
1 2 3 4 5
Input Nodes

0

50

100

150

Se
gm

en
ts

Input Nodes Per Segment

1 2 3 4 5
Output Nodes

0

50

100

150

Se
gm

en
ts

Output Nodes Per Segment

1 2 3 4 5
In Degree

0

50

100

150

Se
gm

en
ts

In Degree Per Segment

1 2 3 4 5
Out Degree

0

50

100

150

Se
gm

en
ts

Out Degree Per Segment

1 3 5 7 9 11 13 15
Nodes per Segment

0

20

40

60

80

100

Se
gm

en
ts

Node Histogram

0 2 4 6 8 10 12 14 16
Edges per Segment

0

20

40

60

80

100

Se
gm

en
ts

Edge Histogram

1 3 5 7 9 11 13 15
Nodes per Segment

0

5

10

15

20

Un
iq

ue
 To

po
lo

gi
es

Topologies Per Segment Size

Co
nv

De
pt

hw
ise

Lin
ea

r
Ba

tc
hN

or
m

Re
LU

Av
e. 

Po
ol

Ma
x P

oo
l

Ad
d

Co
nc

at

0

100

200

300

Se
gm

en
ts

Operation Frequency

Figure 5: Histograms of segment database statistics including number of input and output
nodes/degrees, nodes/edges per segment, unique segment topologies and operation frequency.

A Supplementary Material410

A.1 Additional Database Statistics411

Figure 5 provides histograms regarding our segment database. Additionally, we enumerate the412

primitive operations that are only present in specific NAS-Benchmark families:413

• Depthwise: Inception.414

• Max Pool: NB-101, Inception and Two-Path.415

• Concat: NB-101, Inception and Two-Path.416

All other operation primitives, e.g., Conv, ReLU, BatchNorm, etc., are present across all 5 CIFAR-10417

NAS-Benchmarks.418

A.2 Predictor and Dataset Details419

We further elaborate on the baseline GNN and PSC predictors from Section 4.1. We provide420

implementation details, dataset statistics and data pre-processing techniques. We train our predictors421

for 40 epochs with a batch size of 32 and an initial learning rate of 1e−4.422

A.2.1 Baseline and PSC Predictor Setup423

We use the same baseline GNN predictor as GENNAPE [43]. First, CGs are given as input into424

an initial set of embedding layers that transform discrete node features, such as operation type,425

input/output tensor resolution, kernel size, and bias, into a continuous vector. The node embeddings426

are then fed through a series of 6 k-GNN [46] layers. Next, an overall graph embedding is computed427

by taking the mean of all node embeddings. A simple MLP with 4 hidden layers uses graph embedding428

to predict performance.429

The PSC predictor differs in that each CG sample is first split into its respective Predecessor, Segment,430

and suCcessor subgraphs before being fed into the predictor. All three subgraphs are processed as431

separate CGs by the node embedding and k-GNN layers to produce three distinct graph embeddings.432

We concatenate these graph embeddings feature-wise and feed them into an MLP to generate a433

prediction. Also, the weights of the node embedding and k-GNN layers are shared for each subgraph434

type.435

A.2.2 Dataset Statistics and PSC Preprocessing436

10



Table 7: Number of Computation Graphs
(CG), segment samples and test SRCC
folds for each family. We randomly sam-
ple 5k NB-101 architectures and only con-
sider NB-201 networks that do not have
the ‘none’ operation.

Arch. Family CGs Segments Folds
NB-101 5.0k 404.9k 42
NB-201 4096 252.8k 34
HiAML 4.6k 65.1k 10
Inception 580 222.4k 129
Two-Path 6.9k 193.1k 10

We train and evaluate the baseline GNN predictor on ev-437

ery unique CG sample. Additional steps are required438

to train the PSC predictor since each CG comprises439

many segments and can decompose into many distinct440

{P, S,C} subgraph sets.441

For the intermediate baseline, PSC 1:1 Ratio in Table 1,442

we randomly sample 1 {P, S,C} representation from443

each segmented CG in our training dataset. Hence, the444

number of samples equals the original number of training445

instances. For the full PSC predictor, we remove this446

restriction and consider all possible {P, S,C} decompo-447

sitions which drastically increases the number of samples.448

Table 7 lists the number of CGs and {P, S,C} samples449

per family. While each {P, S,C} sample for a given CG focuses on a different network segment, they450

still describe the same overall architecture and thus retain the same accuracy label. Therefore, when451

measuring test SRCC on the PSC predictor, we divide the test data into folds. Each fold contains only452

one {P, S,C} instance of a given CG. This avoids introducing additional ties in the ground-truth453

labels when calculating SRCC. The number of folds is equal to the minimum number of segments in454

any test CGs or 10, whichever is smaller. Therefore, we calculate the overall test SRCC by gauging455

SRCC across each fold and averaging the results.456

A.3 Segment Extraction with BPE457

ReLU-1

BN-16

Add-0

Pool-4

Pool-10

Conv-2

BN-3

BN-11

ReLU-6

Conv-7

BN-8

Add-9

Pool-15

BN-5

Add-14

Pool-12

BN-13

Add-17

(a) WL-kernel

ReLU-1

BN-16

Add-0

Pool-4

Pool-10

Conv-2

BN-3

BN-11

ReLU-6

Conv-7

BN-8

Add-9

Pool-15

BN-5

Add-14

Pool-12

BN-13

Add-17

(b) BPE

Figure 6: Comparison between subgraphs ex-
tracted with WL-kernel and BPE on a NAS-Bench-
201 cell. Nodes are numerically labeled by a topo-
logical ordering. Best viewed in color. Specifi-
cally, WL-kernel extracts one large subgraph con-
sisting of all highlighted nodes (greyed-out nodes
are omitted). For BPE, all nodes are extracted into
one subgraph, denoted by a unique color.

We compare our BPE subgraph extraction ap-458

proach to the Weisfeiler-Leman (WL) Kernel459

method adopted by NAS-BOWL [51] in terms460

of efficiency. NAS-BOWL applied it on the orig-461

inal, shallow cell-based network representation462

of NAS-Bench-201 with a depth of 2. We use the463

WL-kernel on the CG-level and enumerate all464

subgraphs with a maximum depth of 5. The time465

and RAM costs of using the WL-kernel scale466

poorly as we increase the number of graphs and467

nodes per graph. For example, it takes at least 6468

hours to extract and count subgraphs from each469

NAS-Benchmark family. Moreover, we could470

not use more than 1k CGs from the HiAML or471

NB-201 families (∼110 and ∼250 nodes per472

CG, respectively) without facing memory issues473

on the rack server described in Section A.9.474

By contrast, our approach brings several benefits475

over mining on large graphs with WL-kernels.476

The extraction process on sequences is efficient.477

Using BPE enables segment extraction from all478

benchmark families (over 21k CGs per Tab. 7)479

simultaneously in less than 20 minutes using480

around 10GB of RAM. Also, BPE provides seg-481

ments that are easier to mutate and alleviates lim-482

itations with WL-kernel extraction process by483

topologically ordering the nodes. Figure 6 com-484

pares WL and BPE segmentations on a part of a485

CG from the NAS-Bench-201 family. The sub-486

graph extracted from the WL method (Fig. 6(a))487

cannot cover several nodes within its context488

(grey nodes of BN-8, Pool-10, BN-11, and Add-489

14) due to a limited depth of 5 and several resid-490
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ual connections. This exacerbates the mutation process. In contrast, segmentation with BPE (Fig. 6(b))491

spans different subgraph sizes denoted by separate colors.492

A.4 Architecture Training Hyperparameters493

We elaborate on the training recipes we use to evaluate input baseline architectures as well as those494

found by AutoGO.495

A.4.1 CIFAR-10 Families496

We use the CG representation of the initial and mutated architectures to instantiate networks and train497

them using TensorFlow. We evaluate CIFAR-10 networks by training them 3 times for 200 epochs498

with a batch size of 256. We optimize the models using RMSProp with an initial learning rate of499

1e−3 and a momentum factor of 0.9. We anneal the learning rate according to a cosine schedule.500

A.4.2 ImageNet, Segmentation and Pose Estimation501

When evaluating ResNet and VGG2 architectures, we first train on ImageNet [53] using timm [62]502

with a batch size of 1024. We use an initial learning rate of 0.1 which we anneal using a cosine503

schedule. We optimize the model using Stochastic Gradient Descent (SGD) with a momentum factor504

of 0.9 and a weight decay of 1e−4. We set a gradient clipping value of 5.0 and use label smoothing505

with ϵ = 0.1. We train ResNets for 200 epochs and VGG-16 for 100 epochs. We save the trained506

weights to fine-tune on other tasks.507

We evaluate Semantic Segmentation performance using semseg [70]. The PSPNet [71] head requires508

two inputs to implement properly. The first is the final latent tensor that originally feeds into the509

classifier head, while the second requires grafting an auxiliary residual connection 3/4ths of the way510

through the network feature extractor. Furthermore, we adjust the dilation factor and strides of all511

convolution and pooling operations in the later part of the network to limit downsampling. After512

loading the pretrained ImageNet weights, we fine-tune on Cityscapes [14] images cropped to 7132 for513

200 epochs using a batch size of 16. We use SDG with an initial learning rate of 0.01, a momentum514

factor of 0.9, and a weight decay of 1e−4.515

We implement 2D Human Pose Estimation using [73]. To convert an ImageNet network, we remove516

the classifier layers and then append a series of ‘Deconvolution-BatchNorm-ReLU’ blocks which517

gradually upsample the latent tensors from 82 to 642. We train on MPII [4] images cropped to 2562518

for 140 epochs with a batch size of 32. We optimize our networks using Adam, setting an initial519

learning rate of 1e−3 for ResNet-50 and VGG-16, and 5e−4 for ResNet-101. We reduce the learning520

rate by a factor of 10 at epochs 90 and 120. Finally, we report performance in terms of the Percentage521

of Correct Keypoints (PCK), specifically the Percentage of Correct Keypoints at a head-neck distance522

of 0.5 (PCK@h0.5) [72].523

A.4.3 Super Resolution524

We train networks on DIV2K in the 2x upsampling setting for 1000 epochs with a batch size of 16.525

We set an input patch size of 64 for EDSR and 48 for FSRCNN. We minimize the L1 loss using the526

Adam optimizer with an initial learning rate of 1e−4, which we reduce using a cosine decay schedule.527

A.4.4 Image Denoising528

We train networks on a custom in-house image-denoising dataset with 7k images. We set an input529

patch size of 128 for all networks. We train each network for 2k epochs under a batch size of 128.530

We minimize the L1 loss using the Adam optimizer with an initial learning rate of 1e−3 and a final531

learning rate of 1e−6, reduced over a polynomial schedule.532

A.5 CIFAR-10 FLOPs Restraint Ablation533

Table 8 provides a full ablation study of AutoGO on all 5 CIFAR-10 families in terms of FLOPs534

reduction constraint. We consider two settings where AutoGO can reduce FLOPs by at most -20%535

2Base model uses batch normalization
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Table 8: Full ablation study of AutoGO on all 5 CIFAR-10 families considering choice of mutation
unit {Operation, Segment}, predictor {GNN, PSC} and FLOPs [1e6] reduction (δ) constraint {-20%,
-100%}, extending the results of Table 2. For each experiment, we report the accuracy [%] and FLOPs
[1e6] (raw and ∆ relative to the baseline). We bold and italicize the best and second best result per
family, respectively.

Baseline Operator + GNN Segment + GNN Segment + PSC
Family (δFLOPs) Acc. FLOPs Acc. FLOPs Acc. FLOPs Acc. FLOPs
NB-101 (-20%) 95.18% 11722 95.16% 9407 95.31% 10817 95.06% 9606
∆ -0.02% -19.75% +0.13% -7.72% -0.12% -18.02%
NB-101 (-100%) 93.12% 1591 95.25% 10513 95.45% 11118
∆ -2.06% -86.42% +0.07% -10.31% +0.27% -5.15%

NB-201 (-20%) 93.50% 313 93.28% 250 92.86% 250 93.32% 251
∆ -0.22% -20.00% -0.34% -20.00% -0.18% -19.82%
NB-201 (-100%) 93.37% 232 93.57% 294 93.84% 303
∆ -0.13% -25.77% +0.07% -6.08% +0.34% -3.21%

HiAML (-20%) 92.32% 246 92.00% 198 92.08% 198 92.22% 230
∆ -0.32% -19.60% -0.24% -19.76% -0.10% -6.82%
HiAML (-100%) 84.63% 28 92.62% 168 92.75% 198
∆ -7.69% -88.47% +0.30% -31.62% +0.43% -19.76%

Inception (-20%) 93.50% 494 92.97% 399 93.12% 399 93.52% 474
∆ -0.23% -19.23% -0.08% -19.28% +0.32% -3.96%
Inception (-100%) 92.97% 319 93.31% 461 93.30% 478
∆ -0.23% -35.35% +0.11% -6.72% +0.10% -3.20%

Two-Path (-20%) 87.90% 116 88.63% 106 88.31% 93 88.68% 94
∆ +0.73% -8.61% +0.41% -20.00% +0.78% -19.36%
Two-Path (-100%) 88.63% 106 89.16% 48 88.94% 91
∆ +0.73% -8.61% +1.26% -58.58% +1.04% -21.29%

relative to the baseline architecture, or can reduce them freely (-100%), while always limiting FLOPs536

increases to be at most +10%. We again note how the best architecture for each family was found537

using segment mutations.538

We observe that the segment-level mutation is a better fit for finding high-performance architectures539

under wider FLOPs constraints. For example, on HiAML, the segment-mutation cannot improve540

the accuracy of the base architecture when we impose a FLOPs reduction limit of -20%, yet it can541

increase the accuracy by up to 0.43% on average when we remove the restriction, even though542

the best architecture only reduces FLOPs by -19.76%. From this result, we infer that FLOPs543

restrictions hamper the exploration of the segment-level mutation. The only family where the -20%544

FLOPs constraint produces a better architecture than the no-constraint setting is Inception, which is545

already the second-largest family with a base model size of nearly 500 MegaFLOPs. By contrast,546

the operation-level mutations require FLOPs reduction constraints to break even with the baseline547

architectures. For example, when no FLOPs constraint is imposed, the operation-level mutation will548

find HiAML and NB-101 architectures that remove enough convolution nodes to reduce the model549

size by more than 85%. These changes drastically reduce the accuracy by over 7.5% on HiAML.550

A.6 Additional AutoGO Search Details551

We provide additional details on the AutoGO search algorithm from Section 3.2.552

A.6.1 Node Labeling553

Before segmentation with BPE, we label nodes in the CG in the form of [current operation, incoming554

operations, outgoing operations]. We encode each unique node label with a single Chinese character555

symbol, as they span a wide range of symbols compared to other languages.556

A.6.2 Selecting a Sparse BPE Vocabulary557

When generating V ′ as a vocabulary set utilized by BPE to segment CGs, we include all single-node558

segments as these represent the irreducible primitive operations that must exist within the vocabulary559

in some form and only filter out multi-node segments.560
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A.6.3 Selecting Non-Pareto Optimal Architectures561

Table 9: Example of the minimum sum of ranks selection
algorithm with a deficit of 3 architectures.

Acc. [%] Rank FLOPs Rank Rank Sum Selected?
91.21 0 260 5 5 No
91.10 1 215 2 3 Yes
91.02 2 200 0 2 Yes
90.75 3 210 1 4 Yes
90.35 4 220 3 7 No
89.05 5 250 4 9 No

When transitioning from iteration e to562

e + 1, we select k architectures from563

the Pareto frontier O and search history564

to serve as parents. If we have suffi-565

cient architectures on the Pareto fron-566

tier, |O| ≥ k, we randomly sample from567

it. However, if |O| < k, there is an ar-568

chitecture deficit. We compensate for569

this deficit by selecting non-Pareto opti-570

mal architectures that aim to achieve our571

search objective. We select these archi-572

tectures by ranking them in terms of predicted accuracy and FLOPs, where higher and lower are better,573

respectively. We then sum these ranks and select the non-Pareto optimal architectures with the lowest574

rank sum. Table 9 provides a simple example of this process. Note how the selection mechanism575

excludes architectures that have high performance but are too large, as well as underperforming576

architectures.577

A.6.4 Segment Selection578
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Figure 7: Resolution propagation adjusts the res-
olution of mutable operations in the replacement
segment. The Height, Width, and Channel sizes
are adjusted in both ‘Conv’ operations so that the
replacement segment yields the expected output
resolution at the ‘Add’ operation.

For each CG g, we sample a set of m source579

segments si. We sort the segments Sg by FLOPs580

and then we select the m/2 segments with the581

lowest FLOPs while randomly sampling the rest.582

A.6.5 Accuracy583

Predictions and FLOPs Constraints584

Once we have a set of valid source and replace-585

ment segments, we use the PSC predictor to586

select mutations that yield the most significant587

accuracy gain. We use a FLOPs calculator (or588

a proprietary profiling tool for measuring NPU589

latency/power) to further filter these mutations590

by rejecting child architectures whose FLOPs591

deviate too far from the FLOPs of the input ar-592

chitecture.593

A.6.6 Resolution Propagation594

Adjustment can not always lead to a solution,595

meaning the replacement segment can not be596

used for mutation at this position and generate a597

valid CG. We cast this task as a search problem598

over the height, width, and channel resolution599

values on the replacement segment operations.600

The search spans mutable operations such as601

convolutions and pooling. The rest of the op-602

erations are immutable and only forward the603

resolution without changing its sizes, such as604

add, activation functions, and batch normaliza-605

tion. During the search, we limit the adjustments606

on the values of height, width, and channel sizes607

to doubling, halving, or keeping the same.608

Our solution is based on Mixed Integer Linear609

Programming (MILP). MILP is an optimiza-610

tion problem formulated with linear objectives,611

linear constraints, and integer-valued variables.612

The input to MILP is the replacement segment613
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DAG. Each node has two variables per each height, width, and channel dimension, denoting input614

and output resolutions. Each edge is associated with a "flow" variable. We define MILP constraints615

that regulate the correct flow of resolution. Immutable nodes have input resolutions equal to output616

resolutions. The output resolution for mutable nodes is less than or equal to the input resolution.617

The model is optimized to achieve the expected resolution at the output nodes. The model is proven618

infeasible if the search fails to achieve expected output resolutions.619

We briefly illustrate the resolution propagation process. Figure 7 shows a replacement segment620

(yellow) that is being put together with the Predecessor (blue) and Successor (green) partitions of the621

network. We provide the output resolution of each operation in the form of (height, width, channel).622

Notice how the number of input and output nodes of the replacement segment matches the number623

of output and input nodes of the Predecessor and Successor, respectively. Initially, the replacement624

segment expects input dimension sizes for its ‘Conv’ and ‘BN’ operations of (32, 32, 16), which625

are the resolutions of the Predecessor’s output nodes. Also, the Succesor expects an input size of626

(16, 16, 32), which demands the replacement segment to output a feature map with this dimension at627

the ‘Add’ operation. This requires adjusting the resolution of the 2 mutable ‘Conv’ operations in the628

replacement segment (highlighted with red borders). Notice that adjusting one of them or leaving629

resolutions unadjusted will result in incorrect propagation because the ‘Add’ operations require its630

incoming tensors to have the exact same dimensions. We use MILP to solve this problem by finding631

the correct adjustment to mutable operations by halving, doubling, or maintaining resolution sizes.632

A.7 AutoGO Components Evaluation633

We evaluate the search efficiency on the benchmark families by measuring the speed of each com-634

ponent. The time to execute the search largely depends on the choice of input architecture, i.e.,635

architectures with more nodes and complex topologies like Inception form large search spaces. On636

the HiAML and NB-201 families, it takes 15 minutes on average to execute a search iteration using637

the PSC predictor and segment-level mutation. AutoGO visits over 1000 unique architectures per638

iteration and can find high-performance architectures in around an hour or less.639

Specifically, it takes around 1.5 to 2 minutes to segment a parent architecture using BPE, select source640

and replacement segments, perform resolution propagation, and rank the mutations using the predictor.641

The bulk of this time is spent between searching the database for replacement segments, confirming642

their validity and measuring the performance of each mutation, while the BPE segmentation and643

source segment selection processes take less than 1 millisecond each. When gauging execution time,644

we sequentially mutate each parent architecture per iteration, but note that this process can be sped645

up with parallelization.646

Resolution propagation with MILP takes, on average 0.11 seconds to find a solution or determine647

that the problem is infeasible. We compare it to an exhaustive search approach by enumerating all648

candidate solutions. It takes, on average, 0.4 seconds to find a solution and more than 4 seconds for649

infeasible solutions. Our subgraph extraction process for generating the segment vocabulary is very650

efficient as the BPE operates on a sequence representation of the CGs. It takes less than 20 minutes651

to sort all CG topologically, and extract subsequences with BPE.652

To provide specific examples of the search time, consider the ResNet-50 Arch 2 and EDSR Arch653

2 architectures from Tables 3 and 4, respectively. Mutating the initial ResNet-50 and EDSR CGs654

takes 1.8 and 1.5 minutes, respectively, on our hardware. It takes longer to mutate ResNet-50 simply655

because the CG contains more nodes (108) than EDSR, whose CG only has 67 nodes. Moreover,656

since the base EDSR architecture only uses Convolutions and ReLU operations, we exclude segments657

that contain batchnorm and pooling operations, which reduces the number of replacement segments658

to consider during mutation.659

The first iteration of AutoGO mutates the initial architecture while all subsequent iterations mutate 10660

parent architectures. Given that ResNet-50 Arch 2 was found in iteration 3, it took AutoGO around661

1.8min + 2iter ∗ 10arch/iter ∗ 1.8min/arch = 37.8min

to discover that architecture. Likewise, EDSR Arch 2 was found in iteration 5, which took662

1.5min + 4iter ∗ 10arch/iter ∗ 1.5min/arch = 61.5min
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Figure 8: Example mutations performed by AutoGO to create an EDSR mutant by swapping out 8
EDSR blocks. Specifically, AutoGO will swap out multiple, simple ‘Conv-ReLU-Conv’ residual
blocks for larger blocks that have operations on both branches.

to find. Finally, we note that these calculations assume sequential processing of parent architectures.663

However, it is possible to use multi-processing techniques to mutate multiple parent architectures664

simultaneously to further speedup the process.665

A.8 EDSR Mutation Example666

Figure 8 illustrates three distinct mutations that take place to produce an EDSR AutoGO architecture.667

Initially, the EDSR backbone contains 16 ‘Conv-ReLU-Conv’ residual blocks. To create the mutant668

network, AutoGO removed 8 of these blocks, denoting half the backbone structure, and replaced669

them with three double-branch structures that also consist of just convolutions and ReLU activations.670

A.9 Hardware and Software Setup671

We run our experiments on rack servers using Intel Xeon Gold 6140 CPUs. Each server is equipped672

with 8 NVIDIA V100 32GB GPUs and 756GB RAM. We execute our search and experiments on673

Python 3 using PyTorch==1.8.1 and TensorFlow==1.15.0. We implement our predictors using674

PyTorch-Geometric==1.7.1. We use SentencePiece [33] to perform BPE. Finally, we implement675

our MILP using a Coin-CBC solver [18] and pyomo==6.4.0 [23].676
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