07909, 2015.845

[57] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale846

image recognition. arXiv preprint arXiv:1409.1556, 2014.847

[58] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural848

networks. In International conference on machine learning, pages 6105–6114. PMLR, 2019.849

[59] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu,850

Matthew Yu, Tao Xu, Kan Chen, Péter Vajda, and Joseph Gonzalez. Fbnetv2: Differentiable851

neural architecture search for spatial and channel dimensions. 2020 IEEE/CVF Conference on852

Computer Vision and Pattern Recognition (CVPR), pages 12962–12971, 2020.853

[60] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, Liyan Zheng, Yuanzhi Li,854

Kaiyuan Rong, Yuanyong Chen, and Zhihao Jia. Pet: Optimizing tensor programs with partially855

equivalent transformations and automated corrections. In OSDI, pages 37–54, 2021.856

[61] Colin White, Arber Zela, Robin Ru, Yang Liu, and Frank Hutter. How powerful are performance857

predictors in neural architecture search? Advances in Neural Information Processing Systems,858

34:28454–28469, 2021.859

[62] Ross Wightman. Pytorch image models. https://github.com/rwightman/860

pytorch-image-models, 2019.861

[63] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.862

Pc-darts: Partial channel connections for memory-efficient architecture search. In International863

Conference on Learning Representations, 2020.864

[64] Xifeng Yan and Jiawei Han. gspan: graph-based substructure pattern mining. 2002 IEEE865

International Conference on Data Mining, 2002. Proceedings., pages 721–724, 2002.866

[65] Xifeng Yan and Jiawei Han. Closegraph: mining closed frequent graph patterns. In Knowledge867

Discovery and Data Mining, 2003.868

[66] Yichen Yang, Phitchaya Phothilimthana, Yisu Wang, Max Willsey, Sudip Roy, and Jacques869

Pienaar. Equality saturation for tensor graph superoptimization. Proceedings of Machine870

Learning and Systems, 3:255–268, 2021.871

[67] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter.872

Nas-bench-101: Towards reproducible neural architecture search. In International Conference873

on Machine Learning, pages 7105–7114, 2019.874

[68] Arber Zela, Julien Niklas Siems, Lucas Zimmer, Jovita Lukasik, Margret Keuper, and Frank875

Hutter. Surrogate NAS benchmarks: Going beyond the limited search spaces of tabular NAS876

benchmarks. In International Conference on Learning Representations, 2022.877

[69] Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-878

representations. In International conference on curves and surfaces, pages 711–730. Springer,879

2012.880

[70] Hengshuang Zhao. semseg. https://github.com/hszhao/semseg, 2019.881

[71] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene882

parsing network. In Proceedings of the IEEE conference on computer vision and pattern883

recognition, pages 2881–2890, 2017.884

[72] Ce Zheng, Wenhan Wu, Chen Chen, Taojiannan Yang, Sijie Zhu, Ju Shen, Nasser Kehtarnavaz,885

and Mubarak Shah. Deep learning-based human pose estimation: A survey, 2020.886

20

[73] Xingyi Zhou, Qixing Huang, Xiao Sun, Xiangyang Xue, and Yichen Wei. Towards 3d human887

pose estimation in the wild: A weakly-supervised approach. In The IEEE International888

Conference on Computer Vision (ICCV), Oct 2017.889

[74] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In890

International Conference on Learning Representations, 2017.891

21

