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A Proof of Theorem 3.1

Preliminary discussion:
The following lemma from [1] was used in the proof in the non inductive case [2].
Lemma A.1 (Latała, 2005). Let X be a random matrix with independent, zero mean entries, we have

Ep}X}q ď Cℓ

¨

˝max
i

d

ÿ

j

EpX2
i,jq ` max

j

d

ÿ

i

EpX2
i,jq ` 4

d

ÿ

i,j

EpX4
i,jq

˛

‚,

where Cℓ is a universal constant.

The proof of the result in [2] relies on this Lemma, which applies to random matrices with i.i.d. entries
and an elegant decomposition of the entries into two groups: (1) entries that have been sampled many
times, and (2) entries that have not been sampled too often. On group 1, the partial sums of the
Rademacher variables concentrate trivially (as the function is constant there), whilst on group 2, the
entries are well spread out and Lemma A.1 limits the spectral norm similarly to the uniform case.
The idea of the proof is to carefully tune those two contributions by adjusting the threshold involved
in the split.

In our inductive situation, directly using a similar splitting strategy can only yield bounds with
non-logarithmic dependence on n, or bounds of the type of equation (3) (which are well known
and vacuous when the side information is of comparable size to the matrix). To understand the
problem intuitively, it is helpful to think of the case of ’community side information’, where users
and items can be divided into equally-sized groups (’communities’) by partition functions cU :
t1, 2, . . . ,mu Ñ t1, 2, . . . , d1u and cI : t1, 2, . . . , nu Ñ t1, 2, . . . , d2u respectively, with the rating
of pi, jq depending only on the groups cU piq and cIpjq to which i and j belong respectively. If the
side information consists in indicator functions of the communities, simply applying known results
for standard matrix completion yields distribution-free bounds of order Opd3{2

?
rq (in this case

d “ maxpd1, d2q will be equal to the max number of communities), whilst applying existing IMC
results only yields bounds of order rd2.

Comparing the proof techniques in the MC and "IMC with communities" cases with this example
in mind, it becomes clear that the split should no longer be into frequently sampled entries and less
frequently sampled entries, but into frequently sampled communities and less frequently sampled
communities. To generalise this to arbitrary X,Y , we must define a concept of "frequently sampled"
combinations pX . ,u, Y . ,vq of columns of the side information matrices. In practice this corresponds
to a split between entries of XJRNY (where rRN si,j contains the sum of the Rademacher variables
corresponding to entry i, j) by high or low variance: we use the rotational invariance of the trace
operator and equivalently express the Rademacher averages in inductive space. However, the
entries of the resulting matrix are certainly not independent, which makes it impossible to apply the
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concentration results from [1]. Instead, we must rely again on the matrix Bernstein inequality F.4.
Obtaining a covariance structure that is amenable to application of this result requires performing an
iterative procedure involving series of distribution dependent rotational transformations of the side
information and other estimates at each step.

Proof of Theorem 3.1. The theorem follows immediately from the classic result (Theorem F.1) as
well as its variation F.2 together with the Rademacher complexity bound below (Theorem A.1).

Recall that for any x1, . . . , xN and any function class F we can define the (data dependent)
Rademacher complexity pRpx1,...,xnqpFq as

pRpx1,...,xnqpFq :“ Eσ sup
fPF

1

N

N
ÿ

i“1

σifpxiq, (A.1)

where the σi’s are i.i.d. Rademacher random variables (i.e. Ppσi “ 1q “ Ppσi “ ´1q “ 0.5).

Theorem A.1. Let X P Rmˆd1 and Y P Rnˆd2 be side information matrices. Consider the function
class

FM :“

"

XMY J

ˇ

ˇ

ˇ

ˇ

}M}˚ ď M
*

We have the following bound on the expected Rademacher complexity of l ˝ FM:

Ex1,...,xN
R pl ˝ FMq ď b

c

2π

N
`

16xyℓM ` ℓ

N
logp2dq `

d

10ℓbxyM
?
d

N
Ψ, (A.2)

where Ψ “

„

a

logp2dq `

b

logpNp20M2ℓ
?
drx2y2s{b` 1q

ȷ

is a logarithmic quantity.

In other words,

ER pl ˝ FMq “ rO

¨

˝

d

ℓbxyM
?
d

N
`
ℓxyM
N

`
b

?
N

˛

‚ (A.3)

Before we proceed with the proof, we need to establish a few lemmas.
Lemma A.2 (Variation on Lemma 8 in [3]). Let r P N and suppose we are given r fixed matrices
E1, E2, . . . , Er P Rmˆn with the property that |Eu|i,j ď B for all u, i, j. Now consider the
following function class for a constant C P R`:

FC :“

#

r
ÿ

u“1

λuEu : |λu| ď C @u ď r

+

. (A.4)

For any ϵ ą 0 there exists a cover Cϵ Ă F with the following two properties:

1. For any Z P F there exists a rZ P Cϵ such that for all pi, jq P rms ˆ rns we have
|Zi,j ´ rZi,j | ď ϵ

2.

|Cϵ| ď

„

2CBr

ϵ
` 1

ȷr

(A.5)

Proof. We consider the following discretised version of F for an ϵ1 which will be determined later:

Dϵ1 :“

#

r
ÿ

u“1

puϵ
1Eu

ˇ

ˇp@uq pu P Z ^ |puϵ
1| ď C

+

(A.6)

Let Z P F . We can write Z “
řr
u“1 λuEu for some λus. Let rZ “

řr
u“1 signpλuq

Y

|λu|

ϵ1

]

ϵ1Eu.
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Note that rZ P Dϵ1 . Furthermore, for any i, j we have

ˇ

ˇ

ˇ
Zi,j ´ rZi,j

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

r
ÿ

u“1

rEusi,j

„

λu ´ signpλuq

Z

|λu|

ϵ1

^

ϵ1

ȷ

ˇ

ˇ

ˇ

ˇ

ˇ

(A.7)

ď B
r

ÿ

u“1

ϵ1 “ Brϵ1. (A.8)

Thus, setting ϵ1 “ ϵ
Br , we obtain that Cϵ :“ Dϵ1 is indeed a uniform ϵ-cover of F w.r.t. to the L8

norm (over the whole sample space rms ˆ rns).

Finally, it is trivial to calculate that

|Cϵ1 | “

„

2C

ϵ1
` 1

ȷr

“

„

2CBr

ϵ
` 1

ȷr

, (A.9)

as expected.

The following useful result is an immediate consequence of the McDiarmid inequality. A similar
result was presented in [4] (cf. Theorem 11 page 469) for the expected Rademacher complexity.
Lemma A.3. For any fixed x1, . . . , xN and any function class F mapping to r´1, 1s we have with
probability ě 1 ´ δ over the draw of the Rademacher variables σ1, . . . , σN ,

ˇ

ˇ

ˇ

ˇ

ˇ

sup
fPF

1

N

N
ÿ

i“1

σifpxiq ´ pRpx1,...,xnqpFq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

c

2 logp2{δq

N
. (A.10)

We now present the following result, of great importance to the proof of Theorem A.1, and which
may be of independent interest. It may be viewed as a modification of Dudley’s Entropy theorem F.6
entertwined with Talagrand’s concentration Lemma.
Proposition A.4. Let F1,F2 : X Ñ R be two function classes, let l : R2 Ñ r´1, 1s be a bounded
loss function with Lipschitz constant ℓ.

Assume that the function class F1 has the property for all ϵ, it has a uniform cover of size N pF1, ϵq,
where N pF1, ϵq is some function of ϵ. That is to say, there is a cover Cpϵq of size N pF1, ϵq such that
for all f1 P F1 there exists f̃1 P Cpϵq such that for all x P X we have

ˇ

ˇ

ˇ
f1pxq ´ f̃1pxq

ˇ

ˇ

ˇ
ď ϵ. (A.11)

Define the function class F “ tf1 ` f2|f1 P F , f2 P F2u.

For all ϵ and for any training set x1, . . . , xN , we have the following bound on the (expected)
Rademacher complexity of the function class l ˝ F:

pRpl ˝ Fq ď ℓϵ` 2ℓpRpF2q `

c

logpN pF1, ϵqq

N
`

c

2π

N
. (A.12)

In particular, the above also holds for the expected Rademacher complexity after taking expectations.

Remark: The requirement on the cover Cpϵq is quite strong: we require that one fixed cover be an
ϵ-cover w.r.t. the l8 norm for any training set. However, this condition can be satisfied when the
function class considered is parametric and globally Lipschitz, as is the case in our application of the
result to the proof of Theorem A.1.

Proof. Fix an ϵ ą 0 and let Cpϵq be a uniform ϵ cover of F1. By the Lipschitz property we have for
any σ “ pσ1, σ2 . . . , σN q:

sup
fPF

1

N

N
ÿ

i“1

σilpfpxiq, yiq (A.13)
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“ sup
f1PF

sup
f2PF2

1

N

N
ÿ

i“1

σilpfpxiq, yiq (A.14)

“ sup
f1PF

sup
f2PF2

1

N

N
ÿ

i“1

σilpf̃1pxiq ` rf1 ´ f̃1spxiq ` f2pxiq, yiq (A.15)

ď sup
f1PF

sup
f2PF2

1

N

N
ÿ

i“1

σilpf̃1pxiq ` f2pxiq, yiq (A.16)

` sup
f1PF

sup
f2PF2

1

N

N
ÿ

i“1

σi

”

lprf1 ´ f̃1spxiq ` f̃1pxiq ` f2pxiq, yiq ´ lpf̃1pxiq ` f2pxiq, yiq
ı

(A.17)

ď sup
f1PF

sup
f2PF2

1

N

N
ÿ

i“1

σilpf̃1pxiq ` f2pxiq, yiq ` ℓϵ, (A.18)

where at the last line we have used the fact that l is ℓ-Lipschitz and that Cpϵq is an L8 cover for any
dataset, including x1, x2, . . . , xN .

Now, observe that for all f̃1 P Cpϵq and for our fixed training set x1, . . . , xN we can apply Lemma A.3
to the function class

lf̃1 ˝ F2 :“
!

rlpf̃1pxiq ` f2pxiqq, yis
N
i“1

ˇ

ˇf2 P F2

)

.

Thus, for any δ ą 0, we have w.p. ě 1 ´ δ over the draw of the Rademacher variables,
ˇ

ˇ

ˇ

ˇ

ˇ

sup
f2PF2

1

N

N
ÿ

i“1

σilpf̃1pxiq ` f2pxiq, yiq ´ Eσ sup
f2PF2

1

N

N
ÿ

i“1

σilpf̃1pxiq ` f2pxiq, yiq

ˇ

ˇ

ˇ

ˇ

ˇ

(A.19)

“

ˇ

ˇ

ˇ

ˇ

ˇ

sup
f2PF2

1

N

N
ÿ

i“1

σilpf̃1pxiq ` f2pxiq, yiq ´ pRplf̃1 ˝ F2q

ˇ

ˇ

ˇ

ˇ

ˇ

(A.20)

ď

c

2 logp2{δq

N
(A.21)

where at the second line we have simply defined pRplf̃1 ˝ F2q :“ Eσ supf2PF2

1
N

řN
i“1 σilpf̃1pxiq `

f2pxiq, yiq.

Now, composing inequality (A.21) with a union bound over all possible choices of f̃1 P Cpϵq we have
that for all δ ą 0, w.p.ě 1 ´ δ, every f̃1 P Cpϵq satisfies

ˇ

ˇ

ˇ

ˇ

ˇ

sup
f2PF2

1

N

N
ÿ

i“1

σilpf̃1pxiq ` f2pxiq, yiq ´ pRplf̃1 ˝ F2q

ˇ

ˇ

ˇ

ˇ

ˇ

(A.22)

ď

c

logpN pF1, ϵqq ` 2 logp2{δq

N
(A.23)

ď

c

2 logp2{δq

N
`

c

logpN pF1, ϵqq

N
. (A.24)

Now, note that for any choice of f̃1, we can apply the Talagrand contraction Lemma(cf. [4] (Theorem
12 page 469), [5] (corollary 3.17) , [6](Lemma 8 page 1 of supplementary)) to the function class
Rplf̃1 ˝ F2q to obtain (for any f̃1):

pRplf̃1 ˝ F2q ď 2ℓpRpF2q. (A.25)

Plugging Equations (A.24) and A.25 back into equation (A.18), we have that w.p. ě 1 ´ δ,

sup
fPF

1

N

N
ÿ

i“1

σilpfpxiq, yiq ď ℓϵ` 2ℓpRpF2q `

c

2 logp2{δq

N
`

c

logpN pF1, ϵqq

N
. (A.26)
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The only thing left to do is a simple integration over δ: let X denote the random variable

X :“ sup
fPF

1

N

N
ÿ

i“1

σilpfpxiq, yiq ´ ℓϵ´ 2ℓpRpF2q ´

c

logpN pF1, ϵqq

N
. (A.27)

By equation (A.26) we have for all ε ą 0

PpX ě εq ď 2 exp

ˆ

´
ε2N

2

˙

. (A.28)

Integrating over ε we obtain

EpXq ď

ż 8

0

2 exp

ˆ

´
ε2N

2

˙

dε (A.29)

“
2

?
2

?
N

ż 8

0

expp´θ2qdθ “

c

2π

N
. (A.30)

Plugging this equation (A.29) back into the definition of X (eq. (A.27)) we obtain:

pRpl ˝ Fq ď ℓϵ` 2ℓpRpF2q `

c

logpN pF1, ϵqq

N
`

c

2π

N
, (A.31)

as expected.

Proof of Theorem A.1. Let ξ1, . . . , ξn be sampled i.i.d from the sampling distribution D on
t1, 2, . . . ,mu ˆ t1, 2, . . . , nu. Let s1, s2, . . . , sN be iid Rademacher random variables. For any
element of ξ P t1, 2, . . . ,mu ˆ t1, 2, . . . , nu we also write eξ for the matrix with all entries equal to
0 except the entry corresponding to ξ, which is set to 1.

Define the Rademacher matrix RN :“
řN
o“1 eξoso. Define also U “ XJRNY . This is a random

variable.

We begin with the following easy observations:

Tr
`

EpUUJq
˘

“ Tr
`

EpUJUq
˘

“

d1
ÿ

u“1

d2
ÿ

v“1

EpU2
u,vq

“
ÿ

u,v

ÿ

i,j

pi,jpXi,uq2pYjvq2 “ N
ÿ

i,j

pi,j}xi}
2}yj}

2

“ NΓ. (A.32)

Note also that for any M ,
@

XMY J, RN
D

“ xM,Uy.

We will now need to iteratively define a sequence of matrices Uk, Ūk, M̄k, V̄ k P Rd1ˆd2 and
Tk for k “ 0, 1, . . . ,K for some stopping time K. The whole construction depends on a real
parameter p ą 0 which will be chosen later. It is important to note that although the construction of
Uk, Ūk, M̄k, V̄ k also depends on the sampling distribution D, it is a deterministic construction and
does not depend on the data (the same is true of M̄k for a given core matrix M ).

Tk is a sequence of reals defined by Tk “ Ep}Ūk}2Frq

First, we set Ū0 “ V̄ 0 “ U, M̄0 “ M (and T0 “ NΓ).

Assuming that Ūk and M̄k have been defined already, we define the next iteration as follows.

We first obtain an orthogonal matrix Ak P Rd1ˆd1 (resp. Bk P Rd2ˆd2) which diagonalises
EpŪkpŪkqJq (resp. EppŪkqJŪkq) so that EpŪkpŪkqJq “ pAkq´1D1A

k and EppUkqJpUkqq “

pBkq´1D2B
k for some diagonal matrices D1, D2.

Now, we define

V̄ k`1 “ AkŪkBk (A.33)

5



M̄k`1 “ AkM̄kBk. (A.34)

Now, by construction of the matrices Ak`1 and Bk`1, the matrices EppV̄ k`1qrV̄ pk`1qsJq and
EprV̄ pk`1qsJV̄ k`1q are both diagonal. We now split according to two cases: Case 1:

VarpV̄ k`1
u,v q ď p @u, v (A.35)

Case 2: equation (A.35) does not hold, i.e. there exists uk`1, vk`1 P Rd1ˆd2 with VarpV̄ k`1
uk`1,vk`1

q ą

p.

In case 1, we end the procedure and set K “ k. In case 2, we set

Ūk`1 “ V̄ k`1 ´ euk`1,vk`1
V̄ k`1
uk`1,vk`1

(A.36)

(i.e. Ūk`1 is identical to V̄ k`1 on all entries except puk`1, vk`1q where it is set to zero.)

The procedure repeats until case 1 occurs. Note that since the only operations on M̄ are from
equation (A.34) we have that M̄k “ Ak´1Ak´1 . . . , A0MB0B1 . . . Bk´1 “ Āk´1MB̄k´1 where
Āk´1 (resp. B̄k´1) denotes the orthogonal matrix Ak´1Ak´1 . . . A0 (resp. B0B1 . . . Bk´1). Finally,
we define

Uk “

k´1
ź

i“0

rAis´1Ūk
0

ź

i“k´1

rBis´1 “ rĀk´1s´1ŪkrB̄k´1s´1. (A.37)

Now, observe that by the rotational invariance of the Frobenius norm and the nuclear norms:

}M̄k}˚ “ }M}˚ (A.38)

Ep}V̄ k`1}2Frq “ Ep}Ūk}2Frq “ Ep}Uk}2Frq “ Tk (A.39)

and therefore for all k ď K ´ 1:

Tk`1 “ Ep}Uk`1}2Frq “ Tk ´ VarpV k`1
uk`1,vk`1

q ď Tk ´ p. (A.40)

In particular, since T0 “ Ep}U}2Frq “ ΓN is finite, the procedure must finish in finite time K with

K ď
ΓN

p
. (A.41)

Now, Uk is of course only the reexpression of Ūk in the original orthogonal basis: in particular by
the rotational invariance of the Frobenius inner product we have

xM,Uky “ xM̄k, Ūky.

Further, we can express the recurrence relations (A.36) and (A.33) directly in this original orthogonal
basis in terms of transformations on the Uks:

Uk`1 “ rĀks´1Ūk`1rB̄ks´1 (A.42)

“ rĀks´1
”

V̄ k`1 ´ euk`1,vk`1
V̄ k`1
uk`1,vk`1

ı

rB̄ks´1 (A.43)

“ rĀks´1
“

AkŪkBk ´ euk`1,vk`1
xAkŪkBk, euk`1,vk`1

y
‰

rB̄ks´1 (A.44)

“ rĀks´1
“

AkĀk´1UkB̄k´1Bk ´ euk`1,vk`1
xAkŪkBk, euk`1,vk`1

y
‰

rB̄ks´1 (A.45)

“ rĀks´1
“

ĀkUkB̄k ´ euk`1,vk`1
xĀkUkB̄k, euk`1,vk`1

y
‰

rB̄ks´1 (A.46)

“ Uk ´ xĀkUkB̄k, euk`1,vk`1
yrĀks´1euk`1,vk`1

rB̄ks´1 (A.47)

“ Uk ´ xUk, rĀks´1euk`1,vk`1
rB̄ks´1yrĀks´1euk`1,vk`1

rB̄ks´1 (A.48)

“ Uk ´ xUk, EkyEk, (A.49)

where at the second line (A.43) we have used equation (A.36), at the third line (A.44) we have used
equation (A.33), at the fourth line (A.45) we have used equation (A.37), at the fifth line (A.46) we

6



have used equation (A.37) again as well as a simplification via the definitions of Āk and B̄k, at the
seventh line (A.48) we have used properties of the Frobenius inner product, and at the eighth and last
line (A.49) we have defined Ek “ rĀks´1euk`1,vk`1

rB̄ks´1. Note again crucially that the Eks are
deterministic matrices.

Now, we write P for the (projection) operator Pk : Rd1ˆd2 Ñ Rd1ˆd2 : W ÞÑ xW,Eky. Then
equation (A.49) can be written

Uk`1 “ pI ´ PkqUk, (A.50)

where I denotes the identity operator from Rd1ˆd2 to itself. Iterating, we obtain for all k

Uk “

k´1
ź

i“0

pI ´ PiqU. (A.51)

Note that both Pk and pI ´ Pkq are self-adjoint. Hence, we can write

@

M,Uk
D

“

C

M,
k´1
ź

i“0

pI ´ PiqU

G

(A.52)

“

C

0
ź

i“k´1

pI ´ PiqM,U

G

(A.53)

“
@

Mk, U
D

, (A.54)

where at the last line we have defined Mk “
ś0
i“k´1pI ´ PiqM .

Now, note that we can write

Mk “

0
ź

i“k´1

pI ´ PiqM (A.55)

“ M ´

k´1
ÿ

u“0

Pu
u`1
ź

i“k´1

pI ´ PiqM (A.56)

“ M ´

k´1
ÿ

u“0

Eu

C

Eu,
u`1
ź

i“k´1

pI ´ PiqM

G

(A.57)

“ M ´

k´1
ÿ

u“0

Euλ
k
upMq, (A.58)

where we have defined λkupMq :“
A

Eu,
śu`1
i“k´1pI ´ PiqM

E

. Note that }Eu}Fr “ }Eu} “ 1

and since each operator pI ´ Piq is a projection and in particular a contraction with respect to the
Frobenius norm we have that }

śu`1
i“k´1pI ´ PiqM}Fr ď }M}Fr ď }M}˚. Hence for any M with

}M}˚ ď M we have for any u ă k ď K:
ˇ

ˇλkupMq
ˇ

ˇ ď M. (A.59)

We note that by construction, the matrix V̄ K`1 “ AkŪkBk “ AkrĀk´1sUkB̄k´1Bk, has the
property that EppV̄ K`1qrV̄ pK`1qsJq and EprV̄ pK`1qsJV̄ K`1q are both diagonal, and

VarpV̄ k`1
u,v q ď p @u, v (A.60)

Thus, we have
›

›rUKsrUKsJ
›

› “

›

›

›
EppV̄ K`1qrV̄ pK`1qsJq

›

›

›
ď pd2 ď pd, (A.61)

›

›rUKsJrUKs
›

› “

›

›

›
EprV̄ pK`1qsJV̄ K`1q

›

›

›
ď pd1 ď pd. (A.62)
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We now have the tools to proceed with the proof of the equation (A.2).

We define the following function classes:

F1 :“

#

K´1
ÿ

k“0

λkXEkY
J

ˇ

ˇ

ˇ

ˇ

ˇ

|λk| ď M

+

(A.63)

F2 :“

#

X

«

0
ź

i“K´1

pI ´ PiqM

ff

Y J

ˇ

ˇ

ˇ

ˇ

ˇ

}M}˚ ď M

+

. (A.64)

By the constructions above and in particular equation (A.59) we have F Ă F1 ` F2. Furthermore,
also by the construction of Uk etc., we can bound the Rademacher complexity of F2:

Eξ1,...,ξN pRpF2qq “ E sup
}M}˚ďM

C

X

«

0
ź

i“K´1

pI ´ PiqM

ff

Y J, RN

G

(A.65)

“ E sup
}M}˚ďM

C«

0
ź

i“K´1

pI ´ PiqM

ff

, XJRNY

G

(A.66)

“ E sup
}M}˚ďM

C«

0
ź

i“K´1

pI ´ PiqM

ff

, U

G

(A.67)

“ E sup
}M}˚ďM

@

M,UK
D

(A.68)

ď ME
`

}UK}
˘

(A.69)

where as usual } .} denotes the spectral norm.

Now, observe that

UK “

K´1
ź

i“0

pI ´ PiqU “

N
ÿ

o“1

K´1
ź

i“0

pI ´ PiqXJeξoY (A.70)

“

N
ÿ

o“1

so

K´1
ź

i“0

pI ´ Piqxξo1y
J
ξo2
, (A.71)

which is a sum of i.i.d centred random matrices. Thus we can apply Proposition (F.4) to it. The value
of "M" in that proposition is clearly bounded by xy (indeed, for all i, j, }xiy

J
j }Fr “ }xiy

J
j } ď xy,

the operator
śK´1
i“0 pI´Piq is a contraction with respect to the Frobenius norm, and the spectral norm

is certainly bounded by the Frobenius norm). A bound on the value of "σ" from Proposition (F.4)
follows from our iterative construction and in particular from equations (A.61) which ensure that "σ"
is bounded by

?
pd:

N
ÿ

o“1

ρ2o ď
a

pd. (A.72)

It follows by an application of Proposition (F.4) to equation (A.69) that

NEξ1,...,ξN pRpF2qq ď ME
`

}UK}
˘

(A.73)

ď
a

8{3p1 `
a

logp2dqqM
a

pd` M8xy

3
p1 ` logp2dqqq. (A.74)

On the other hand, a simple application of Lemma A.2 tells us that F1 admits a uniform L8 cover
C1{N (w.r.t. the whole sample space), of granularity 1{N with

N8pF1, 1{Nq “
ˇ

ˇC1{N

ˇ

ˇ ď r2NMxyK ` 1s
K

ď rNp2MxyK ` 1qs
K
, (A.75)

since the maximum entry of Eu is bounded by xy for any u.

8



By Proposition A.4 (rescaled taking into account the bound b on the loss function) we have for any
training set

pRN pl ˝ Fq ď ℓϵ` 2ℓpRN pF2q ` b

c

logpF8pF1, 1{Nqq

N
` b

c

2π

N
. (A.76)

Taking expectations with respect to the training set on both sides and then applying equation (A.75)
and (A.74) we obtain:

Er pRN pl ˝ Fqs ď
ℓ

N
` 2ℓEp pRN pF2qq ` b

c

logpF8pF1, 1{Nqq

N
` b

c

2π

N
(A.77)

ď
ℓ

N
`

2ℓM
N

„

a

8{3p1 `
a

logp2dqq
a

pd`
8xy

3
p1 ` logp2dqqq

ȷ

(A.78)

` b

c

K logpNp2MxyK ` 1qq

N
` b

c

2π

N
(A.79)

ď b

c

2π

N
`

ℓ

N
`

10ℓM
N

a

logp2dq
a

pd`
16xyℓM

N
logp2dq (A.80)

` b

d

Γ logpNp2MxyΓN{p` 1qq

p
(A.81)

ď b

c

2π

N
`

ℓ

N
`

10ℓM
N

a

logp2dq
a

pd`
16xyℓM

N
logp2dq (A.82)

` b

d

x2y2 logpNp2Mxyrx2y2sN{p` 1qq

p
, (A.83)

where at line (A.81) we have plugged in the bound for K from equation (A.41) and at line (A.83) we
have used the fact that Γ ď x2y2.

We can finally set the value of p, to balance the two contributions in equation (A.81) above: we set

p :“
xyNb

10Mℓ
?
d
, (A.84)

which plugged into equation (A.83) gives

ErRN pl ˝ Fqs (A.85)

ď b

c

2π

N
`

16xyℓM ` ℓ

N
logp2dq `

10ℓM
N

a

logp2dq
a

pd` (A.86)

b

d

x2y2 logpNp2Mrx3y3sN{p` 1qq

p
(A.87)

ď b

c

2π

N
`

16xyℓM ` ℓ

N
logp2dq` (A.88)

d

10ℓbxyM
?
d

N

„

a

logp2dq `

b

logpNp20M2ℓ
?
drx2y2s{b` 1q

ȷ

, (A.89)

as expected.

B Proof of Propositions 3.1 and 3.2

Proposition 3.2 is included in the wordier version B.1 and proved below.
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Proposition B.1. W.p.ě 1 ´ δ for all M with }M} ď M:

E
“

lppXMY Jqξ, Gξq
‰

´
1

N

ÿ

ξPΩ

lppXMY Jqξ, Gξq (B.1)

ď
4ℓ

?
N

Mmaxpσ1
˚, σ

2
˚qp1 `

a

logp2dqq `
6ℓ

N
Mxyp1 ` logp2dqq ` b

c

logp2{δq

2N
,

thus as long as N ě 9rxy{maxpσ1
˚, σ

2
˚qs2p1 ` logp2dqq, we have with probability ě 1 ´ δ over the

draw of the training set S

E
“

lppXMY Jqξ, Gξq
‰

´
1

N

ÿ

ξPΩ

lppXMSY
Jqξ, Gξq (B.2)

ď
6ℓMmaxpσ1

˚, σ
2
˚qp1 `

a

logp2dqq
?
N

` b

c

logp2{δq

2N
.

Proof of Proposition B.1. We will show the following bound on the Rademacher complexity of the
function class FM :“ tXMY J : }M} ď Mu

EpRq ď
1

?
N

M
c

8

3
maxpσ1

˚, σ
2
˚qp1 `

a

logp2dqq `
1

N
M8

3
xyp1 ` logp2dqq (B.3)

and for N ě 9rxy{maxpσ1
˚, σ

2
˚qs2p1 ` logp2dqq:

EpRq ď
3Mmaxpσ1

˚, σ
2
˚qp1 `

a

logp2dqq
?
N

, (B.4)

The claims then follow from Theorem F.1, together with Talagrand’s contraction Lemma.

Now, by the circular properties of the trace and the duality between the nuclear and spectral norms,
writing F for the matrix with Fi,j :“

řN
o“1 σo1ξ0“pi,jq,

„

1

N
xXMY J, F y

ȷ

“
1

N
TrppXMY JqJF q “

1

N
TrpYMJXJF q “

1

N
TrpXJFYMJq

“
1

N
xXJFY,My ď }M}˚}XJFY }. (B.5)

RpFMq “ E sup
}M}˚ďM

„

1

N
xXMY J, F y

ȷ

ď
M
N

Ep}XJFY }q. (B.6)

The term Ep}XJFY }q can be written as
řN
o“1 σoxξo1y

J
ξo2

“
řN
o“1 σoxioy

J
jo

, thus, we can prove
concentration inequalities for it using the non commutative Bernstein inequality (Proposition (F.4)).

We first note that for all i, j, }xiy
J
j } ď xy. Furthermore, we have Epi,jq„p

`
›

›rxiy
J
j srxiy

J
j sJ

›

›

˘

“

}
ř

i,j pi,jxiy
J
j yjx

J
i } “ }

ř

i,j pi,jxix
J
i }yj}

2} “ }
ř

i xix
J
i qi} “ }rL} “ pσ1

˚q2, and similarly,
Epi,jq„p

`
›

›rxiy
J
j sJrxiy

J
j s

›

›

˘

“ pσ2
˚q2.

Using this together with Proposition (F.4) we obtain

Ep}XJFY }q ď
?
N

c

8

3
maxpσ1

˚, σ
2
˚qp1 `

a

logp2dqq `
8

3
xyp1 ` logp2dqq. (B.7)

Plugging this back into equation (B.6), we obtain

EpRq ď
1

?
N

M
c

8

3
maxpσ1

˚, σ
2
˚qp1 `

a

logp2dqq `
1

N
M8

3
xyp1 ` logp2dqq (B.8)
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(which yields (B.3)) and as long as N ě 9rxy{maxpσ1
˚, σ

2
˚qs2p1 ` logp2dqq,

EpRq ď
1

?
N

M
c

8

3
maxpσ1

˚, σ
2
˚qp1 `

a

logp2dqq `
1

?
N

Mmaxpσ1
˚, σ

2
˚q

a

1 ` logp2dq

ď
3Mmaxpσ1

˚, σ
2
˚qp1 `

a

logp2dqq
?
N

, (B.9)

as expected. This establishes equation (B.4) and the claim follows from Talagrand’s concentration
lemma and the Rademacher Theorem F.1.

Proposition 3.1 follows from the more general result below.
Proposition B.2. Let us write FM for the function class corresponding to matrices of
the form XMY J with }M}˚ ď M. Assume uniform sampling and write K :“

max

„

b

d1
}XJX}

m

}Y }2Fr

n ,

b

d2
}Y JY }

n

}X}2Fr

m

ȷ

.

We have with probability ě 1 ´ δ, for all M P FM:

E
“

lppXMY Jqξ, Gξ ` ζξq
‰

´
1

N

ÿ

ξPΩ

lppXMY Jqξ, Gξ ` ζξq

ď
4ℓK

?
rdp1 `

a

logp2dqq
?
N

`
6ℓ

N
Mxyp1 ` logp2dqq ` b

c

logp2{δq

2N
, (B.10)

where
?
r “ pM{

?
d1d2q and b is a bound on the loss.

Similarly, as long as

N ě 9

«?
dxy

K

ff2

p1 ` logp2dqq (B.11)

we have with probability ě 1 ´ δ over the draw of the training set S, for all a M P FM:

E
“

lppXMY Jqξ, Gξ ` ζξq
‰

´
1

N

ÿ

ξPΩ

lppXMY Jqξ, Gξ ` ζξq

ď
6ℓpM{

?
mnqmaxp

a

}XJX}}Y }2Fr,
a

}Y JY }}X}2Frqp1 `
a

logp2dqq
?
N

` b

c

logp2{δq

2N

“
6ℓK

?
rdp1 `

a

logp2dqq
?
N

` b

c

logp2{δq

2N
. (B.12)

Furthermore, the above result holds under the following more general "uniform inductive marginals"
condition (analogous to the "uniform marginals"):

@i,
ÿ

i,j

pi,j}yj}
2 “

}Y }2Fr

mn
and @j,

ÿ

i,j

pi,j}xi}
2 “

}X}2Fr

mn
. (B.13)

Proof of Proposition B.2. In this case, let us simply compute the values of σ1
˚ and σ2

˚. We have, by
definition, qi “

ř

j pi,j}yj}
2, thus under conditions (B.13), qi “

}Y }
2
Fr

mn for all i, and therefore

pσ1
˚q2 “ }rL} “

}XJX}}Y }2Fr

mn
. (B.14)

Similarly, we have κj “
}X}

2
Fr

mn for all j and

pσ2
˚q2 “ } rR} “

}Y JY }}X}2Fr

mn
. (B.15)

Plugging equations (B.14) and (B.15) into the first result (B.2) yields inequality (B.12) as expected.
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Remark: The sample complexity provided by Proposition B.2 above scales like
Opp1{ϵ2qrrK2d logpdqsq where ϵ is the tolerance in terms of expected loss. In the case of iden-
tity side information we recover the result of Oprrd logpdqs{ϵ2q from [7]. In the inductive case, the
result is similar but with the correction term offered by K2, which makes the bound better when the
side information has lower effective dimension.

For instance, suppose d1 “ d2, m “ n and the dimensions of X and Y are both k ! d, and the top
left k ˆ k entries of X and Y form an identity matrix, with all other entries of X and Y being zero.
Suppose also we are in the uniform sampling scenario. We then have that K2 “ k2{d2, yielding
a sample complexity Oprdrk2{d2 logpdqs{ϵ2q “ Oprkr kd logpdqs{ϵ2q, which is counter-intuitively
tight because of the extra factor of kd . Indeed, it would appear the problem is similar to the uniform
sampling case with identity side information and a k ˆ k matrix, which should yield a bound of
Opkr logpkqq, but not better.

However, this factor comes from the scale parameter ϵ. Indeed, recall that the expected error is
computed with respect to the sampling distribution in both cases. In this example, every entry pi, jq
where either xi “ 0 or yj “ 0 is known to be equal to zero. This means that we only need ϵd2{k2

accuracy on the non zero entries to reach ϵ accuracy overall. However, only k2{d2 entries are usable
(corresponding to xi ‰ 0 and xj ‰ 0). This means if we were using an optimal strategy, we would
actually have a sample complexity of Opk

2

d2 k logpkqq. Our own sample complexity is actually slightly
worse than that due to the smoothing procedure, which ensures stability and theoretical guarantees,
but deprives us of a small part of the advantages of the weighting and adjustment. It is worth noting
that this slight limitation is similar to an analogous weakness in the results of [7]: indeed, even in the
MC case treated in that reference, the smoothed weighted trace norm 1 (which requires knowledge of
the distribution) yields bounds of orderOprn logpnqq. That is the case even if the (known) distribution
happens to be supported on a subset of the matrix with size ñˆ ñ where ñ ! n, despite the fact that
a direct application of the result to the smaller matrix would yield better bounds in this case. It is
interesting but challenging to consider the possibility of extending both our results and those of [7] to
cover for these effects.

C Proof of Proposition 3.3

Proposition 3.3 follows from the wordier result below:

Proposition C.1 (Long version of proposition 3.3). W.p. ě 1 ´ δ, for all M P rFr:

E
“

lppXMY Jqξ, Gξ ` ζξq
‰

´
1

N

ÿ

ξPΩ

lppXMY Jqξ, Gξ ` ζξq (C.1)

ď
8ℓ

?
Γ

?
r
?
dp1 `

a

logp2dqq
?
N

`
12ℓxy

?
d1d2rp1 ` logp2dqq

N
` b

c

logp2{δq

2N
.

Further, as long as N ě minpd1, d2q
18x2y2

Γ p1 ` logp2dqq, we have with probability ě 1 ´ δ over
the draw of the training set S for all M P rFr

E
“

lppXMY Jqξ, Gξq
‰

´
1

N

ÿ

ξPΩ

lppXMY Jqξ, Gξq

ď
12ℓ

?
Γ

?
r
?
dp1 `

a

logp2dqq
?
N

` b

c

logp2{δq

2N
, (C.2)

Proof. This follows from a careful application of the Proposition B.1 to a modified problem where
the side information matrices X and Y are replaced by XP´1

rD´ 1
2 and Y Q´1

rE´ 1
2 .

Let θpxq, θpσ1
˚q (etc.) denote the value taken by x, σ1

˚ (etc.) after the substitution above. Thus, we
only need to show that replacing the values of the quantities appearing in formula (B.2) by their new
values (computed below gives the formula (C.2)).

1The exact, non-empirical version
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We have θpxq “ }rXP´1
rD´ 1

2 sJ}2,8 ď x} rD´ 1
2 } ď“ x

b

2d1Γ . And similarly, θpyq ď y
b

2d2Γ .
We also have θpMq “

?
rΓ.

One trickier computation is that of θpσ1
˚q and θpσ2

˚q:

θpσ1
˚q is the spectral norm of the matrix θpXq “ XP´1

rD´ 1
2 evaluated with respect to the post-

substitution inner product x, yθplq. Note that the new values θpqiq and θpκiq for κj and qj have the
following properties:

θpqiq “
ÿ

j

pi,j}θpyjq}2

“
ÿ

j

pi,j}yjQ
´1

rE
1
2 }2

ď
ÿ

j

pi,j}yj}
2} rE

1
2 }2

ď
2qid2
Γ

, (C.3)

and similarly

θpκjq ď
2κjd1
Γ

.

In particular, for any vector v P Rm we have

}v}2θplq “ xv, vyθplq “ vJ diagpθpqqqv ď vJ diagpqqv
2d2
Γ

ď }v}2l
2d2
Γ
, (C.4)

and similarly for vectors in Rn with a factor of 2d1
Γ .

As a result we can compute:

θpσ1
˚q2 “ }θpXqJ diagpθpqqqpθpXqq}

“ }pXP´1
rD´ 1

2 qJ diagpθpqqqpXP´1
rD´ 1

2 q}

ď
2d2
Γ

}pXP´1
rD´ 1

2 qJ diagpqqpXP´1
rD´ 1

2 q}

“
2d2
Γ

} rD´ 1
2P rP´1DP sP´1

rD´ 1
2 } “

2d2
Γ

}2I}

ď
4d2
Γ
, (C.5)

and similarly

θpσ1
˚q2 ď

4d1
Γ
. (C.6)

Plugging the post substitution values computed above into each of the relevant expressions in
Proposition B.1, we obtain first that w.p. ě 1 ´ δ:

4ℓ
?
N
θpMqmaxpθpσ1

˚q, θpσ2
˚qqp1 `

a

logp2dqq `
6ℓ

N
θpMqθpxyqp1 ` logp2dqq (C.7)

ď
4ℓ

?
N

Γ
?
rmaxp

c

4d2
Γ
,

c

4d1
Γ

qp1 `
a

logp2dqq ` `
12ℓ

?
d1d2{Γ

N

?
rΓxyp1 ` logp2dqq

(C.8)

“
8ℓ

?
Γ

?
r
?
dp1 `

a

logp2dqq
?
N

`
12ℓ

?
rd1d2
N

xyp1 ` logp2dqq (C.9)

(C.10)

as expected.
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And then also that (w.p. ě 1´ δ) E
“

lppXMY Jqξ, Gξq
‰

´ 1
N

ř

ξPΩ lppXMY Jqξ, Gξq ´ b
b

logp2{δq

2n

is bounded above by

6ℓθpMqmaxpθpσ1
˚q, θpσ2

˚qqp1 `
a

logp2dqq
?
N

“
6ℓ

?
Γ

?
rmaxp

b

4d2
Γ ,

b

4d1
Γ qp1 `

a

logp2dqq
?
N

“
12ℓ

?
Γ

?
r
?
dp1 `

a

logp2dqq
?
N

,

with the condition that N needs to be larger than

9θprxy{maxpσ1
˚, σ

2
˚qsq2p1 ` logp2dqq

“ 9

«

xy

c

2d1
Γ

c

2d2
Γ

{

c

2

Γ

?
d

ff2
?
rΓp1 ` logp2dqq

“ minpd1, d2q
18x2y2

Γ
p1 ` logp2dqq, (C.11)

as expected.

D Proof of Theorem 3.2

Theorem 3.2 follows from the longer version below.

Theorem D.1. Fix any target matrix G and distribution p. Define qZS “ argminpl̂SpZq : Z P qFrq.
For any δ P p0, 1q, with probability ě 1 ´ δ over the draw of the training set we have

lp qZq ď inf
rFr

lpZq `
“

48ℓ
?
rγpx ` yq2 ` 2b

‰

d

2 logp 12d
δ qrγpd` 3q ` γ2s

N
, (D.1)

where γ “
x2 y2

x2y2 . In particular, in expectation over the draw of the training set we have

lp qZq ď inf
rFr

lpZq `
“

96ℓ
?
rγpx ` yq2 ` 4b

‰

c

2 logp12dqrγpd` 3q ` γ2s

N
. (D.2)

Proof of Theorem D.1. The lemmas which are used are proved below.

We write Z˚ for an element of argmin
rFr
lpZq. First, by applying Proposition 3.3, we have that

N ě
a

minpd1, d2q18γp1 ` logp2dqq, we have with probabiltiy ě 1 ´ δ{3:

lp qZq ´ l̂Sp qZq ď
12ℓ

?
Γ

?
r
?
dp1 `

a

logp2dqq
?
N

` b

c

logp6{δq

2N
. (D.3)

Define CpSq “ max
´

0,
›

›

›

1
?
r˚Γ

}M˚

›

›

›

˚
´ 1

¯

. Note that p1´CpSqqZ˚ P qFr. Thus, using Lemma E.4

we also have similarly with probability ě 1 ´ δ{3:

l̂Spp1 ´ CpSqqZ˚q ´ lpp1 ´ CpSqqZ˚q (D.4)

ď
24ℓ

?
Γγ

?
r
?
dp1 `

a

logp2dqq
?
N

` b

c

logp6{δq

2N
,

as long as N ě 8γ2 ` γr8d` 20srlogp2dq ` logp 6
δ qs. By definition, since p1 ´ CpSqqZ˚ P qFr we

also have

l̂Sp qZq ´ l̂Spp1 ´ CpSqqZ˚q ď 0. (D.5)

Next, by Lemma E.3, as long as N ě 2 logp 6d
δ qrγpd` 3q ` γ2s, with probability ě 1 ´ δ{3 over the

draw of the training set:

lpp1 ´ CpSqqZ˚q ´ lpZ˚q
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ď ℓ}ĄM˚}˚

„

1

x2
`

1

y2

ȷ

d

2 logp 12d
δ qrγpd` 3q ` γ2s

N

ď ℓ
?
rΓ

„

1

x2
`

1

y2

ȷ

d

2 logp 12d
δ qrγpd` 3q ` γ2s

N
. (D.6)

Combining all of the above, we get that as long as N ě 2 logp 6d
δ qrγpd ` 3q ` γ2s and N ě

a

minpd1, d2q18γp1 ` logp2dqq, we have

lp qZq ´ lpZ˚q (D.7)

ď lp qZq ´ l̂Sp qZq ` l̂Sp qZq ´ l̂Spp1 ´ CpSqqZ˚q` (D.8)

l̂Spp1 ´ CpSqqZ˚q ´ lpp1 ´ CpSqqZ˚q ` lpp1 ´ CpSqqZ˚q ´ lpZ˚q

ď
12ℓ

?
Γ

?
r
?
dp1 `

a

logp2dqq
?
N

` b

c

logp6{δq

2N
(D.9)

`
24ℓγ

?
Γ

?
r
?
dp1 `

a

logp2dqq
?
N

` b

c

logp6{δq

2N
(D.10)

` ℓ
?
rΓ

„

1

x2
`

1

y2

ȷ

d

2 logp 12d
δ qrγpd` 3q ` γ2s

N
(D.11)

ď
48ℓγ

?
Γ

?
r
?
dp1 `

a

logp2dqq
?
N

` 2b

c

logp6{δq

2N
(D.12)

` ℓ
?
rγpx2 ` y2q

d

2 logp 12d
δ qrγpd` 3q ` γ2s

N
(D.13)

ď
48ℓγ

?
Γ

?
r
?
dp1 `

a

logp2dqq
?
N

(D.14)

`
“

ℓ
?
rγpx2 ` y2q ` 2b

‰

d

2 logp 12d
δ qrγpd` 3q ` γ2s

N
(D.15)

ď
“

48ℓ
?
rγpx ` yq2 ` 2b

‰

d

2 logp 12d
δ qrγpd` 3q ` γ2s

N
. (D.16)

Furthermore, the conditions on N can now be dropped since the RHS is greater than b whenever N
fails to satisfy either of them.

The expectation version of the theorem follows directly from Lemma F.5.

E Lemmas for the proof of Theorem 3.2

Proposition E.1. For any δ P p0, 1q, with probability ě 1 ´ δ, we have

1
?
2

ď

›

›

›

rD
1
2P pP´1

qD´ 1
2

›

›

›
ď

?
2, (E.1)

as long as N ě 8γ2 ` γr8d1 ` 20srlogp2d1q ` logp 1
δ qs.

Similarly, for any δ P p0, 1q, with probability ě 1 ´ δ, we have

1
?
2

ď

›

›

›

rE
1
2Q pQ´1

qE´ 1
2

›

›

›
ď

?
2, (E.2)

as long as N ě r8γ2 ` γr8d2 ` 20ssrlogp2d2q ` logp 1
δ qs.
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Proof. We will write T for the matrix rD
1
2P pP´1

qD´ 1
2 whose spectral norm we want to bound.

We consider the matrix

T :“ rD´ 1
2P pP´1

qD pPP´1
rD´ 1

2 “ pT´1qJpT´1q. (E.3)

We can write T as a sum of independent random matrices as follows:

T : “
1

N

ÿ

ξPΩ

rD´ 1
2P

„

1

2
xξ1x

J
ξ1}yξ2}2 `

1

2d1
}xξ1}2}yξ2}2I

ȷ

P´1
rD´ 1

2

“
1

N

ÿ

i,j

hi,j rD´ 1
2P

„

1

2
xix

J
i }yj}

2 `
1

2d1
}xi}

2}yj}
2I

ȷ

P´1
rD´ 1

2

“
1

N

N
ÿ

o“1

Λo, (E.4)

where Ω is the multi-set containing all the iid sampled entries and Λ “

rD´ 1
2P

”

1
2xξo1x

J
ξo1

}yξo2 }2 ` 1
2d1

}xξ1}2}yξ2}2I
ı

P´1
rD´ 1

2 and the ξo (o “ 1, . . . , N ) are the
sampled entries.

Now, we can compute the expectation of T and Λ as follows:

EpT q “ EpΛξq “
ÿ

i,j

pi,j rD´ 1
2P

„

1

2
xix

J
i }yj}

2 `
1

2d1
}xi}

2}yj}
2I

ȷ

P´1
rD´ 1

2 (E.5)

“ rD´ 1
2PP´1

rDPP´1
rD´ 1

2 “ I. (E.6)

Now, note that for any pi, jq P t1, 2, . . . ,mu ˆ t1, 2, . . . , nu we have

}Λpi,jq} “

›

›

›

›

rD´ 1
2P

„

1

2
xix

J
i }yj}

2 `
1

2d1
}xi}

2}yj}
2I

ȷ

P´1
rD´ 1

2

›

›

›

›

ď p
1

2
x2y2 `

1

2d1
pΓq} rD}´1

ď p
1

2
x2y2 `

1

2d1
pΓq

2d1
pΓ

ď
x2y2

x2y2
` 1 “ γ ` 1 (E.7)

By abuse of notation, we write below Λ for the random variable Λξ where ξ P t1, 2, . . . ,mu ˆ

t1, 2, . . . , nu is distributed according to p.

We now begin to bound }EppΛ ´ EpΛqqpΛ ´ EpΛqqJq}. We first note that
›

›E
`

pΛ ´ EpΛqqpΛ ´ EpΛqqJ
˘
›

› “
›

›EpΛΛJq ´ EpΛqEpΛqJ
›

›

“
›

›EpΛΛJq ´ I
›

› ď
›

›EpΛΛJq
›

› . (E.8)

Thus, we now note that by equation (E.4):

EpΛΛJq “ (E.9)
ÿ

i,j

pi,j rD´ 1
2P

„

}yj}
2

2
xix

J
i `

}xi}
2}yj}

2

2d1
I

ȷ

P´1
rD´1P

„

}yj}
2

2
xix

J
i `

}xi}
2}yj}

2

2d1
I

ȷJ

P´1
rD´ 1

2 .

From this it follows that

›

›EpΛΛJq
›

› ď

›

›

›

›

›

ÿ

i,j

pi,j rD´ 1
2P

„

1

2
xix

J
i }yj}

2

ȷ

P´1
rD´1P

„

1

2
xix

J
i }yj}

2

ȷ

P´1
rD´ 1

2

›

›

›

›

›

(E.10)

`

›

›

›

›

›

ÿ

i,j

pi,j rD´ 1
2P

„

1

2d1
}xi}

2}yj}
2I

ȷ

P´1
rD´1P

„

1

2
xix

J
i }yj}

2

ȷ

P´1
rD´ 1

2

›

›

›

›

›
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`

›

›

›

›

›

ÿ

i,j

pi,j rD´ 1
2P

„

1

2
xix

J
i }yj}

2

ȷ

P´1
rD´1P

„

1

2d1
}xi}

2}yj}
2I

ȷ

P´1
rD´ 1

2

›

›

›

›

›

`

›

›

›

›

›

ÿ

i,j

pi,j rD´ 1
2P

„

1

2d1
}xi}

2}yj}
2I

ȷ

P´1
rD´1P

„

1

2d1
}xi}

2}yj}
2I

ȷ

P´1
rD´ 1

2

›

›

›

›

›

.

We bound each of the four terms above separately:

For the first (and key) term, we have:

1

4

›

›

›

›

›

ÿ

i,j

pi,j rD´ 1
2P

“

xix
J
i }yj}

2
‰

P´1
rD´1P

“

xix
J
i }yj}

2
‰

P´1
rD´ 1

2

›

›

›

›

›

ď
1

4

›

›

›

›

›

ÿ

i,j

pi,j rD´ 1
2P

“

xix
J
i }yj}

2
‰

P´1
rD´ 1

2

›

›

›

›

›

sup
i,j

›

›

›

rD´ 1
2P

“

xix
J
i }yj}

2
‰

P´1
rD´ 1

2

›

›

›

ď
1

4

2d1
Γ

x2y2

›

›

›

›

›

ÿ

i,j

pi,j rD´ 1
2P

“

xix
J
i }yj}

2
‰

P´1
rD´ 1

2

›

›

›

›

›

“
d1
2Γ

x2y2
›

›

›

rD´ 1
2PP´1DPP´1

rD´ 1
2

›

›

›
“
d1
2Γ

x2y2}D rD´1} ď
d1
x2y2

x2y2 “ d1γ. (E.11)

For the second term we have

›

›

›

›

›

ÿ

i,j

pi,j rD´ 1
2P

„

1

2d1
}xi}

2}yj}
2I

ȷ

P´1
rD´1P

„

1

2
xix

J
i }yj}

2

ȷ

P´1
rD´ 1

2

›

›

›

›

›

ď
x2y2

2d1

›

›

›

rD´ 1
2 I rD´ 1

2

›

›

›

›

›

›

›

›

ÿ

i,j

pi,j rD´ 1
2P

„

1

2
xix

J
i }yj}

2

ȷ

P´1
rD´ 1

2

›

›

›

›

›

ď
x2y2

2d1

2d1
Γ

1

2

›

›

›

rD´ 1
2PP´1DPP´1

rD´ 1
2

›

›

›
ď

x2y2

x2y2
“ γ. (E.12)

For the third term we obtain similarly:
›

›

›

›

›

ÿ

i,j

pi,j rD´ 1
2P

„

1

2
xix

J
i }yj}

2

ȷ

P´1
rD´1P

„

1

2d1
}xi}

2}yj}
2I

ȷ

P´1
rD´ 1

2

›

›

›

›

›

ď
x2y2

x2y2
“ γ. (E.13)

Finally for the fourth term we have:
›

›

›

›

›

ÿ

i,j

pi,j rD´ 1
2P

„

1

2d1
}xi}

2}yj}
2I

ȷ

P´1
rD´1P

„

1

2d1
}xi}

2}yj}
2I

ȷ

P´1
rD´ 1

2

›

›

›

›

›

ď

›

›

›

›

›

x2y2
rD´1

2d1

›

›

›

›

›

2

ď

›

›

›

›

x2y22d1
2d1Γ

›

›

›

›

2

ď γ2. (E.14)

Plugging equations (E.11), (E.12), (E.13) and (E.14) into equations (E.10) and (E.8) we finally
obtain:

›

›E
`

pΛ ´ EpΛqqpΛ ´ EpΛqqJ
˘
›

› ď
›

›EpΛΛJq
›

› ď γpd1 ` 2q ` γ2. (E.15)

We now apply the non-communtative Bernstein inequality (F.3) to T ´ EpT q which is the average
of N i.i.d. instances of Λ. With the notation from Proposition F.3 we have M “ γ ` 1 (from
equation (E.7)), ν2 “

řN
o“1

1
N2 rγpd1 ` 2q ` γ2s “ 1

N rγpd1 ` 2q ` γ2s (from equation (E.15)),
n “ m “ d1 and we obtain (for all τ ):

P p}T ´ EpT q} ě τq ď p2d1q exp

ˆ

´
τ2{2

ν2 `Mτ{3

˙
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ď p2d1q exp

ˆ

´
Nτ2{2

rγpd1 ` 2q ` γ2s ` pγ ` 1qτ{3

˙

(E.16)

Setting τ “ 1
2 we obtain, as long as N ě r8γ2 ` γr8d1 ` 20ssrlogp2d1q ` logp 1

δ qs:

P
ˆ

}T ´ EpT q} ě
1

2

˙

ď p2d1q exp

ˆ

´
τ2{2

ν2 `Mτ{3

˙

ď p2d1q exp

ˆ

´
N

8rγpd1 ` 2q ` γ2s ` 2pγ ` 1q

˙

ď p2d1q exp

ˆ

´
N

8γ2 ` γr8d1 ` 20s

˙

ď δ. (E.17)

Thus, we now know that as long as N ě 8γ2 ` γr8d1 ` 20srlogp2d1q ` logp 1
δ qs we have with

probability ě 1 ´ δ that

}T ´ EpT q} ď
1

2
. (E.18)

This already implies that }T } ď 1 ` 0.5 ď 2 and therefore }T´1} ď
?
2, leaving us only the second

inequality to prove.

We will show that inequality (E.18) actually implies inequality (E.1).

To that effect, recall from equation (E.3) that T “ pT´1qJpT´1q “ G´1 where G “ TTJ. Thus
we have G “ rI ` pT ´ Iqs

´1. Rewriting this as G rI ` pT ´ Iqs “ I and taking spectral norms
on both sides we obtain

}G}σinf prI ` pT ´ Iqsq ď 1, (E.19)

where for any symmetric matrix A, σinfpAq denotes the smallest eigenvalue of A.

Now note that by inequality (E.18), for any unit vector v, we have

vJ rI ` pT ´ Iqs v “ 1 ´ vJ pT ´ Iq v ě 1 ´ } pT ´ Iq } ě 1 ´
1

2
“

1

2
. (E.20)

Thus the smallest eigenvalue of }rI ` pT ´ Iqs} is bounded below by 1
2 , i.e.

σinf prI ` pT ´ Iqsq ě
1

2
. (E.21)

Plugging inequality (E.21) back into identity (E.19), we obtain:

}G} ď 2. (E.22)

Finally, recall that G “ TTJ and thus }G} “ }T }2, which together with inequality (E.22) finally
implies

}T } ď
?
2, (E.23)

as expected.

Lemma E.2. Let ĂM P Rd1ˆd2 be a fixed matrix with }M}˚ “ 1. For any δ P p0, 1q we have that
w.p. ě 1 ´ δ, (as long as N ě 2 logp 2d

δ qrγpd` 3q ` γ2s):

}|M}˚ “ } qD
1
2 pPP´1

rD´ 1
2 ĂM rE´ 1

2Q pQ´1
qE

1
2 }˚ ď }ĂM}˚

»

–1 `

d

2 logp 4d
δ qrγpd` 3q ` γ2s

N

fi

fl ,

(E.24)

where d :“ maxpd1, d2q.
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Proof. Writing |M for the matrix qD
1
2 pPP´1

rD´ 1
2 ĂM rE´ 1

2Q pQ´1
qE

1
2 we want to control, we have by

the properties of the trace norm:

}|M}˚ “ max
A,B

ˆ

1

2

“

}A}2Fr ` }B}2Fr

‰

: ABJ “ |M

˙

Let qA, qB denote the matrices which realize the maximum above. Now note that we
have r qD

1
2 pPP´1

rD´ 1
2 s´1

qA qBr rE´ 1
2Q pQ´1

pE
1
2 s´1 “ r qD

1
2 pPP´1

rD´ 1
2 s´1

|M r rE´ 1
2Q pQ´1

pE
1
2 s´1 , i.e.

rA rB “ ĂM where

rA :“ r qD
1
2 pPP´1

rD´ 1
2 s´1

qA and
rB :“ r qE

1
2 pQQ´1

rE´ 1
2 s´1

qB. (E.25)

In particular, we have

}ĂM}˚ “ max
A,B

ˆ

1

2

“

}A}2Fr ` }B}2Fr

‰

: AB “ ĂM

˙

ě
1

2

”

} rA}2Fr ` } rB}2Fr

ı

. (E.26)

Now, we can express qA and qB as r qD
1
2 pPP´1

rD´ 1
2 s rA and r qE

1
2 pQQ´1

rE´ 1
2 s rB respectively, and thus

we have

}|M}˚ “
1

2

”

} qA}2Fr ` } qB}2Fr

ı

“
1

2

”

}r qD
1
2 pPP´1

rD´ 1
2 ss rA}2Fr ` }r qE

1
2 pQQ´1

rE´ 1
2 ss rB}2Fr

ı

ď maxp}r qD
1
2 pPP´1

rD´ 1
2 s}, }r qE

1
2 pQQ´1s}q2

1

2

”

} rA}2Fr ` } rB}2Fr

ı

ď maxp}r qD
1
2 pPP´1

rD´ 1
2 s}, }r qE

1
2 pQQ´1

rE´ 1
2 ss}q2}ĂM}˚. (E.27)

Hence, we need to bound the quantity maxp}r qD
1
2 pPP´1

rD´ 1
2 s}, }r qE

1
2 pQQ´1

rE´ 1
2 ss}q. Using sim-

ilar notation to proposition E.1 we have T1 “ r qD
1
2 pPP´1

rD´ 1
2 sr qD

1
2 pPP´1

rD´ 1
2 sJ and T2 “

r qE
1
2 pQQ´1

rE´ 1
2 ss

Picking up the proof of proposition (E.1) at equation (E.16), we obtain (for all τ ď 1):

Pp}r qD
1
2 pPP´1

rD´ 1
2 s}2 ě 1 ` τq ď P p}T1 ´ I} ě τq

ď p2d1q exp

ˆ

´
τ2{2

ν2 `Mτ{3

˙

ď p2d1q exp

ˆ

´
Nτ2{2

rγpd1 ` 2q ` γ2s ` pγ ` 1qτ{3

˙

ď p2d1q exp

ˆ

´
Nτ2{2

rγpd1 ` 3q ` γ2s

˙

. (E.28)

Rewriting, this implies that with probablity greater than 1 ´ δ, we have

}r qD
1
2 pPP´1

rD´ 1
2 s}2 ď 1 `

d

2 logp 2d1
δ qrγpd1 ` 3q ` γ2s

N
, (E.29)

as long as N ě 2 logp 2d1
δ qrγpd1 ` 3q ` γ2s.
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Similarly, (as long as N ě 2 logp 2d2
δ qrγpd2 ` 3q ` γ2s) we have (for any δ) with probability ě 1´ δ,

}r qE
1
2 pQQ´1

rQ´ 1
2 s}2 ď 1 `

d

2 logp 2d2
δ qrγpd2 ` 3q ` γ2s

N
. (E.30)

Putting the above two results together and plugging them into equation (E.27), we obtain (as long as
N ě 2 logp 2d

δ qrγpd` 3q ` γ2s) with probability greater than 1 ´ δ:

}|M}˚ ď }ĂM}˚

»

–1 `

d

2 logp 4d
δ qrγpd` 3q ` γ2s

N

fi

fl , (E.31)

as expected.

Lemma E.3. Fix M˚ such that }ĄM˚} “ } rD
1
2PMQ´1

rE
1
2 } “

?
r˚Γ ď

?
rΓ. Define

CpSq “ max

˜

0,

›

›

›

›

1
?
r˚Γ

}M˚

›

›

›

›

˚

´ 1

¸

, (E.32)

where |M “ qD
1
2 pPM pQ´1

qE
1
2 .

Writing Z˚ “ XM˚Y
J “ rXĄM˚

rY J “ qX}M˚
qY J, as long as N ě 2 logp 2d

δ qrγpd` 3q ` γ2s, with
probability ě 1 ´ δ over the draw of the training set:

Epi,jq„p

`

l
“

p1 ´ CpSqqrZ˚si,j , Gpi,jq

‰

´ l
“

rZ˚si,j , Gpi,jq

‰˘

ď ℓ}ĄM˚}˚

„

1

x2
`

1

y2

ȷ

d

2 logp 4d
δ qrγpd` 3q ` γ2s

N
(E.33)

Proof. We have, writing Θ for the matrix with Θi,j “ pi,j and using the notation |A| for the matrix
obtained from A by replacing each entry by its absolute value:

Epi,jq„p

`

l
“

p1 ´ CpSqqrZ˚si,j , Gpi,jq

‰

´ l
“

rZ˚si,j , Gpi,jq

‰˘

“
ÿ

i,j

pi,j l
“

p1 ´ CpSqqrZ˚si,j , Gpi,jq

‰

´ l
“

rZ˚si,j , Gpi,jq

‰

ď ℓ
ÿ

i,j

pi,j
ˇ

ˇp1 ´ CpSqqrZ˚si,j ´ rZ˚si,j
ˇ

ˇ

ď ℓCpSq
ÿ

i,j

pi,j
ˇ

ˇrZ˚si,j
ˇ

ˇ “ ℓCpSq xΘ, |Z˚|y “ CpSq
@

Θ, |XM˚Y
J|

D

“ ℓCpSq

A

rΘ, rXĄM˚
rY J

E

, (E.34)

where we write rΘ for the matrix with rΘi,j “ Θi,j signprXM˚Y
Jsi,jq for all i, j.

Replacing the expressions XP´1
rD´ 1

2 and Y Q´1
rE´ 1

2 for rX and rY respectively and using the
circular invariance of the trace we obtain:

Epi,jq„p

`

l
“

p1 ´ CpSqqrZ˚si,j , Gpi,jq

‰

´ l
“

rZ˚si,j , Gpi,jq

‰˘

ď ℓCpSq

A

rΘ, rXĄM˚
rY J

E

“ CpSq

A

rΘ, rXP´1
rD´ 1

2 sĄM˚
rE´ 1

2QY J
E

“ ℓCpSq

A

rD´ 1
2PXJ

rΘY Q´1
rE´ 1

2 ,ĄM˚

E

ď ℓCpSq}ĄM˚}˚} rD´ 1
2PXJ

rΘY Q´1
rE´ 1

2 }

“ ℓCpSq}ĄM˚}˚

›

›

›

”

rD´ 1
2PXJA´1

ı

ArΘB
”

B´1Y Q´1
rE´ 1

2

ı
›

›

›
, (E.35)

where A,B are arbitrary invertible matrices.
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Now by Lemma E.5, setting A “ diagp}x1}2, . . . , }xm}2q and B “ diagp}y1}2, . . . , }yn}2q, we
obtain:

›

›

›

”

rD´ 1
2PXJA´1

ı

ArΘB
”

B´1Y Q´1
rE´ 1

2

ı
›

›

›

ď
1

2

›

›

›

›

”

rD´ 1
2PXJA´1

ı

diagpArΘB1nq

”

rD´ 1
2PXJA´1

ıJ
›

›

›

›

`
1

2

›

›

›

›

”

B´1Y Q´1
rE´ 1

2

ıJ

diagp1J
mA

rΘBq

”

B´1Y Q´1
rE´ 1

2

ı

›

›

›

›

(E.36)

ď
1

2x2

›

›

›

›

”

rD´ 1
2PXJ

ı

diagprΘB1nq

”

rD´ 1
2PXJ

ıJ
›

›

›

›

`
1

2y2

›

›

›

›

”

Y Q´1
rE´ 1

2

ıJ

diagp1J
mA

rΘq

”

Y Q´1
rE´ 1

2

ı

›

›

›

›

(E.37)

ď
1

2x2

›

›

›

›

”

rD´ 1
2PXJ

ı

diagpΘB1nq

”

rD´ 1
2PXJ

ıJ
›

›

›

›

`
1

2y2

›

›

›

›

”

Y Q´1
rE´ 1

2

ıJ

diagp1J
mAΘq

”

Y Q´1
rE´ 1

2

ı

›

›

›

›

(E.38)

“
1

2x2

›

›

›

›

”

rD´ 1
2PXJ

ı

diagpqq

”

rD´ 1
2PXJ

ıJ
›

›

›

›

`
1

2y2

›

›

›

›

”

Y Q´1
rE´ 1

2

ıJ

diagpκq

”

Y Q´1
rE´ 1

2

ı

›

›

›

›

(E.39)

“
1

2x2

›

›

›

rD´ 1
2PP´1DPP´1

rD´ 1
2

›

›

›
`

1

2y2

›

›

›

rE´ 1
2Y Q´1QEQ´1Q rE´ 1

2

›

›

›

ď
1

x2
`

1

y2
(E.40)

where at line (E.36), we have used Lemma E.5 and at line (E.38) we have used that diagprΘB1nq ď

diagpΘB1nq (i.e. diagpΘB1nq ´ diagprΘB1nq is positive semi-definite).

Now, using Lemma E.2 together with equation (E.40) above plugged into equation (E.35), we finally
obtain that as long as N ě 2 logp 2d

δ qrγpd` 3q ` γ2s, we have with probability ě 1 ´ δ:

Epi,jq„p

`

l
“

p1 ´ CpSqqrZ˚si,j , Gpi,jq

‰

´ l
“

rZ˚si,j , Gpi,jq

‰˘

ď ℓCpSq}ĄM˚}˚

›

›

›

”

rD´ 1
2PXJA´1

ı

ArΘB
”

B´1Y Q´1
rE´ 1

2

ı
›

›

›

ď ℓCpSq}ĄM˚}˚

„

1

x2
`

1

y2

ȷ

ď ℓ}ĄM˚}˚

„

1

x2
`

1

y2

ȷ

d

2 logp 4d
δ qrγpd` 3q ` γ2s

N
, (E.41)

as expected.

Lemma E.4. For any r ą 0 and δ P p0, 1q, as long as N ě 8γ2 ` γr8d ` 20srlogp2dq ` logp 2
δ qs,

we have with probability ě 1 ´ δ over the draw of the training set:

sup
ZP qFr

”

ˇ

ˇlpZq ´ l̂SpZq
ˇ

ˇ

ı

ď sup
ZP rF4rγ2

”

ˇ

ˇlpZq ´ l̂SpZq
ˇ

ˇ

ı

(E.42)
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Proof. This follows from Lemma E.1 upon noticing that if
›

›

›

rD
1
2P pP´1

qD´ 1
2

›

›

›
ď

?
2, and XMY J P

qFr and
›

›

›

rE
1
2Q pQ´1

qE´ 1
2

›

›

›
ď

?
2, and XMY J P qFr:

}ĂM} “ } qD
1
2 pPP´1

rD´ 1
2 ĂM rE´ 1

2Q pQ´1
qE

1
2 }˚ ď 2}|M}. (E.43)

Using this and the fact that Γ{pΓ ď γ yields the result immediately.

Lemma E.5. Let U P Rd1ˆm,K P Rmˆn, V P Rnˆd2 be matrices and let 1m (resp. 1n) denote a
column vector in Rm (resp. Rn) all of whose entries are equal to 1.

We have the following bound on the spectral norm of UKV :

}UKV } ď
1

2

“

}U diagpK1d1qUJ} ` }V J diagp1J
d2KqV }

‰

. (E.44)

Proof. The result essentially follows from the Cauchy-Schwarz inequality. Indeed, let u P Rd1 and
v P Rd2 be two unit vectors. We have, using Cauchy-Schwarz at the second line:

uJUKV v “

m
ÿ

i“1

n
ÿ

j“1

ruJU siKi,jrV vsj

ď

m
ÿ

i“1

n
ÿ

j“1

1

2

“

ruJU s2iKi,j ` rV vs2jKk,j

‰

“
1

2
uJU diagpK1d1qUJu`

1

2
vJV J diagp1J

d2KqV v

ď
1

2

“

}U diagpK1d1qUJ} ` }V J diagp1J
d2KqV }

‰

. (E.45)

Since u and v were arbitrary unit vectors, the result follows.

F Low-level lemmas

Here collect Lemmas from the literature that are useful for our proofs. Sometimes we need to prove
them purely to obtain explicit constants, but everything in this section is known.
Lemma F.1 (Non commutative Khinchine inequality [8, 9, 10]). Let X P Rdˆd be a matrix with
jointly Gaussian, centred real-valued entries. There exists a universal constant Ck such that the
following bound holds on the expectation of the spectral norm of X:

E p}X}q ď Ck
a

logpdq

”

}EpXJXq}
1
2 ` }EpXXJq}

1
2

ı

(F.1)

Recall the following classic theorem [11, 12, 4]:
Theorem F.1. Let Z,Z1, . . . , Zn be i.i.d. random variables taking values in a set Z , and let a ă b.
Consider a set of functions F P ra, bsZ . @δ P p0, 1q, we have with probability ě 1 ´ δ over the draw
of the sample S that

@f P F , EpfpZqq ď
1

n

n
ÿ

i“1

fpziq ` 2ESpRSpFqq ` pb´ aq

c

logp2{δq

2n
.

We also have that with probability ě 1 ´ δ, the following data-dependent bound holds:

@f P F , EpfpZqq ď
1

n

n
ÿ

i“1

fpziq ` 2RSpFq ` 3pb´ aq

c

logp4{δq

2n
.

Proposition F.2 (Bernstein inequality, cf. [13], Corollary 2.11). Let X1, X2, . . . , XN be independent
real valued random variables with the following properties for some real numbers ν,M

• Xi ď M almost surely

22



•
řN
i“1 EpX2

i q ď ν2.

Let S “
řN
i“1Xi ´ EpXiq, we have (for all t ě 0)

PpS ě tq ď exp

ˆ

´
t2{2

ν2 `Mt{3

˙

. (F.2)

The inequality can be extended to the matrix-wise case as follows:
Proposition F.3 (Non commutative Bernstein inequality, Cf. [14]). Let X1, . . . , XS be independent,
zero mean random matrices of dimension mˆ n. For all k, assume }Xk} ď M almost surely, and
denote ρ2k “ maxp}EpXkX

J
k q}, }EpXJ

k Xkq}q and ν2 “
ř

k ρ
2
k. For any τ ą 0,

P

˜
›

›

›

›

›

S
ÿ

k“1

Xk

›

›

›

›

›

ě τ

¸

ď pm` nq exp

˜

´
τ2{2

řS
k“1 ρ

2
k `Mτ{3

¸

. (F.3)

Proposition F.4. Under the assumptions of Proposition F.3, writing σ2 “
řS
k“1 ρ

2
k, we have

E

˜
›

›

›

›

›

S
ÿ

k“1

Xk

›

›

›

›

›

¸

ď
a

8{3σp1 `
a

logpm` nqq `
8M

3
p1 ` logpm` nqq. (F.4)

Proof. The result in O notation is an exercise from [15], and a similar result is also mentioned in
both [7] and [16].

For completeness and to get the exact constants, we include a proof as follows.

Let Y “

›

›

›

řS
k“1Xk

›

›

›
. By Proposition F.3, splitting into two cases depending on whether τM ď σ2

or τM ě σ2 we have

PpY ě τq ď min

ˆ

1, pm` nq exp

„

´
3τ2

8σ2

ȷ˙

` min

ˆ

1, pm` nq exp

„

´
3τ

8M

ȷ˙

(F.5)

Now note that writing κ for logpm` nq8M{3, we have
ż 8

0

1 ^ pm` nq exp

ˆ

´
3τ

8M

˙

dτ (F.6)

ď

ż κ

0

1 ^ pm` nq exp

ˆ

´
3τ

8M

˙

dτ `

ż 8

κ

pm` nq exp

ˆ

´
3τ

8M

˙

dτ

ď κ`

„

´8M

3
pm` nq exp

ˆ

´
3τ

8M

˙ȷ8

κ

“ κ`
8Mpm` nq

3
exp

ˆ

´
3κ

8M

˙

“ κ`
8Mpm` nq

3
“

8M

3
p1 ` logpm` nqq. (F.7)

We also have, writing ψ for σ
a

logpm` nq8{3,

ż 8

0

1 ^ pm` nq exp

ˆ

´
3τ2

8σ2

˙

dτ ď

ż ψ

0

1dτ `

ż 8

ψ

pm` nq exp

ˆ

´
3τ2

8σ2

˙

dτ

ď ψ `

ż 8

ψ

exp

ˆ

´
3pτ2 ´ ψ2q

8σ2

˙

dτ ď ψ `

ż 8

ψ

exp

ˆ

´
3pτ ´ ψq2

8σ2

˙

dτ

ď ψ ` σ
a

2π{3 “ σ
”

a

logpm` nq8{3 `
a

2π{3
ı

ď
a

8{3σp1 `
a

logpm` nqq. (F.8)

Plugging inequalities (F.6) and (F.8) into equation (F.5), we obtain:

EpY q ď

ż 8

0

PpY ě τqdτ ď
a

8{3σp1 `
a

logpm` nqq
8M

3
p1 ` logpm` nqq, (F.9)

as expected.

23



Lemma F.5. Let F be a random variable that depends only on the draw of the training set. Assume
that with probability ě 1 ´ δ,

EpF q ď fpδq, (F.10)

for some given monotone increasing function f . Then we have, in expectation over the training set:

EpF q ď

8
ÿ

i“1

fp2´iq21´i, (F.11)

In particular, if fpδq “ C1

b

logp 1
δ q ` C2, then we have in expectation over the draw of the training

set:

EpF q ď
C1

?
2 ´ 1

` C2. (F.12)

Proof. By assumption we have for any δ:

P pX ě fpδqq ď δ (F.13)

Let us write Ai for the event Ai “ tF ď fpδiqu where we set δi “ 2´i for i “ 1, 2, ... . We also set
Ãi “ AizAi´1 for i “ 1, 2, ... with the convention that A0 “ H so that Ã1 “ A1.

We have, for i ě 2, Pp rAiq ď PpAci´1q ď δi´1, and for i “ 1, Pp rA1q ď 1 “ δi´1. Thus we can write

EpF q ď

8
ÿ

i“1

EpX| rAiqPp rAiq ď

8
ÿ

i“1

EpX| rAiqδi´1 ď

8
ÿ

i“1

fpδiqδi´1, (F.14)

yielding identity (F.11) as expected.

Next, assuming fpδq “ C1

b

logp 1
δ q ` C2, we can continue as follows:

EpF ´ C2q ď

8
ÿ

i“1

fpδiqδi´1 ď

8
ÿ

i“1

rC1

a

logp2iqs21´i (F.15)

ď

8
ÿ

i“1

rC1

?
is21´i ď C1

8
ÿ

i“1

?
2
1´i

“
C1

?
2 ´ 1

(F.16)

where at the second line we have used the fact that for any natural number i,
?
i ď

?
2
i´1

.

As an immediate consequence we obtain the following Rademacher type theorem in expectation:

Theorem F.2. Let Z,Z1, . . . , ZN be i.i.d. random variables taking values in a set Z , and let a ă b.
Consider a set of functions F P ra, bsZ . @δ P p0, 1q, we have in expectation over the draw of the
sample S that

inf
fPF

˜

EpfpZqq ´
1

N

n
ÿ

i“1

fpziq

¸

ď 2EpRSpFqq ` 5pb´ aq

c

1

N
. (F.17)

Proposition F.6 ( [17, 18, 19]). Let F be a real-valued function class taking values in r0, 1s, and
assume that 0 P F . Let S be a finite sample of size n. For any 2 ď p ď 8, we have the following
relationship between the Rademacher complexity RpF |Sq and the covering number N pF |S, ϵ, } .}pq.

RpF |Sq ď inf
αą0

ˆ

4α `
12
?
n

ż 1

α

b

logN pF |S, ϵ, } .}pqdϵ

˙

,

where the norm } .}p on Rm is defined by }x}pp “ 1
n p

řm
i“1 |xi|

pq.
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Figure G.1: Weighted RMSE as a function of ω .

G More detailed discussion of the experimental setting

G.1 Synthetic data

Generation and training procedure: First we sample matrices A and B in Rmˆd with i.i.d.
Np0, 1q entries. We also sample K1 and K2 in Rdˆr. We then compute F “ AK1K

J
2 B

J and set
G “ m normalizepF q, X “

?
mdnormalizepAq and Y “

?
mdnormalizepBq where the operator

normalize normalises the matrix to have unit Frobenius norm. Regarding the sampling distribution,
we set pi,j9 exppΛ|Gi,j |q where Λ is a hyperparameter. In particular, when Λ “ 0 we have uniform
sampling. For each n P t100, 200u we evaluate the following pd, rq combinations: p30, 4q, p50, 6q

and p80, 10q. In order to study a meaningful data-sparsity regime, in each case we sampled drω
entries where ω P t1, 2, 3, 4, 5u. Each pn, d, rq configuration was tested on 50 matrices. Training
details: the λs were chosen in the range r10´6, 2 ˆ 102s, each configuration was run to convergence
without warm starts.

More detailed results: Below are detailed results of the syntehtic data experiments. The first
graph G.1 shows the performance as a function of our data sparsity paramameter ω in different
configurations, whilst Figure G.3 provides the corresponding boxplots documenting the variance
with respect to the draw of the random matrix. Figure G.2 shows, in many different situations, the
progression of performance as the size of the side information increases. Corresponding boxplots are
provided in Figure G.4.

We observe that our methods (especially the smoothed version) generally outperform standard IMC
in the meaningful sparsity regimes. Interestingly, when data is too sparse to make any meaningful
prediction, standard IMC frequently outperforms our method (though our methods become better
as more data becomes available), suggesting that α could be tuned depending on the sparsity of the
observations.

G.2 Description of real-life datasets

• Douban2 (R P R4999ˆ4577): Douban is a social network where users can produce content
related to movies, music, and events. Douban users are members of the social network and
Douban items are a subset of popular movies. The rating range is t1, 2, . . . , 5u and the entry
pi, jq corresponds the rating of user i to movie j. To construct side information, we collected
the following data from the Douban website: each movies’ genres, its number of views, the
number of people who rated the movie, and the number of reviews written.

• LastFM (R P R1875ˆ4354): Last.fm is a British music website that builds a detailed profile
of each user’s musical taste. Differently from the other datasets an entry pi, jq represents the
number of views of user i to band/artist j. We expressed the number of views in a log scale.

2Rating matrix available in https://doi.org/10.7910/DVN/JGH1HA
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Figure G.2: Weighted RMSE as a function of the size of the side information.

Figure G.3: Weighted RMSE as a function of ω, boxplots.

Figure G.4: Weighted RMSE as a function of the size of the side information, boxplots.
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The website allows users to tag artists, which provides us with the opportunity to group the
items (artists) by their associated tags.

• MovieLens (R P R6040ˆ3382): We consider the MovieLens 1M dataset, which is a broadly
used and stable benchmark dataset. MovieLens is a non-commercial website for movie
recommendations. Just as in Douban, an entry pi, jq represents the rate of user i to movie j
on a scale from 1 to 5. We used movies’ genres and gender as item and user side information
respectively.

Training details: In all real data experiments, we used 85% of the data for training, 10% for
validation and 5% for the test set.

We optimized the model (18) via the accelerated subgradient method of [20], alternating the optimiz-
ation between each term with only two iterations per term.

To choose a suitable hyper parameter range, the matrices qX and qY were normalised to have Frobenius
norm

?
m and

?
n respectively, and values in the range r1, 200s were explored for both λ1, λ2.

Initially, twenty alternations were run for each tested hyper parameter combination. We then ran the
model to convergence for the final hyperparameter configuration. For the real data experiments, we
used a rank-restricted version of the SVD’s with rank 30.

We performed the experiments in a cluster with 72 CPUs (3GHz) and 750GB of RAM. We relied on
warm starts to reach convergence faster. For a given X,Y , and given a solution Z1 ` Z2 (with Z1

(resp. Z2) corresponding to the inductive (resp. non inductive) term), a warm start XM0Y
J ` Z0

can be constructed as follows: Set Z0 “ Z2. Set M0 “ pXJXq´1XJZ1Y pY JY q´1. If X or Y is
not full rank the above inverses can be replaces by pseudoinverses.

H Variations on the optimization problems and loss functions

Models involving a non-inductive term We first note that using the subadditivity of the Rademacher
complexity, it is trivial to obtain results for a combined function class corresponding to the regular-
iser (18):

Proposition H.1. Suppose for simplicity that m “ n, d1 “ d2 “ d, and x2y2

x2y2 “ γ ď K for some

constant K “ Op1q and define the function class rGr1,r2 :“ tXMY J ` Z : } rD
1
2PMQ´1

rE
1
2 }˚ ď

Γ
?
r1 ^ } rD

1
2

I Z
rE

1
2

I }˚ ď
?
r2u. As long as N ě T where T is Opnq, w.p. ě 1 ´ δ we have for all

F P rGr1,r2 :

lpF q ´ l̂SpF q ď rO

ˆ

pℓ` bq

?
Γr1d`

?
r2n

?
N

˙

. (H.1)

Proof. Follows from the Rademacher complexity bound from Proposition 3.3 (cf. also Prop.B.1)
applied to both side information pairs pX,Y q and pI, Iq, together with the subadditivity of the
Rademacher complexity. Note that the condition on n is only necessary to get rid of Op1{Nq terms
for cosmetic purposes.

Lagrangian Formulation and Square Loss

Similarly to other work ([21, 2] etc.) we expressed our results in terms of bounds on the expected loss
of the empirical risk minimizers subject to explicit norm constraints. However, it is easy to express
similar results for the solution to a regularised optimization problem in "Lagrangian formulation"
such as the ones we propose3. We have also relied on a bounded loss function. However, in most
practical situations, the values of the entries are restricted by domain knowledge (for instance, in
the Recommender Systems field, ratings are typically restricted to the range r1, 5s). This effectively
renders any Lipschitz loss bounded, including the square loss, as long as one also truncates the output
of the algorithm to fit the required range.

We begin by completing the (trivial) proof of Corollary 3.4.

3just as in the case of exact norm constraints, the hyperparameters must be assumed to have been properly
tuned
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Proof of Corollary 3.4. Since G satisfies the optimization constraints on the training set Ω, we must
have } rD

1
2PM#Q

´1
rE

1
2 }˚ ď

?
rGΓ, which allows us to apply proposition (C.1) to the loss function

Φ2C ˝ l, which coincides with l when applied to the matrix ΦCpZ#q ´G.

We now show further how to adapt our result C.1 to make it apply to the solution to a Lagrangian
formulation involving the square loss. Further similar manipulations can be applied to our other
results.
Proposition H.2. Assume that the noise ζ is bounded by a fixed constant C almost surely, and that
so are all of the entries of the ground truth matrix G. Let

Mλ “ argmin
M

1

N

ÿ

pi,jqPΩ

rXMY J ´Gi,j ´ ζi,js
2
i,j ` λ} rD

1
2PMQ´1

rE
1
2 }˚,

and Zλ :“ XMλY
J denote the solutions to a Lagrangian formulation of the problem with the square

loss l (which is unbounded).

Furthermore, we also write Φpxq “ Φ2Cpxq “ signpxqminp|x|, 2Cq, E “ lpGq for the expected

square loss at the ground truth (i.e. the variance of the noise) and ∆ :“ C2

b

logp4{δq

2N . We assume

that λ is tuned so that E`∆
2

?
rGΓ ď λ ď 2 E`∆?

rGΓ
4.

We have the following bound on the expected L2 risk of Φ2CpXMλY
Jq:

Eξ
´

ˇ

ˇΦ2CrXMλY
Jsξ ´Gξ ´ ζξ

ˇ

ˇ

2
¯

“ lpΦ2CpXMλY
Jqq (H.2)

ď 3E `
48ℓ

?
Γ

?
r
?
dp1 `

a

logp2dqq
?
N

`
72ℓxy

?
d1d2rp1 ` logp2dqq

N
` 19C2

c

logp4{δq

2N
.

Proof. Since lpζq ď C2 for any |ζ| ď C we have by Hoeffding’s lemma that with probability
ě 1 ´ δ{2,

|lSpGq ´ lpGq| ď C2

c

logp4{δq

2N
. (H.3)

Then (with the same probability) we have

lSpZλq ` λ} rD
1
2PMλQ

´1
rE

1
2 }˚ ď lSpGq ` λ

?
rGΓ

ď lpGq ` λ
?
rGΓ ` C2

c

logp4{δq

2N
.

“ lpGq ` ∆ ` λ
?
rGΓ

ď 3rE ` ∆s, (H.4)

where at the last line, we have used the constraint on λ.

It follows that

} rD
1
2PMλQ

´1
rE

1
2 }˚ ď

3rE ` ∆s

λ
ď 6

?
rGΓ, (H.5)

where we have made another use of the constraint on λ.

It follows that Zλ P rF36rG . Let l̃ “ Φ4C ˝ l be the truncated square loss: l̃pa, bq “ minp|a´ b|, 4Cq2.
By Proposition C.1 we now have with probability ě 1 ´ δ

2 over the draw of the training set:

E
”

l̃ppXMλY
Jqξ, Gξ ` ζξq

ı

´
1

N

ÿ

ξPΩ

l̃ppXMλY
Jqξ, Gξ ` ζξq (H.6)

4Although this tuning depends on the sample size N slightly, it converges as N tends to infinity and is there
for purely cosmetic purposes (to avoid extra logarithmic terms in the final formula).
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ď
48ℓ

?
Γ

?
r
?
dp1 `

a

logp2dqq
?
N

`
72ℓxy

?
d1d2rp1 ` logp2dqq

N
` 16C2

c

logp4{δq

2N
.

Writing ∆̄ for the quantity

48ℓ
?
Γ

?
r
?
dp1 `

a

logp2dqq
?
N

`
72ℓxy

?
d1d2rp1 ` logp2dqq

N
` 16C2

c

logp4{δq

2N
,

it now follows that (w.p. ě 1 ´ δ)

lpΦ2CpXMλY
Jqq “ Eξ

“

lppΦ2CpXMλY
Jqξ, Gξ ` ζξq

‰

“ Eξ
”

l̃ppXMλY
Jqξ, Gξ ` ζξq

ı

“ l̃ppXMλY
Jqq

ď l̃SpXMλY
Jq ` ∆̄ (H.7)

ď lSpXMλY
Jq ` ∆̄ ď 3rE ` ∆s ` ∆̄, (H.8)

where at equation (H.7) we have used equation (H.6) and at equation (H.8) we have used equa-
tion (H.4). The result follows.

I Further discussion

I.1 Deeper comparison to related works

Here we discuss some related works in more detail than in the main paper.

One very interesting other work is [22] which introduces a joint model that imposes a nulcear norm
based constraint on both M and XMY J through a modification of the objective: first, the matrices
X and Y are augmented by columns of ones resulting in the matrices X̄ “ rX, 1s and Ȳ “ rY, 1s.
Predictors then take the form E “ X̄MpȲ qJ `∆, with nuclear norm regularisation imposed on both
E and M , and Frobenius norm regularization imposed on ∆, with the constraint that PΩpEq “ RΩ

where RΩ denotes the observed entries. Thus the model achieves a similar aim as [21] through a
different and more original approach. The authors then provide an efficient algorithm for their model
and prove some theoretical guarantees: for exact recovery, they obtain a rate of Oprd logpdq logpnqq

in the uniform sampling case. This is the same as [20], except that the assumptions on X and Y
are weaker (no orthogonality assumption). Of course, both [22] and [20] require a realisability
assumption for exact recovery to be possible. In addition to that, the authors of [22] also show
distribution-free bounds for the approximate recovery case which scale as Opγ2 logpnqq where γ
is an upper bound on the ground truth spectral norm of the matrix M (G in their notation). That
bound is comparable to the bounds of the form (3) from [21, 23, 24], though the precise results are
different in formulation (and rely on a different optimizer). Note that in addition to pertaining to a
completely different optimization problem, our results for approximate recovery lack any dependence
on n, even logarithmic, and also do not have the implicit dependence on d1d2 present in that paper.
Note that although it is claimed in the paper that the rate is "logpnq", this is because in that informal
presentation of the results the authors are treating their "γ" (which scales at least as

?
d1d2r) as

a constant, which amounts to treating the size of the side information as a constant. This type of
formulation is standard and also used in [20], but corresponds to a different perspective as in this work
we want to remove the dependence on d1, d2. Note also that although it is not explicitly stated in the
paper that the exact recovery results rely on a uniform sampling assumption, such an assumption is
implicit. Indeed, such an assumption is standard in all exact recovery results: there is no known exact
recovery result for arbitrary distributions for either MC or IMC. Further, the results would be clearly
wrong without such an assumption (assume for instance identity side information and a sampling
distribution which only samples the top left quadrant, all of which is perfectly compatible with the
coherence assumptions on X,Y and the ground truth matrix G (F in their notation)). The first
obvious implicit use of the uniform sampling assumption is in line 70 of the supplementary material.
As we explain later, even defining the concept of exact recovery in the non uniform sampling case has
not been done explicitly to the best of our knowledge, and no results exist for this for either inductive
matrix completion or matrix completion in general.
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In [25], the authors explicitly study a disentangled version of [21] specifically tailored to the case
of community side information. Whilst generalisation bounds are provided which scale similarly to
ours in the case of community side information, those are obtained through a direct application of the
matrix completion results from [2] to the auxiliary problem where each community is treated as a
single user. In particular, the results are not applicable in a more general context and they did not
introduce any of the novel proof techniques we rely on here.

[26] proves rates of d2r3 logpdq in the case of exact recovery, as well as abstract conditions for the
possibility of exact recovery in a more general context and results for other problems closely related
to inductive matrix completion (such as matrix regression, see also [27, 28]); [29], which proved
a similar sample complexity rate together with an efficient optimization strategy with favourable
convergence rates; and of course [20], which both introduced the MaxIDE algorithm (an involved form
of projected gradient method with an integrated line search over the step sizes) to solve problem (2),
and proved sample complexity bounds of order rd logpdq logpnq for exact (noiseless) recovery under
the assumption of uniform sampling. Recently, convergence and generalisation guarantees were
shown for an exciting model which functions as inductive matrix completion with unknown "side
information matrices X,Y which must be learned by a two layer neural network from some raw user
and item side information, jointly with the low rank problem [30]. We note that this applies to a fixed
rank problem and does not rely on a nuclear norm regulariser.

Further remarks on related works: In Table 1 and Table 2, we are only concerned with sample
complexity. It is worth noting that many important gains were also achieved in the direction of
improving computational complexity through better algorithms [29, 31].

We also do not compare here with results obtained for other regularisation strategies including the max
norm [32, 33, 34] etc., all of which apply exclusively to matrix completion without side information.
We do note in passing that rates of Opnr logpnqq were obtained very early for matrix completion
with an explicit low-rank assumption [32]. In both MC and IMC, the relevance of the more recent
branch of the literature is tied to the impractical nature of explicitly minimizing the rank and the fact
that the low rank assumption is not satisfied exactly, justifying the use of nuclear norm based methods
and the soft relaxations of the rank that they bring into the theoretical analysis.

J Discussion and future directions

J.1 On transductive Rademacher complexity:

Some results in [2] and [7] are formulated in the transductive [35] setting. In this context, we
assume that the set of observed entries is sampled without replacement, and the training and test
sets are divided uniformly. There is a parallel theory in this case with a concept of transductive
Rademacher complexity at the key. In some cases the bounds can be better in some aspects. For
instance, the transductive bound in [2] scales like Opnr logpnqq in the case of a distribution where the
probabilities of each entries are within a ratio of each other. Such a bound follows in our iid setting
from Proposition 3.3, and indeed similar results had been otherwise obtained (for the non inductive
case) in [32], as the authors of [2] mention. As another significant advantage, the transductive bounds
in [7] involve a smaller power of the log term.

There are two reasons why we didn’t prove transductive bounds in our setting: (1) The transductive
Rademacher complexity is bounded above by the standard Rademacher complexity up to a constant
of 4 5. In particular, all of our results also hold up to a constant in a transductive setting. 6. (2)
Contrary to the MC case, we do not believe that we would get better bounds in this context. Indeed,
the main reason the transductive setting improves the bounds is because it prevents the oversampling
of single entries (see how in the proof of the main theorem in [2], one must distinguish between the
oversampled entries and the moderately sampled entries). It is easy to see by comparing to our proof
of Theorem 3.1, especially consolidating the intuition via the example of community side information,
that the benefits would not carry over to the inductive case: even if the entries are sampled without
replacement, the combinations of communities can still be sampled many times. Thus we do not
expect significant gains from this approach.

5See Footnote 1 on page 3407 of [2], and Lemma 1 in [35]
6This remark also applies to earlier work, they merely proved the transductive bounds because in the matrix

case, this provides an actual improvement.
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J.2 Open directions

There are many possible open problems related to this work and to distribution-free matrix completion
in general:

• Is it possible to provide a rigorous theoretical explanation why the empirically weighted
trace norm outperforms the exactly weighted version in the synthetic data experiments?

• Can we make the bounds even more sensitive to the alignement of the side information
vectors?

• In what situations can one remove the
a

logpdq term in Proposition 3.1?

Regarding the extra log term in Theorem 3.1, we would like to note that although we do not see how
to remove it in general, it is straightforward to remove it (at the cost of higher order dependence on
the coherence of X and Y ) in the specific case where the columns of X and Y each have distinct
support (i.e. the columns of X2 and Y 2, defined as matrices whose entries are the squares of those of
X and Y respectively, are orthogonal), in which particular case a proof with more similarities to that
in [2] still holds.
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K Table of notations

Table K.1: Table of notations for quick reference

Notation Meaning
}A} spectral norm of matrix A

A ď B B ´A is positive semi-definite
}A}˚ nuclear norm of matrix A
I Identity matrix

G P Rmˆn ground truth matrix
ξ1, . . . , ξN sampled entries

(P t1, . . . ,mu ˆ t1, . . . , nu)
ζξ Noise observed at sample ξ

X P Rmˆd (resp. Y P Rnˆd) Row (resp. column) side information matrix
M matrix to optimize (predictors: XMY J)

S “ Ω “ tξ1, . . . , ξNu (training) set of observed entries
xi “ Xi, . side information vector for ith user (row)
yj “ Xj, . side information vector for jth item (column)
x (resp. y) maxi }xi}

2 (resp. maxj }xj}
2)

x (resp. y) mini }xi}
2 (resp. minj }xj}

2)
γ x2y2

x2y2

d maxpd1, d2q

pi,j Probability of sampling pi, jq
=Ppξ “ pi, jqq

p sampling distribution
M constraint on }M}˚

hi,j “
ř

ξPΩ 1ξ“pi,jq Number of times entry pi, jq was sampled
l loss function
b global upper bound on l
ℓ Lipschitz constant of l

lpZq Epi,jq„pplprXMY Jsi,j , Gi,j ` ζi,jqq

(or more rigorously) Eξ,ξ̄lprXMY Jsξ1,ξ2 , ξ̄oq

l̂pZq 1
N

ř

pi,jqPΩ lprXMY Jsi,j , Gi,j ` ζi,jq

(or more rigorously) 1
N

řN
o“1 lprXMY Jsξ1,ξ2 , ξ̄oq

Γ
ř

i,j pi,j}xi}
2}yj}

2

pΓ 1
N

ř

i,j hi,j}xi}
2}yj}

2

qi (resp. q̂i)
řn
j“1 pi,j}yj}

2 (resp. 1
N

řn
j“1 hi,j}yj}

2)
κj (resp. q̂i)

řm
i“1 pi,j}xi}

2 (resp. 1
N

řm
i“1 hi,j}xi}

2)
xv, wyl (resp. xv, wyr)

řm
i“1 viqiwi (resp.

řn
j“1 vjhjwj)

xv, wyl̂ (resp. xv, wyr̂)
řm
i“1 viq̂iwi

řn
j“1 vj κ̂jwj

L XJ diagpqqX “
ř

i,j pi,jxix
J
i }yj}

2

pL XJ diagpq̂qX “
ř

i,j
hi,j

N xix
J
i }yj}

2

R Y J diagpκqY “
ř

i,j pi,jyjy
J
j }xi}

2

pR Y J diagpκ̂qY “
ř

i,j
hi,j

N yjy
J
j }xi}

2

D (resp. pD) Eigenvalues of L (resp. pL)
E (resp. pE) Eigenvalues of R (resp. pR)

P orth. matrix diagonalising L so L “ P´1DP
Q orth. matrix diagonalising R so R “ Q´1EQ
rD αD ` p1 ´ αq Γ

d1
I

(In theorems, α “ 1
2 )

rE αE ` p1 ´ αq Γ
d2
I

qD α pD ` p1 ´ αq Γ
d1
I

qE α pE ` p1 ´ αq Γ
d2
I
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rX (resp. rY ) XP´1
rD´ 1

2 (resp. Y Q´1
rE´ 1

2 )
Y 1 (resp. Y 1) XP´1D´ 1

2 (resp. Y Q´1E´ 1
2 )

pX (resp. pY ) X pP´1
pD´ 1

2 (resp. Y pQ´1
pE´ 1

2 )
qX (resp. qY ) X pP´1

qD´ 1
2 (resp. Y pQ´1

qE´ 1
2 )

M 1 D
1
2PMQ´1E

1
2

xM pD
1
2 pPM pQ´1

pE
1
2

ĂM rD
1
2PMQ´1

rE
1
2

|M qD
1
2 pPM pQ´1

qE
1
2

σ1 P Rd1 (resp. σ2 P Rd1 ) singular values of X (resp. Y ) wrt x ., .yl (resp. x ., .yr)
equivalently: σ1

u “
a

Du,u (σ2
v “

a

Dv,v) for all u ď d1 (resp. v ď d2)
σ1

˚ (resp. σ2
˚) maxpσ1q (resp. maxpσ2q)

cU piq (resp. cIpjqq) community to which user i (resp. item j) belongs
qDI (resp. qEI ) same as qD (resp. qE)

(with identity side info)
Hence: r qDI si,i “ αr

řn
j“1

hi,j

N s ` p1 ´ αq 1
d1

and: r qEI sj,j “ αr
řm
i“1

hi,j

N s ` p1 ´ αq 1
d2

rFr
!

XMY J : }ĂM}˚ ď
?
rΓ

)

qFr
!

XMY J : }|M}˚ ď
?
rpΓ

)

qZ˚ argminZP qFr
ElpZξ, Gξ ` ζξq

qZS argminpl̂SpZq : Z P qFrq
rZ˚ argminZP rFr

ElpZξ, Gξ ` ζξq
rZS argminZP rFr

ElSpZq

If G P rFr G “ rZ˚

If G P qFr G “ qZ˚

E lpGq “ Eξ„plppXMSY
Jqξ, Gξ ` ζξq

rGr1,r2
"

XMY J ` Z s.t.

} rD
1
2PMQ´1

rE
1
2 }˚ ď Γ

?
r1 ^ } qD

1
2

I Z
qE

1
2

I }˚ ď
?
r2

*
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